Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-23T09:05:02.519Z Has data issue: false hasContentIssue false

Anthropogenic versus climatic control in a high-resolution 1500-year chironomid stratigraphy from a southwestern Greenland lake

Published online by Cambridge University Press:  20 January 2017

Laurent Millet*
Affiliation:
Laboratoire Chrono-Environnement, UMR 6249 CNRS, Université de Franche-Comté, 16 route de Gray, 25030 Besançon Cedex, France
Charly Massa
Affiliation:
Laboratoire Chrono-Environnement, UMR 6249 CNRS, Université de Franche-Comté, 16 route de Gray, 25030 Besançon Cedex, France Institut National de la Recherche Scientifique, Centre Eau Terre et Environnement, 490 rue de la Couronne, Quebec, QC G1K 9A9, Canada
Vincent Bichet
Affiliation:
Laboratoire Chrono-Environnement, UMR 6249 CNRS, Université de Franche-Comté, 16 route de Gray, 25030 Besançon Cedex, France
Victor Frossard
Affiliation:
Laboratoire Chrono-Environnement, UMR 6249 CNRS, Université de Franche-Comté, 16 route de Gray, 25030 Besançon Cedex, France
Simon Belle
Affiliation:
Laboratoire Chrono-Environnement, UMR 6249 CNRS, Université de Franche-Comté, 16 route de Gray, 25030 Besançon Cedex, France
Emilie Gauthier
Affiliation:
Laboratoire Chrono-Environnement, UMR 6249 CNRS, Université de Franche-Comté, 16 route de Gray, 25030 Besançon Cedex, France
*
*Corresponding author. E-mail address:[email protected] (L. Millet).

Abstract

We performed a high-resolution study of chironomid assemblages in a sediment core retrieved from Lake Igaliku in southern Greenland. The well-dated core is located within the former Norse Eastern Settlement and covered the last 1500 yr. The comparison of chironomid stratigraphy (PCA axis scores) with instrumental temperature data, land use history and organic matter in the sediment over the last 140 yr suggested that the primary changes in chironomid fauna in 1988 ± 2 yr were driven by the shift to modern agriculture in the catchment. This unprecedented change in chironomid fauna was most likely triggered by a shift in in-lake processes. Within the instrumental period, subtle variations in the chironomid assemblages that occurred before 1988 ± 2 yr were significantly correlated with summer temperatures even in times of traditional extensive sheep farming in the catchment. The relevance of the chironomid-derived climate signal over the last 1500 yr was supported by its good concordance with previous studies in west Greenland and in the Arctic. The chironomid assemblage therefore appeared to be a valuable proxy for climate changes within the Norse colony area. Synchronous changes in Norse diet and chironomid-reconstructed climate give new insights into the interplay of Norse society with climate.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allaart, J.H. Ketilidian mobile belt in South Greenland. Escher, A., and Watt, W.S. Geology of Greenland. Geological Survey of Greenland, Copenhagen. (1976). 120151.Google Scholar
Appleby, P.G., and Oldfield, F. The calculation of lead-210 dates assuming a constant rate of supply of unsupported 210Pb to the sediment. Catena 5, (1978). 18.Google Scholar
Arneborg, J., Heinemeir, J., Lynnerup, N., Nielsen, H.L., Rud, N., and Sveinbjornsdottir, A.E. Change of diet of the Greenland Vikings determined from stable carbon isotope analysis and C-14 dating of their bones. Radiocarbon 41, (1999). 157168.CrossRefGoogle Scholar
Axford, Y., Geirsdóttir, Á., Miller, G.H., and Langdon, P.G. Climate of the Little Ice Age and the past 2000 years in northeast Iceland inferred from chironomids and other lake sediment proxies. J. Paleolimnol. 41, (2008). 724. http://dx.doi.org/10.1007/s10933-008-9251-1Google Scholar
Axford, Y., Losee, S., Briner, J.P., Francis, D.R., Langdon, P.G., and Walker, I.R. Holocene temperature history at the western Greenland Ice Sheet margin reconstructed from lake sediments. Quat. Sci. Rev. 59, (2013). 87100. http://dx.doi.org/10.1016/j.quascirev.2012.10.024Google Scholar
