Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-23T09:56:04.609Z Has data issue: false hasContentIssue false

Age and development of active cryoplanation terraces in the alpine permafrost zone at Svartkampan, Jotunheimen, southern Norway

Published online by Cambridge University Press:  09 September 2019

John A. Matthews*
Affiliation:
Department of Geography, College of Science, Swansea University, Singleton Park, Swansea SA2 8PP, Wales, UK
Peter Wilson
Affiliation:
School of Geography and Environmental Sciences, Ulster University, Cromore Road, Coleraine BT52 1SA, Northern Ireland, UK
Stefan Winkler
Affiliation:
Department of Geography and Geology, Julius-Maximilians University Würzburg, Am Hubland, Würzburg 97070, Germany
Richard W. Mourne
Affiliation:
Department of Geography and Environmental Management, University of the West of England, Coldharbour Lane, Bristol BS16 1QY, UK
Jennifer L. Hill
Affiliation:
Department of Geography and Environmental Management, University of the West of England, Coldharbour Lane, Bristol BS16 1QY, UK
Geraint Owen
Affiliation:
Department of Geography, College of Science, Swansea University, Singleton Park, Swansea SA2 8PP, Wales, UK
John F. Hiemstra
Affiliation:
Department of Geography, College of Science, Swansea University, Singleton Park, Swansea SA2 8PP, Wales, UK
Helen Hallang
Affiliation:
Department of Geography, College of Science, Swansea University, Singleton Park, Swansea SA2 8PP, Wales, UK
Andrew P. Geary
Affiliation:
Department of Geography and Environmental Management, University of the West of England, Coldharbour Lane, Bristol BS16 1QY, UK
*
*Corresponding author e-mail address: [email protected]

Abstract

Schmidt-hammer exposure-age dating (SHD) of boulders on cryoplanation terrace treads and associated bedrock cliff faces revealed Holocene ages ranging from 0 ± 825 to 8890 ± 1185 yr. The cliffs were significantly younger than the inner treads, which tended to be younger than the outer treads. Radiocarbon dates from the regolith of 3854 to 4821 cal yr BP (2σ range) indicated maximum rates of cliff recession of ~0.1 mm/yr, which suggests the onset of terrace formation before the last glacial maximum. Age, angularity, and size of clasts, together with planation across bedrock structures and the seepage of groundwater from the cliff foot, all support a process-based conceptual model of cryoplanation terrace development in which frost weathering leads to parallel cliff recession and, hence, terrace extension. The availability of groundwater during autumn freezeback is viewed as critical for frost wedging and/or the growth of segregation ice during prolonged winter frost penetration. Permafrost promotes cryoplanation by providing an impermeable frost table beneath the active layer, focusing groundwater flow, and supplying water for sediment transport by solifluction across the tread. Snow beds are considered an effect rather than a cause of cryoplanation terraces, and cryoplanation is seen as distinct from nivation.

Type
Research Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aydin, A., Basu, A., 2005. The Schmidt hammer in rock material characterisation. Engineering Geology 81, 114.Google Scholar
Ballantyne, C.K., 2018. Periglacial Geomorphology. Wiley-Blackwell: Chichester, UK.Google Scholar
Barnett, C., Dumayne-Peaty, L., Matthews, J.A., 2000. Holocene climatic change and tree-line response in Leirdalen, central Jotunheimen. Review of Palaeobotany and Palynology 117, 119137.Google Scholar
Berrisford, M.S., 1991. Evidence for enhanced mechanical weathering associated with seasonally late-lying and perennial snow patches, Jotunheimen, Norway. Permafrost and Periglacial Processes 2, 331340.Google Scholar
