Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-25T17:18:52.613Z Has data issue: false hasContentIssue false

Background of a Geophysical Model of the Initiation of the Next Glaciation

Published online by Cambridge University Press:  20 January 2017

Hermann Flohn*
Affiliation:
Dept of Meteorology, University of Bonn, Federal Republic of Germany.

Abstract

Evidence of (at least) five rapid hemispheric coolings of about 5°C during the last 105 yr has been found, each event spread over not more than about a century, as examples of a global-scale climatic intransitivity. Only some of them lead to a complete glaciation at the northern continents, others ended after a few centuries by a sudden warming (“abortive glaciation”). Starting from a modified version of Wilson's hypothesis of Antarctic ice surges, an air-sea interaction model with realistic geophysical parameters is outlined to interpret the sudden initiation of the North American ice sheet. Special attention is given to the Atlantic section, where the climatic anomalies during the last glaciation appear to have been significantly larger than in other sections.

Type
Original Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alyea, J., (1972). Numerical simulation of an ice age paleoclimate. Atm. Sci. Pap. No. 193 Dept. Atm. Sci., Colorado State Univ.,, Fort Collins 120.Google Scholar
Barry, R.G., (1959). A synoptic climatology for Labrador-Ungava. Publ. in Meteor. No. 17 Arct. meteor. Res. Group, McGill Univ.,, Montreal 168Append.Google Scholar
Barry, R.G., (1966). Meteorological aspects of the glacial history of Labrador-Ungava with special reference to atmospheric vapour transport. Geographical Bulletin 8, 319340.Google Scholar
Bjerknes, J., (1969). Atmospheric teleconnections from the equatorial Pacific. Monthly Weather Review 97, 163172.Google Scholar
Bloch, M.R., (1964). Die Beeinflussung der Albedo von Eisflächen durch Staub und ihre Wirkung auf Ozeanhöhe und Klima. Geologische Rundschau 54, 515522.CrossRefGoogle Scholar
Brinkmann, R., Barry, R.G., (1972). Palaeoclimatological aspects of the synoptic climatology of Keewatin, Northwest territories, Canada. Palaeogeography, Palaeoclimatology, Palaeoecology 11, 7791.Google Scholar
Broecker, W.S., (1968). In defense of the astronomical theory of glaciation. Amer. Meteor. Soc. Meteor. Monogr. 8, No. 30 139141.Google Scholar
Broecker, W.S., Van Donk, J., (1970). Insolation changes, ice volumes and the 018 record in deep-sea cores. Reviews of Geophysics Space Physics 8, 169198.Google Scholar
Brooks, C.E.P., (1949). Climate Through the Ages. 2nd ed. London.Google Scholar
Budd, M., Jenssen, D., Radok, U., (1970). The extent of basal melting in Antarctica. Polarforschung 6, 293306.Google Scholar
Budyko, M., (1969). The effect of solar radiation variations on the climate of the earth. Tellus 21, 611619.CrossRefGoogle Scholar
Budyko, M., (1972). The future climate. Transactions of the American Geophysical Union (Eos) 53, 868874.CrossRefGoogle Scholar
Bull, C., Webb, P.N., (1973). Some recent developments in the investigation of the glacial history and glaciology of Antarctica. Van Zinderen Bakker, E.M., Palaeoecology of Africa Vol. 8, Balkema, Cape Town 5584.Google Scholar
Butzer, K.W., (1973). Pleistocene “periglacial” phenomena in southern Africa. Boreas 2, 111.CrossRefGoogle Scholar