Blaauw, M. Methods and code for “classical” age-modelling of radiocarbon sequences. Quat. Geochronol. 5, (2010). 512518. http://dx.doi.org/10.1016/j.quageo.2010.01.002CrossRefGoogle Scholar
Brodersen, K.P., and Anderson, N.J. Distribution of chironomids (Diptera) in low arctic West Greenland lakes: trophic conditions, temperature and environmental reconstruction. Freshw. Biol. 47, (2002). 11371157. http://dx.doi.org/10.1046/j.1365-2427.2002.00831.xCrossRefGoogle Scholar
Brodersen, K.P., and Quinlan, R. Midges as palaeoindicators of lake productivity, eutrophication and hypolimnetic oxygen. Quat. Sci. Rev. 25, (2006). 19952012. http://dx.doi.org/10.1016/j.quascirev.2005.03.020CrossRefGoogle Scholar
Brooks, S.J. Fossil midges (Diptera: Chironomidae) as palaeoclimatic indicators for the Eurasian region. Quat. Sci. Rev. 25, (2006). 18941910. http://dx.doi.org/10.1016/j.quascirev.2005.03.021Google Scholar
Brooks, S.J., Bennion, H., and Birks, H.J.B. Tracing lake trophic history with a chironomid-total phosphorus inference model. Freshw. Biol. 46, (2001). 513533. http://dx.doi.org/10.1046/j.1365-2427.2001.00684.xGoogle Scholar
Brooks, S.J., Langdon, P.G., and Heiri, O. The Identification and Use of Palaearctic Chironomidae Larvae in Palaeoecology. (2007). Quaternary Research Association Technical Guide, London.Google Scholar
Cappelen, J. DMI Monthly Climate Data Collection 1768–2010, Denmark, The Faroe Islands and Greenland. (2011). Danish Meteorological Institute, Copenhagen. 54 Google Scholar
Cappelen, J., Jørgensen, B.V., Laursen, E.V., Stannius, L.S., and Thomsen, R.S. The observed Climate of Greenland, 1958–99 — With Climatological Standard Normals, 1961–90. (2001). Danmark Meteorological Institute, Copenhagen.Google Scholar
Dugmore, A.J., Church, M.J., Buckland, P.C., Edwards, K.J., Lawson, I., McGovern, T.H., Panagiotakopulu, E., Simpson, I.A., Skidmore, P., and Sveinbjarnardóttir, G. The Norse landnám on the North Atlantic islands: an environmental impact assessment. Polar Rec. 41, (2005). 2137. http://dx.doi.org/10.1017/S0032247404003985Google Scholar
Dugmore, A.J., McGovern, T.H., Vesteinsson, O., Arneborg, J., Streeter, R., and Keller, C. Cultural adaptation, compounding vulnerabilities and conjunctures in Norse Greenland. Proc. Natl. Acad. Sci. 109, (2012). 36583663. http://dx.doi.org/10.1073/pnas.1115292109CrossRefGoogle ScholarPubMed
Eggermont, H., and Heiri, O. The chironomid–temperature relationship: expression in nature and palaeoenvironmental implications. Biol. Rev. 87, (2012). 430456. http://dx.doi.org/10.1111/j.1469-185X.2011.00206.xGoogle Scholar
Eggermont, H., Heiri, O., and Verschuren, D. Fossil Chironomidae (Insecta: Diptera) as quantitative indicators of past salinity in African lakes. Quat. Sci. Rev. 25, 15–16 (2006). 19661994.Google Scholar
Fredskild, B. Palaeobotanical investigations of some peat deposits of Norse age at Qagssiarssuk, south Greenland. Medd. Grønland 204, (1978). 141.Google Scholar
Gad, F. History of Greenland. (1970). London, Google Scholar
Gauthier, E., Bichet, V., Massa, C., Petit, C., Vannière, B., and Richard, H. Pollen and non-pollen palynomorph evidence of medieval farming activities in southwestern Greenland. Vegetation History and Archaeobotany. 19, (2010). 427438. http://dx.doi.org/10.1007/s00334-010-0251-5Google Scholar
Grimm, E.C. TGView Version 2.0.2. (2004). Illinois State Museum, Research and Collections Center, Sprinfield.Google Scholar
Heiri, O., Brooks, S.J., Birks, H.J.B., and Lotter, A.F. A 274-lake calibration data-set and inference model for chironomid-based summer air temperature reconstruction in Europe. Quat. Sci. Rev. 30, (2011). 34453456. http://dx.doi.org/10.1016/j.quascirev.2011.09.006CrossRefGoogle Scholar
Jensen, K.G., Kuijpers, A., Koç, N., and Heinemeier, J. Diatom evidence of hydrographic changes and ice conditions in Igaliku Fjord, South Greenland, during the past 1500 years. The Holocene 14, (2004). 152164. http://dx.doi.org/10.1191/0959683604hl698rpGoogle Scholar