Beskow, G., 1935. Tjälbildningen och tjällyftningen med särskild hänsyn till vägar och jarnägar. Sveriges Geologiske Undersökning, Series C 375(Årbok 26), 1242.Google Scholar
Boch, S.G., Krasnov, I.I., 1994 [1943]. On altiplanation terraces and ancient surfaces of levelling in the Urals and associated problems [Translated from Russian]. In: Evans, D.J.A. (Ed.), Cold Climate Landforms. Wiley, Chichester, UK, pp. 177186.Google Scholar
Bronk Ramsey, C., 2009. Bayesian analysis of radiocarbon dates. Radiocarbon 51, 337360.Google Scholar
Büdel, J., 1982. Klima- Geomorphologie. 2nd ed. Bornträger, Berlin-Stuttgart.Google Scholar
Christiansen, H.H., 1998a. “Little Ice Age” nivation activity in northeast Greenland. The Holocene 8, 719728.Google Scholar
Christiansen, H.H., 1998b. Nivation forms and processes in unconsolidated sediments, NE Greenland. Earth Surface Processes and Landforms 23, 751760.Google Scholar
Cremeens, D.L., Darmody, R.G., George, S.E., 2005. Upper slope landforms and age of bedrock exposures in the St. Francois Mountains, Missouri: a comparison of relict periglacial features in the Appalachian Plateau of West Virginia. Geomorphology 70, 7184.Google Scholar
Czudek, T., 1995. Cryoplanation terraces—a brief review and some remarks. Geografiska Annaler Series A (Physical Geography) 77A, 95105.Google Scholar
Czudek, T., Demek, J., 1971. Pleistocene cryoplanation in the Ceská Vpocina highlands, Czechoslovakia. Transactions of the Institute of British Geographers 52, 95112.Google Scholar
Dahl, S.O., Nesje, A., Lie, Ø., Fordheim, K., Matthews, J.A., 2002. Timing, equilibrium-line altitudes and climatic implications of two early-Holocene readvances during the Erdalen Event at Jostedalsbreen, western Norway. The Holocene 12, 1725.Google Scholar
Demek, J., 1968. Cryoplanation terraces in Yakutia. Biuletyn Peryglacjalny 17, 91116.Google Scholar
Demek, J., 1969a. Cryogene processes and the development of cryoplanation terraces. Biuletyn Peryglacjalny 18, 115125.Google Scholar
Demek, J., 1969b. Cryoplanation terraces, their geographical distribution, genesis and development. Rozpravy Československé Akademie Věd, Rada Matematických a Prírodních Věd Rocnik 79(4): 180.Google Scholar
Draebing, D., Haberkorn, A., Krautblatter, M., Kenner, R., Phillips, M., 2017. Thermal and mechanical responses resulting from spatial and temporal snow cover variability in permafrost rock slopes, Steintaelli, Swiss Alps. Permafrost and Periglacial Processes 28, 140157.Google Scholar
Ellis, S., 1979. The identification of some Norwegian mountain soil types. Norsk Geografisk Tidsskrift 33, 205212.Google Scholar
Ellis, S., 1980. Soil-environmental relationships in the Okstindan Mountains, north Norway. Norsk Geografisk Tidsskrift 34, 167176.Google Scholar
Farbrot, H., Hipp, T.F., Etzelmüller, B., Isaksen, K., Ødegård, R.S., Schuler, T.V., Humlum, O., 2011. Air and ground temperature variations observed along elevation and continentality gradients in southern Norway. Permafrost and Periglacial Processes 22, 343360.Google Scholar
French, H.M., 2016. Do periglacial landforms exist? A discussion of the upland landscapes of northern interior Yukon, Canada. Permafrost and Periglacial Processes 27, 219228.Google Scholar
French, H.M., 2018. The Periglacial Environment. 4th ed. Wiley-Blackwell: Chichester, UK.Google Scholar
Goehring, B.M., Brook, E.J., Linge, H., Raisbeck, G.M., Yiou, F., 2008. Beryllium-10 exposure ages of erratic boulders in southern Norway and implications for the history of the Fennoscandian Ice Sheet. Quaternary Science Reviews 27, 320336.Google Scholar
Grosso, S.A., Corte, A.E., 1991. Cryoplanation surfaces in the Central Andes at latitude 35° S. Permafrost and Periglacial Processes 2, 4958.Google Scholar
Hall, K., 1997. Observations on “cryoplanation” benches in Antarctica. Antarctic Science 9, 181187.Google Scholar