Czajka, W., (1957). Die Reichweite der pleistozänen Vereisung Patagoniens. Geologische Rundschau 45, 634686.Google Scholar
Dansgaard, W., Johnsen, S.J., Clausen, H.B., Langway, C.C. Jr., (1971). Climatic record revealed by the camp century ice core. Turekian, K., Late Cenozoic Glacial Ages 3756.Google Scholar
Dansgaard, W., Johnsen, S.J., Clausen, H.B., Langway, C.C. Jr., (1972). Speculations about the next glaciation. Quaternary Research 2, 396398.Google Scholar
Denton, G.H., Armstrong, R.L., Stuiver, M., (1971). The late cenozoic glacial history of Antarctica. Turekian, K., Late Cenozoic Glacial Ages 267306.Google Scholar
Duplessy, J.C., Labeyrie, J., Lalou, C., Nguyen, H.V., (1971). La mesure des variations climatiques continentales. Application à la période comprise entre 130.000 et 90.000 ans B.P. Quaternary Research 1, 162174.Google Scholar
Emiliani, C., (1970). Pleistocene paleotemperatures. Science 168, 822825.Google Scholar
Emiliani, C., (1971). The amplitude of pleistocene climatic cycles at low latitudes and the isotopic composition of glacial ice. Turekian, K., Late Cenozoic Glacial Ages 183197.Google Scholar
Emiliani, C., (1972). Quaternary paleotemperatures and the duration of the high-temperature intervals. Science 178, 398401.Google Scholar
Fairbridge, R.W., (1972). Climatology of a glacial cycle. Quaternary Research 2, 283302.CrossRefGoogle Scholar
Fliri, F., Bortenschlages, S., Felder, (u.a.) H., (1970). Der Bänderton von Baumkirchen (Inntal, Tirol). Eine neue Schlüsselstellung zur Kenntnis der Würmvereisung der Alpen. Zeitschrift fuer Z. Gletscherkunde und Glazialgeologie 6, 535.Google Scholar
Fliri, F., Hilscher, H., Markgraf, V., (1971). Weitere Untersuchungen zur Chronologie der alpinen Vereisung (Bänderton von Baumkirchen, Inntal, Nordtirol). Zeitschrift fuer Gletscherkunde und Glazialgeologie 7, 524.Google Scholar
Flohn, H., (1969). Ein geophysikalisches Eiszeit-Modell. Eiszeitalter und Gegenwart 20, 204231.Google Scholar
Flohn, H., (1972). Investigation of equatorial upwelling and its climatic role. Gordon, A.H., Studies in Physical Oceanography Vol. 1, Gordon & Breach, New York, London 93102A Tribute to Georg Wüst on his eightieth Birthday.Google Scholar
Flohn, H., (1973). Globale Energiebilanz und Klimaschwankungen. Vorträge Rhein-Westf. Akad. Wiss. N 234, 75117.Google Scholar
Flohn, H., (1973b). Antarctica and the global cenozoic evolution: A geophysical model. Van Zinderen Bakker, E.M., Palaeoecology of Africa Vol. 8, Balkema, Cape Town 3753.Google Scholar
Gierasch, P.J., Goody, R.M., (1972). The effect of dust on the temperature of the Martian atmosphere. Journal of Atmospheric Science 29, 400402.2.0.CO;2>CrossRefGoogle Scholar
Gow, A.J., Ueda, H.T., Garfield, D.E., (1968). Antarctic ice sheet: Preliminary results of first core hole to Bedrock. Science 161, 10111013.Google Scholar
Hamilton, W.L., Seliga, Th.A., (1972). Atmospheric turbidity and surface temperature on the polar ice sheets. Nature (London) 235, 320322.Google Scholar
Heine, K., (1973a). Die jungpleistozänen und holozänen Gletschervorstöße am Malinche-Vulkan, Mexiko. Eiszeitaller und Gegenwart 23, 4662.Google Scholar
Heine, K., (1973b). Variaciones más importantes del clima durante los ultimos 40.000 años en México. Comunicationes Puebla Mexico 7, 5158.Google Scholar
Hoinkes, H., (1961). Die Antarktis und die geophysikalische Erforschung der Erde. Naturwissenschaften 48, 354374.Google Scholar