Jones, G. The Norse Atlantic Saga: Being the Norse Voyages of Discovery and Settlement to Iceland, Greenland, and North America. (1986). Oxford University Press, New York.Google Scholar
Kaplan, M., Wolf, A.P., and Miller, G.H. Holocene environmental variability in Southern Greenland inferred from lake sediments. Quat. Res. 58, (2002). 149159. http://dx.doi.org/10.1006/qres.2002.2352Google Scholar
Kaufman, D.S., Schneider, D.P., McKay, N.P., Ammann, C.M., Bradley, R.S., Briffa, K.R., Miller, G.H., Otto-Bliesner, B.L., Overpeck, J.T., Vinther, B.M., Arctic Lakes 2k Project Members, , Abbott, M., Axford, Y., Bird, B., Birks, H.J.B., Bjune, A.E., Briner, J., Cook, T., Chipman, M., Francus, P., Gajewski, K., Geirsdottir, A., Hu, F.S., Kutchko, B., Lamoureux, S., Loso, M., MacDonald, G., Peros, M., Porinchu, D., Schiff, C., Seppa, H., and Thomas, E. Recent warming reverses long-term Arctic cooling. Science 325, (2009). 12361239. http://dx.doi.org/10.1126/science.1173983Google Scholar
Krawczyk, D., Witkowski, A., Moros, M., Lloyd, J., Kuijpers, A., and Kierzek, A. Late-Holocene diatom-inferred reconstruction of temperature variations of the West Greenland Current from Disko Bugt, central West Greenland. The Holocene 20, (2010). 659666. http://dx.doi.org/10.1177/0959683610371993Google Scholar
Langdon, P.G., Caseldine, C.J., Croudace, I.W., Jarvis, S., Wastegård, S., and Crowford, T.C. A chironomid-based reconstruction of summer temperatures in NW Iceland since AD 1650. Quat. Res. 75, (2011). 451460. http://dx.doi.org/10.1016/j.yqres.2010.11.007Google Scholar
Larocque, I., Hall, R.I., and Grahn, E. Chironomids as indicators of climate change: a 100‐lake training set from a subarctic region of northern Sweden (Lapland). J. Paleolimnol. 26, (2001). 307322. http://dx.doi.org/10.1023/A:1017524101783Google Scholar
Larocque, I., Pienitz, R., and Rolland, N. Factors influencing the distribution of chironomids in lakes distributed along a latitudinal gradient in northwestern Quebec, Canada. Can. J. Fish. Aquat. Sci. 63, (2006). 12861297. http://dx.doi.org/10.1139/f06-020Google Scholar
Lassen, S.J., Kuijpers, A., Kunzendorf, H., Hoffmann-Wieck, G., Mikkelsen, N., and Konradi, P. Late-Holocene Atlantic bottom-water variability in Igaliku Fjord, South Greenland, reconstructed from foraminifera faunas. The Holocene 14, (2004). 165171. http://dx.doi.org/10.1191/0959683604hl699rpCrossRefGoogle Scholar
Ledger, P.M., Edwards, K.J., Schofield, J.E., (2013). Shieling activity in the Norse Eastern Settlement: Palaeoenvironment of the “Mountain Farm”, Vatnahverfi, Greenland. The Holocene, http://hol.sagepub.com/cgi/doi/10.1177/0959683612472002, http://dx.doi.org/10.1177/0959683612472002.Google Scholar
Lindegaard, C., and Mæhl, P. Abundance, population dynamics and production of Chironomidae (Diptera) in an ultraoligotrophic lake in South Greenland. Neth. J. Aquat. Ecol. 26, (1992). 297308. http://dx.doi.org/10.1007/BF02255255CrossRefGoogle Scholar
Lindegaard, C., Maehl, P., and Nielsen, B.H. Zoobenthos of lakes located within and outside the Ilimaussaq intrusion in South Greenland. Verhandlungen des Internationalen Verein Limnologie 20, (1978). 159164.Google Scholar
Massa, C., Bichet, V., Gauthier, É., Perren, B.B., Mathieu, O., Petit, C., Monna, F., Giraudeau, J., Losno, R., and Richard, H. A 2500 year record of natural and anthropogenic soil erosion in South Greenland. Quat. Sci. Rev. 32, (2012). 119130. http://dx.doi.org/10.1016/j.quascirev.2011.11.014Google Scholar
Massa, C., Perren, B.B., Gauthier, É., Bichet, V., Petit, C., and Richard, H. A multiproxy evaluation of Holocene environmental change from Lake Igaliku, South Greenland. J. Paleolimnol. 48, (2012). 241258. http://dx.doi.org/10.1007/s10933-012-9594-5Google Scholar