Hall, K., 1998. Nivation or cryoplanation: different terms, same features? Polar Geography 22, 116.Google Scholar
Hall, K., André, M.-F., 2010. Some further observations regarding “cryoplanation terraces” on Alexander Island. Antarctic Science 22, 175183.Google Scholar
Hall, K., Thorn, C.E., Matsuoka, N., Prick, A., 2002. Weathering in cold regions: some thoughts and perspectives. Progress in Physical Geography 26, 577603.Google Scholar
Hallet, B., Walder, J.S., Stubbs, C.W., 1991. Weathering by segregation ice growth in microcracks at sustained sub-zero temperatures: verification from an experimental study using acoustic emission. Permafrost and Periglacial Processes 2, 283300.Google Scholar
Harris, C., 1981. Periglacial Mass Wasting: A Review of Research. British Geomorphological Research Group Research Monograph 4. Geobooks, Norwich.Google Scholar
Harris, C., Arenson, L.U., Christiansen, H.H., Etzelmüller, B., Frauenfelder, R., Gruber, S., Haeberli, W., et al. , 2009. Permafrost and climate in Europe: monitoring and modelling thermal, geomorphological and geotechnical responses. Earth-Science Reviews 92, 117171.Google Scholar
Harris, S.A., Brouchkov, A., Cheng, G., 2018. Geocryology: Characteristics and Use of Frozen Ground and Periglacial Landforms. CRC Press-Balkema, Leiden.Google Scholar
Hättestrand, C., Stroeven, A.P., 2002. A relict landscape in the centre of the Fennoscandian glaciation: geomorphological evidence of minimal Quaternary glacial erosion. Geomorphology 44, 127143.Google Scholar
Heiri, O., Lotter, A.F., Lemcke, G., 2001. Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. Journal of Paleolimnology 25, 101110.Google Scholar
Hipp, T., Etzelmüller, B., Westermann, S., 2014. Permafrost in alpine rock faces from Jotunheimen and Hurrungane, southern Norway. Permafrost and Periglacial Processes 25, 113.Google Scholar
Hormes, A., Blaauw, M., Dahl, S.-O., Nesje, A., Possnert, G., 2009. Radiocarbon wiggle-match dating of proglacial lake sediments—implications for the 8.2 ka event. Quaternary Geochronology 4, 267277.Google Scholar
Hughes, A.L.C., Gyllencreutz, R., Lohne, Ø., Mangerud, J., Svendsen, J.L., 2016. The last Eurasian ice sheets—a chronological database and time-slice reconstruction, DATED-1. Boreas 45, 145.Google Scholar
Isaksen, K., Hauck, C., Gudevang, E., Ødegård, R.S., Sollid, J.L., 2002. Mountain permafrost distribution in Dovrefjell and Jotunheimen, southern Norway, based on BTS and DC restivity tomography data. Norsk Geografisk Tidsskrift 56, 122136.Google Scholar
Isaksen, K., Ødegård, R.S., Etzelmüller, B., Hilbich, C., Hauck, C., Farbrot, H., Eiken, T., Hagen, J.O., Hipp, T.F., 2011. Degraded mountain permafrost in southern Norway: spatial and temporal variability of ground temperatures, 1999–2009. Permafrost and Periglacial Processes 22, 361377.Google Scholar
Juliussen, H., Humlum, O., 2007. Preservation of blockfields beneath Pleistocene ice sheets on Solen and Elgahogna, central-eastern Norway. Supplementband, Zeitschrift für Geomorphologie N.F. 51, 2, 113138.Google Scholar
Kleman, J., 1994. Preservation of landforms under ice sheets and ice caps. Geomorphology 9, 1932.Google Scholar
Křižek, M., 2007. Periglacial landforms above the alpine timberline in the High Sudetes. In: Goudie, A.S, Kalvoda, J. (Eds.), Geomorphological Variations. P3K Publishing, Prague, pp. 313337.Google Scholar
Lamirande, I., Lauriol, B., Lalonde, A.E., Clark, I.D., 1999. La production de limon sur les terrasses de cryoplanation dans les Monts Richardson, Canada. Canadian Journal of Earth Sciences 36, 16451654.Google Scholar
Lauriol, B., 1990. Cryoplanation terraces, northern Yukon. Canadian Geographer 34, 347351.Google Scholar