Hoinkes, H., (1971). Neue Ergebnisse und Gedanken zur Eiszeitforschung. Jahrb. Akad. Wiss. Lit. Mainz 102103.Google Scholar
Hollin, J.T., (1972). Interglacial climate and Antaretic ice surges. Wuaternary Research 2, 401408.Google Scholar
Johnsen, S.J., Dansgaard, W., Clausen, H.B., Langway, C.C. Jr., (1972). Oxygen isotope profiles through the Antarctic and Greenland ice sheets. Nature (London) 235, 429434.Google Scholar
Kennett, J.P., Huddlestun, P., (1972). Abrupt climatic change at 90,000 yr BP: Faunal evidence from Gulf of Mexico cores. Quaternary Research 2, 384395.Google Scholar
Kukla, G.J., Matthews, R.K., Mitchell, J.M. Jr., (1972a). The end of the present interglacial. Quaternary Research 2, 261269.Google Scholar
Kukla, G.J., Matthews, R.K., (1972b). When will the present interglacial end?. Science 178, 190191.Google Scholar
Kukla, G.J., Kukla, H.J., (1972c). Insolation regime of interglacials. Quaternary Research 2, 412424.CrossRefGoogle Scholar
Lamb, H.H., (1967). On climatic variations affecting the Far South. World Meteor. Organ. Techn. Note No. 87 428453.Google Scholar
Lamb, H.H., Woodroffe, A., (1970). Atmospheric circulation during the last ice-age. Quaternary Research 1, 2958.CrossRefGoogle Scholar
Loewe, F., (1971). Considerations on the origin of the quaternary ice sheet of North America. Arctic and Alpine Research 3, 331344.Google Scholar
Lorenz, E.N., (1968). Climatic determinism. Meteorological Monographs S, No. 30, American Meteo ological Society 13.Google Scholar
Lorenz, E.N., (1970). Climatic change as a mathematical problem. Journal of Applied Meteorology 9, 325329.2.0.CO;2>CrossRefGoogle Scholar
McIntyre, A., Ruddiman, W.F., Jantzen, R., (1972). Southward penetration of the North Atlantic polar front: Faunal and floral evidence of the large-scale surface movements over the last, 225.000 years. Deep-Sea Research 19, 6177.Google Scholar
Manabe, S., Wetherald, R.T., (1967). Thermal equilibrium of the atmosphere with a given distribution of relative humidity. Journal of Atmospheric Science 24, 241259.Google Scholar
Mercer, J.H., (1969). The Allerød osciilation: A European climatic anomaly?. Arctic and Alpine Research 1, 227234.Google Scholar
Mercer, J.H., (1970). A former ice sheet in the Arctic Ocean?. Palaeogeography, Palaeoclimatology, Palaeoecology 8, 1927.Google Scholar
Mercer, J.H., Laugenie, C.A., (1973). Glacier in Chile ended a major readvance about 36.000 years ago: some global comparisons. Science 182, 10171019.Google Scholar
Mitchell, J.M. Jr., (1972). The natural breakdown of the present interglacial and its possible intervention by human activities. Quaternary Research 2, 436445.CrossRefGoogle Scholar
Mortensen, H., (1957). Temperaturgradient und Eiszeitklima am beispiel der pleistozänen Schneegrenzdepression in den Rand- und Subtropen. Zeitschrift fuer Geomorphologie 1, 4456.Google Scholar
Newell, J.M. Jr., (1973). Bulletin of the American Meteorological Society. 54, 428(Abstr.).Google Scholar
Olaussen, E., Bilal Ul Haq, U.I., Karlson, G.B., Olsson, J.N., (1971). Evidence in Indian Ocean cores of late pleistocene changes in oceanic and atmospheric circulation. Geologiska Foereningens, Stockholm Foerhandlingar 93, 5184.Google Scholar
Oswald, G.K.A., de Q. Robin, G., (1973). Lakes beneath the Antarctic ice sheet. Nature (London) 245, 251254.Google Scholar