Medeiros, A.S., Friel, C.E., Finkelstein, S.A., and Quinlan, R. A high resolution multi-proxy record of pronounced recent environmental change at Baker Lake, Nunavut. J. Paleolimnol. 47, (2012). 661676. http://dx.doi.org/10.1007/s10933-012-9589-2Google Scholar
Millet, L., Giguet-Covex, C., Verneaux, V., Druart, J.-C., Adatte, T., and Arnaud, F. Reconstruction of the recent history of a large deep prealpine lake (Lake Bourget, France) using subfossil chironomids, diatoms, and organic matter analysis: towards the definition of a lake-specific reference state. J. Paleolimnol. 44, (2010). 963978. http://dx.doi.org/10.1007/s10933-010-9467-8Google Scholar
Nørlund, P., and Roussell, A. Norse ruins at Gardar. The episcopal seat of Mediaeval Greenland. Meddelelser om Grønland 76, (1929). 1171.Google Scholar
Oksanen, J., Blanchet, F.G., Kindt, R., Legendre, P., O'Hara, R.B., Simpson, G.L., Solymos, P., Steven, M.H., and Wagner, H. Vegan: community ecology package. (2011). Google Scholar
Perren, B.B., Massa, C., Bichet, V., Gauthier, E., Mathieu, O., Petit, C., and Richard, H. A paleoecological perspective on 1450 years of human impacts from a lake in southern Greenland. The Holocene 22, (2012). 10251034. http://dx.doi.org/10.1177/0959683612437865CrossRefGoogle Scholar
Porinchu, D.F., MacDonald, G.M., and Rolland, N. A 2000 year midge-based paleotemperature reconstruction from the Canadian Arctic archipelago. J. Paleolimnol. 41, (2009). 177188. http://dx.doi.org/10.1007/s10933-008-9263-xGoogle Scholar
Poulsen, V. The sandstones of the Precambrian Eriksfjord Formation in South Greenland. Rapp. Grønl. Geol. Under. 2, (1964). (16pp) Google Scholar
Quinlan, R., and Smol, J.P. Chironomid-based inference models for estimating end-of-summer hypolimnetic oxygen from south-central Ontario shield lakes. Freshw. Biol. 46, (2001). 15291551. http://dx.doi.org/10.1046/j.1365-2427.2001.00763.xGoogle Scholar
Reimer, P.J., Baillie, M.G.L., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Ramsey, C.B., Buck, C.E., Burr, G.S., Edwards, R.L., Friedrich, M., Grootes, P.M., Guilderson, T.P., Hajdas, I., Heaton, T.J., Hogg, A.G., Hughen, K.A., Kaiser, K.F., Kromer, B., McCormac, F.G., Manning, S.W., Reimer, R.W., Richards, D.A., Southon, J.R., Talamo, S., Turney, C.S.M., van der Plicht, J., and Weyhenmeye, C.E. Intcal09 and marine09 radiocarbon age calibration curves, 0–50,000 years Cal. BP. Radiocarbon 51, (2009). 11111150.Google Scholar
Saether, O.A., (1975). Nearctic and Palaearctic Heterotrissocladius (Diptera: Chironomidae). Bull. Fish. Res. Bd Canada 193, 67 pp.Google Scholar
Sanmark, A. The case of the Greenlandic assembly sites. J. N. Atl. 2, (2009). 178192.Google Scholar
Sha, L., Jiang, H., and Knudsen, K.L. Diatom evidence of climatic change in Holsteinsborg Dyb, west of Greenland, during the last 1200 years. The Holocene 22, (2011). 347358. http://dx.doi.org/10.1177/0959683611423684Google Scholar
Thomas, E.K., Briner, J.P., Axford, Y., Francis, D.R., Miller, G.H., and Walker, I.R. A 2000-yr-long multi-proxy lacustrine record from eastern Baffin Island, Arctic Canada reveals first millennium AD cold period. Quat. Res. 75, (2011). 491500. http://dx.doi.org/10.1016/j.yqres.2011.03.003Google Scholar
Velle, G., Brodersen, K.P., Birks, H.J.B., and Willassen, E. Midges as quantitative temperature indicator species: lessons for palaeoecology. The Holocene 20, (2010). 9891002. http://dx.doi.org/10.1177/0959683610365933CrossRefGoogle Scholar
Verneaux, V., and Aleya, L. Bathymetric distributions of chironomid communities in ten French lakes: implications on lake classification. Arch. Hydrobiol. 142, (1998). 209228.Google Scholar
Walker, I.R., and Cwynar, L.C. Midges and palaeotemperature reconstruction—the North American experience. Quat. Sci. Rev. 25, (2006). 19111925. http://dx.doi.org/10.1016/j.quascirev.2006.01.014CrossRefGoogle Scholar
Wiederholm, T. Chironomidae of the holarctic region—key and diagnoses. 1 Larvae. Entomologica Scandinavica Supplement 19, (1983). 1457.Google Scholar