Lauriol, B., Godbout, L., 1988. Les terrasses de cryoplanation dans le nord du Yukon: distribution, genèse et âge. Geographie Physique et Quaternaire 42, 303314.Google Scholar
Lauriol, B., Lamirande, I., Lalonde, A.E., 2006. The Giant Steps of Bug Creek, Richardson Mountains, N.W.T., Canada. Permafrost and Periglacial Processes 17, 267275.Google Scholar
Lauriol, B.M., Lalonde, A.E., Dewez, V., 1997. Weathering of quartzite on a cryoplanation terrace in northern Yukon. Permafrost and Periglacial Processes 8, 147153.Google Scholar
Liao, C., Zuang, Z., 2017. Quantifying the role of permafrost distribution in groundwater and surface water interactions using a three-dimensional hydrological model. Arctic, Antarctic and Alpine Research 49, 81100.Google Scholar
Lilleøren, K.S., Etzelmüller, B., Schuler, T.V., Ginås, K., Humlum, O., 2012. The relative age of permafrost—estimation of Holocene permafrost limits in Norway. Global and Planetary Change 92–93, 209223.Google Scholar
Lutro, O., Tveten, E., 1996. Geologiske kart over Norge, bergrunnskart Årdal, 1:250,000. Norges Geologiske Undersøkelse, Trondheim.Google Scholar
Malvern Instruments Ltd., 2007. Mastersizer 2000, User Manual. MAN0384, Issue 1.0.Google Scholar
Mangerud, J., Gyllencreutz, R., Lohne, Ø., Svendsen, J.I., 2011. Glacial history of Norway. In: Ehlers, J., Gibbard, P.L., Hughes, P.D. (Eds.), Quaternary Glaciations—Extent and Chronology: A Closer Look. Elsevier, Amsterdam, pp. 279298.Google Scholar
Margold, M., Treml, V., Petr, L, Nyplová, P., 2011. Snowpatch hollows and pronival ramparts in the Krkonose Mountains, Czech Republic: distribution, morphology and chronology of formation. Geografiska Annaler Series A (Physical Geography) 93A, 137150.Google Scholar
Marr, P., Winkler, S., Löffler, J., 2018. Investigations on blockfields and related landforms at Blåhø (southern Norway) using Schmidt hammer exposure-age dating: palaeoclimatic and morphodynamic implications. Geografiska Annaler Series A (Physical Geography) 100A, 285306.Google Scholar
Matsuoka, N., Murton, J., 2008. Frost weathering: recent advances and future directions. Permafrost and Periglacial Processes 19, 195210.Google Scholar
Matthes, F.E., 1900. Glacial Sculpture of the Bighorn Mountains, Wyoming. United States Geological Survey 21st Annual Report 1899–1900, pp. 167190.Google Scholar
Matthews, J.A., 2005. “Little Ice Age” glacier variations in Jotunheimen, southern Norway: a study in regionally-controlled lichenometric dating of recessional moraines with implications for climate and lichen growth rates. The Holocene 15, 119.Google Scholar
Matthews, J.A., Berrisford, M.S., Dresser, P.Q., Nesje, A., Dahl, S.-O., Bjune, A.E., Bakke, J., et al. , 2005. Holocene glacier history of Bjørnbreen and climatic reconstruction in central Jotunheimen, southern Norway, based on proximal glaciofluvial stream-bank mires. Quaternary Science Reviews 24, 6790.Google Scholar
Matthews, J.A., Dawson, A.G., Shakesby, R.A., 1986. Lake shoreline development, frost weathering and rock platform erosion in an alpine periglacial environment, Jotunheimen, southern Norway. Boreas 15, 3350.Google Scholar
Matthews, J.A., Dresser, P.Q., 2008. Holocene glacier variation chronology of the Smørstabbtindan massif, Jotunheimen, Norway, and the recognition of European Neoglacial Events. The Holocene 18, 181201.Google Scholar
Matthews, J.A., Hill, J.L., Winkler, S., Owen, G., Vater, A.E., 2018a. Autosuccession in alpine vegetation: testing the concept on an altitudinal bioclimatic gradient, Jotunheimen, southern Norway. Catena 170, 169182.Google Scholar
Matthews, J.A., McEwen, L.J., 2013. High-precision Schmidt hammer exposure-age dating (SHD) of flood berms, Vetlestølsdalen, alpine southern Norway: first application and some methodological issues. Geografiska Annaler Series A, Physical Geography 95, 185194.Google Scholar