Rowntree, P.R., (1972). The influence of tropical East Pacific Ocean temperatures on the atmosphere. Quarterly Journal of the Royal Meteorological Society 98, 290321.Google Scholar
Sancetta, C., Imbrie, J., Kipp, N.G., McIntyre, A., Ruddiman, W.F., (1972). Climatic record in North Atlantic deep-sea cores V 23–82: Comparison of the last and present interglacials based on quantitative time series. Quaternary Research 2, 363367.Google Scholar
Schott, G., (1944). Geographie des Atlantischen Ozeans. 3. Aufl. Boysen, Hamburg 438 S.Google Scholar
Schwerdtfeger, W., (1970). The Climate of the Antarctic. World Survey of Climatology Vol. 14, Elsevier, Amsterdam, London, New York 253355.Google Scholar
Sellers, W.D., (1965). Physical Climatology. University of Chicago Press, Chicago 272 S.Google Scholar
Sellers, W.D., (1969). A global climatic model based on the energy balance of the earth-atmosphere system. Journal of Applied Meteorology 8, 392400.Google Scholar
Sellers, W.D., (1973). A new global elimatic model. Journal of Applied Meteorology 12, 241254.Google Scholar
Stommel, H., (1964). Summary charts of the mean dynamic topography and current field at the surface of the ocean, and related fields of the mean wind-stress. Yoshida, K., Studies on Oceanography University of Tokyo Press, Tokyo 5358.Google Scholar
Van Der Hammen, T., Wijmstra, T.A., Zagwijn, W.H., (1971). Floral record of the late cenozoic of Europe. Turekian, K., Late Cenozic Glacial Ages Yale Univ. Press, New Haven 391424.Google Scholar
Van Zinderen Bakker, E.M., Coetzee, J.A., (1972). A re-appraisal of late-quaternary climatic evidence from tropical Africa. Van Zinderen Bakker, E.M., Palaeoecology of Africa Vol. 7, Balkema, Cape Town 151181.Google Scholar
Vernekar, A.D., (1972). Long-period global variations of incoming solar radiation. Amer. Meteor. Soc., Meteor. Monogr. 12, No. 34.Google Scholar
Vuilleumier, B.S., (1971). Pleistocene changes in the flora and fauna of South America. Science 173, 771780.Google Scholar
Washington, W.W., (1972). Numerical climatic-change experiments: The effect of man's production of thermal energy. Journal of Applied Meteorology 11, 768772.2.0.CO;2>CrossRefGoogle Scholar
Weyl, R., (1956). Spuren eiszeitlicher Vergletscherung in der Cordillera de Calamanca Costa Rica (Mittelamerika). N. Jahrb. Geol. Paläont. Abh. 102, 283294.Google Scholar
Wilhelmy, H., (1957). Eiszeit und Eiszeitklima in den feuchttropischen Anden. Petermanns Geogr. Mitt. Ergänz. Heft No. 262 281310.Google Scholar
Williams, J., Barry, R.G., Washingtong, W.W., (1973). Simulation of the climate at the last glacial maximum using the NCAR global circulation model. Occas. Pap. No. 5 Inst. of Alpine and Arctic Res., Univ. of Colorado, Boulder, Colo.Google Scholar
Wilson, A.T., (1964). Origin of ice ages: An ice shelf theory for pleistocene glaciation. Nature (London) 201, 147149.Google Scholar
Wilson, A.T., (1966). Variation in solar insolation to the south polar region as a trigger which induces instability in the Antarctic ice-sheet. Nature (London) 210, 477478.CrossRefGoogle Scholar
Wilson, A.T., (1969). The climatic effects of large-scale surges of ice sheets. Canadian Journal of Earth Science 6, 911918.Google Scholar
Wundt, W., (1938). Das Reflexionsvermögen der Erde zur Eiszeit. Meteorologische Zeitschrift 55, 8187.Google Scholar