Matthews, J.A., McEwen, L.J., Owen, G., 2015. Schmidt-hammer exposure-age dating (SHD) of snow-avalanche impact ramparts in southern Norway: approaches, results and implications for landform age, dynamics and development. Earth Surface Processes and Landforms 40, 17051718.Google Scholar
Matthews, J.A., Nesje, A., Linge, H., 2013. Relict talus-foot rock glaciers at Øyberget, upper Ottadalen, southern Norway: Schmidt hammer exposure ages and palaeoenvironmental implications. Permafrost and Periglacial Processes 24, 336346.Google Scholar
Matthews, J.A., Owen, G., 2010. Schmidt-hammer exposure-age dating: developing linear age-calibration curves using Holocene bedrock surfaces from the Jotunheimen–Jostedalsbreen regions of southern Norway. Boreas 39, 105115.Google Scholar
Matthews, J.A., Owen, G., Winkler, S., Vater, A.E., Wilson, P., Mourne, R.W., Hill, J. L., 2016. A rock-surface microweathering index from Schmidt hammer R-values and its preliminary application to some common rock types in southern Norway. Catena 143, 3544.Google Scholar
Matthews, J.A., Vater, A.E., 2015. Pioneer zone geo-ecological change: observations from a chronosequence on the Storbreen glacier foreland, Jotunheimen, southern Norway. Catena 135, 219230.Google Scholar
Matthews, J. A., Wilson, P., 2015. Improved Schmidt-hammer exposure ages for active and relict pronival ramparts in southern Norway, and their palaeoenvironmental implications. Geomorphology 246, 721.Google Scholar
Matthews, J.A., Winkler, S., 2011. Schmidt-hammer exposure-age dating (SHD): application to early Holocene moraines and a reappraisal of the reliability of terrestrial cosmogenic-nuclide dating (TCND) at Austanbotnbreen, Jotunheimen, Norway. Boreas 40, 256270.Google Scholar
Matthews, J.A., Winkler, S., Wilson, P., 2014. Age and origin of ice-cored moraines in Jotunheimen and Breheimen, southern Norway: insights from Schmidt-hammer exposure-age dating. Geografiska Annaler Series A, Physical Geography 96, 531548.Google Scholar
Matthews, J.A., Winkler, S., Wilson, P., Tomkins, M.D., Dortch, J.M., Mourne, R.W., Hill, J.L., Owen, G., Vater, A.E., 2018b. Small rock-slope failures conditioned by Holocene permafrost degradation: a new approach and conceptual model based on Schmidt-hammer exposure-age dating, Jotunheimen, southern Norway. Boreas 47, 11441169.Google Scholar
McCarroll, D., 1987. The Schmidt hammer in geomorphology: five sources of instrument error. British Geomorphological Research Group, Technical Bulletin 36, 1627.Google Scholar
McCarroll, D., 1994. The Schmidt hammer as a measure of degree of rock surface weathering and terrain age. In: Beck, C. (Ed.), Dating in Exposed and Surface Contexts. University of New Mexico Press, Albuquerque, pp. 2945.Google Scholar
Mingard, K., Morrell, R., Jackson, P., Lawson, S., Patel, S., Buxton, R., 2009. Good Practice Guide for Improving the Consistency of Particle Size Measurement. Measurement Good Practice Guide No. 111. National Physical Laboratory, Teddington, UK.Google Scholar
Murton, J.B., 2013. Rock weathering. In: Elias, S.A. (Ed), Encyclopedia of Quaternary Science. Vol. 3. Elsevier, Amsterdam, pp. 500506.Google Scholar
Murton, J.B., Peterson, R., Osouf, J.-C., 2006. Bedrock fracture by ice segregation in cold regions. Science 314, 11271129.Google Scholar
Nelson, F.E., 1998. Cryoplanation terrace orientation in Alaska. Geografiska Annaler Series A, Physical Geography 71, 3141.Google Scholar
Nelson, F.E., Nyland, K.E., 2017. Periglacial cirque analogues: elevation trends of cryoplanation terraces in eastern Berigia. Geomorphology 293, 305–217.Google Scholar
Nesje, A., 2009. Late Pleistocene and Holocene alpine glacier fluctuations in Scandinavia. Quaternary Science Reviews 28, 21192136.Google Scholar
Nesje, A., Dahl, S.-O., 2001. The Greenland 8200 cal. yr BP event detected in loss-on-ignition profiles in Norwegian lacustrine sediment sequences. Journal of Quaternary Science 16, 155166.Google Scholar
Nesje, A., Dahl, S.O., Thun, T., Nordli, Ø., 2008. “Little Ice Age” glacial expansion in western Scandinavia: summer temperature or winter precipitation? Climate Dynamics 30, 789801.Google Scholar
[NIJOS] Norsk Institutt for Jord og Skogkartlegging, 1991. Vegetasjonskart: Galdhøpiggen 1518 II (1:50,000). Ås, Norway.Google Scholar
Nyberg, R., 1991. Geomorphic processes at snowpatch sites in the Abisko Mountains, northern Sweden. Zeitschrift für Geomorphologie N.F. 35, 321343.Google Scholar
Ødegård, R.S., Hoelzle, M., Johanen, K.V., Sollid, J.L., 1996. Permafrost mapping and prospecting in southern Norway. Norsk Geografisk Tidsskrift 50, 4153.Google Scholar
Ødegård, R.S., Sollid, J.L., Liestøl, O., 1987. Juvflya—Kvartærgeologi og geomorfologi M1:10.000. Geografisk Institutt, Universitetet I Oslo, Oslo..Google Scholar
Ødegård, R.S., Sollid, J.L., Liestøl, O., 1988. Periglacial forms related to terrain parameters in Jotunheimen, southern Norway. In: Permafrost: V International Conference on Permafrost in Trondheim. Vol. 3. Tapir, Trondheim, Norway, pp. 5961.Google Scholar
Ødegård, R.S., Sollid, J.L., Liestøl, O., 1992. Ground temperature measurements in mountain permafrost, Jotunheimen, southern Norway. Permafrost and Periglacial Processes 3, 231234.Google Scholar
Peltier, L.C., 1950. The geographic cycle in periglacial regions as it relates to climatic geomorphology. Annals of the Association of American Geographers 40, 214236.Google Scholar
Péwé, T.L., 1970. Altiplanation terraces of early Quaternary age near Fairbanks, Alaska. Acta Geographica Loziensia 24, 357363.Google Scholar
Powers, M.C., 1953. A new roundness scale for sedimentary particles. Journal of Sedimentary Petrology 23, 117119.Google Scholar
Priesnitz, K., 1988. Cryoplanation. In: Clark, M.J. (Ed.), Advances in Periglacial Geomorphology. Wiley, Chichester, UK, pp. 4967.Google Scholar
Proceq, 2004. Operating instructions. Betonprüfhammer N/NR-L/LR. Schwerzenbach, Switzerland.Google Scholar
Rapp, A., 1960. Recent development of mountain slopes in Karkevagge and surroundings, northern Scandinavia. Geografiska Annaler 42, 65200.Google Scholar
Reger, R.D., 1975. Cryoplanation terraces of interior and western Alaska. PhD thesis, Arizona State University, Tempe, AZ.Google Scholar
Reger, R.D., Péwé, T.L., 1976. Cryoplanation terraces: indicators of a permafrost environment. Quaternary Research 6, 99109.Google Scholar
Reimer, P.J., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Bronk Ramsey, C., Buck, C.E., et al. , 2013. INTCAL13 and MARINE13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55, 18691887.Google Scholar
Richter, H., Haase, G., Barthel, H., 1963. Die Golezterrassen. Petermanns Geographische Mitteillungen 107, 183192.Google Scholar
Rixhon, G., Demoulin, A., 2013. Evolution of slopes in a cold climate. In: Giardino, R., Harbor, J. (Eds.), Treatise on Geomorphology. Vol. 8, Glacial and Periglacial Geomorphology. Academic Press: San Diego, CA, pp. 392415.Google Scholar
Schunke, E., 1977. Periglazialformen und formengesellschaften in der europäisch atlantischen Arktis und Subarktis. Abhandlingen der Akademie der Wissenschaften in Göttingen, Mathematisch-Physicalische Klasse, Dritte Folge 31, 3962.Google Scholar
Schunke, E., Heckendorff, W.D., 1976. Resistenzstufen und kryoplanation. Beobachtungen aus dem periglazialen Milieu Islands. Supplementband, Zeitschrift für Geomorphologie 24, 8898.Google Scholar
Shakesby, R.A., Matthews, J.A., Karlén, W., Los, S., 2011. The Schmidt hammer as a Holocene calibrated-age dating technique: testing the form of the R-value–age relationship and defining predicted errors. The Holocene 21, 615628.Google Scholar
Shakesby, R.A., Matthews, J.A., Owen, G., 2006. The Schmidt hammer as a relative-age dating tool and its potential for calibrated age dating in Holocene glaciated environments. Quaternary Science Reviews 25, 28462867.Google Scholar
Steiger, C., Etzelmüller, B., Westermann, S., Myhra, K.S., 2016. Modelling the permafrost distribution in steep rock walls in Norway. Norwegian Journal of Geology 96, 329341.Google Scholar
Stroeven, A.P., Hättestrand, C., Kleman, J., Heyman, J., Fabel, D., Fredin, O., Goodfellow, B.W., et al. , 2016. Deglaciation of Fennoscandia. Quaternary Science Reviews 147, 91121.Google Scholar
St-Onge, D.A., 1964. Les formes de nivation de L'Ile Ellef Ringnes, Territoires du Nord-Ouest. Acta Geographica 3, 287304.Google Scholar
St-Onge, D.A., 1969. Nivation landforms. Geological Survey of Canada Paper 69–30, 112.Google Scholar
Te Punga, MT., 1956. Altiplanation terraces in southern England. Biuletyn Peryglacjalny 4, 331338.Google Scholar
Thorn, C.E., 1976. Quantitative evaluation of nivation in the Colorado Front Range. Geological Society of America Bulletin 87, 11691178.Google Scholar
Thorn, C.E., 1988. Nivation: a geomorphic chimera. In: Clark, M.J. (Ed.) Advances in Periglacial Geomorphology. Wiley, Chichester, UK, pp. 331.Google Scholar
Thorn, C.E., Darmody, R.G., Dixon, J.C., 2011. Rethinking weathering and pedogenesis in alpine periglacial regions: some Scandinavian evidence. In: Martini, I.P., French, H.M., Pérez Albertini, A. (Eds) Ice-Marginal and Periglacial Processes and Sediments. Geological Society of London Special Publication 354, 183193.Google Scholar
Thorn, C.E., Hall, K., 1980. Nivation: an arctic-alpine comparison and reappraisal. Journal of Glaciology 25, 109124.Google Scholar
Thorn, C.E., Hall, K., 2002. Nivation and cryoplanation: the case for scrutiny and integration. Progress in Physical Geography 26, 533550.Google Scholar
Traczyk, A., Migon, P., 2000. Cold-climate landform patterns in the Sudetes. Effects of lithology, relief and glacial history. Supplementum, Acta Universitatis Carolinae Geographica 35, 185210.Google Scholar
Viles, H., Goudie, A., Grabb, S., Lalley, J., 2011.The use of the Schmidt hammer and Equotip for rock hardness assessment in geomorphology and heritage science: a comparative analysis. Earth Surface Processes and Landforms 36, 320333.Google Scholar
Walder, J.S., Hallet, B., 1985. A theoretical model of the fracture of rock during freezing. Bulletin of the Geological Society of America 96, 336346.Google Scholar
Washburn, A.L., 1979. Geocryology: A Survey of Periglacial Processes and Environments. Arnold, London.Google Scholar
Waters, R.S., 1962. Altiplanation terraces and slope development in Vest-Spitsbergen and south-west England. Biuletyn Peryglacjalny 11, 89101.Google Scholar
Wilson, P., Matthews, J.A., 2016. Age assessment and implications of late Quaternary periglacial and paraglacial landforms on Muckish Mountain, northwest Ireland, based on Schmidt-hammer exposure age dating (SHD). Geomorphology 270, 134144.Google Scholar
Wilson, P., Matthews, J.A., Mourne, R.W., 2017. Relict blockstreams at Insteheia, Valldalen-Tafjorden, southern Norway: their nature and Schmidt-hammer exposure age. Permafrost and Periglacial Processes 28, 286297.Google Scholar
Winkler, S., Matthews, J.A., Mourne, R.W., Wilson, P., 2016. Schmidt-hammer exposure ages from periglacial patterned ground (sorted circles) in Jotunheimen, Norway, and their interpretive problems. Geografiska Annaler Series A, Physical Geography 98, 265285.Google Scholar
Woo, M., 2012. Permafrost Hydrology. Springer, Heidelberg.Google Scholar