Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-11T09:16:26.623Z Has data issue: false hasContentIssue false

A 3000-yr Annually Laminated Stalagmite Record of the Last Glacial Maximum from Hulu Cave, China

Published online by Cambridge University Press:  20 January 2017

Fucai Duan
Affiliation:
College of Geography Science, Nanjing Normal University, Nanjing 210023, China
Jiangying Wu
Affiliation:
College of Geography Science, Nanjing Normal University, Nanjing 210023, China
Yongjin Wang*
Affiliation:
College of Geography Science, Nanjing Normal University, Nanjing 210023, China
R. Lawrence Edwards
Affiliation:
Department of Geology and Geophysics, University of Minnesota, Minneapolis, MN 55455, USA
Hai Cheng
Affiliation:
Department of Geology and Geophysics, University of Minnesota, Minneapolis, MN 55455, USA Institute of Global Environmental Change, Xi'an Jiaotong University, Xi'an 710049, China
Xinggong Kong
Affiliation:
College of Geography Science, Nanjing Normal University, Nanjing 210023, China
Weihong Zhang
Affiliation:
College of Geography Science, Nanjing Normal University, Nanjing 210023, China
*
*Corresponding author at: College of Geography Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210023, China. Fax: +86 25 83598125., E-mail addresses:[email protected] (F. Duan), [email protected] (J.Wu), [email protected] (Y.Wang), [email protected] (R.L. Edwards), [email protected] (H. Cheng), [email protected] (X. Kong), [email protected] (W. Zhang).

Abstract

A high-resolution, annual layer-counted and 230Th-dated multi-proxy record is constructed from a stalagmite in Hulu Cave, China. These proxies, including δ18O, annual layer thickness (ALT), gray level (GL) and Sr/Ca, cover a time span of ~ 3000 yr from 21 to 24 ka. The physical proxies (ALT and GL) and the geochemical index (Sr/Ca), all primarily reflecting karst hydrological processes, vary in concert and their coherence is supported by wavelet analyses. Variations in the δ18O data agree with fluctuations in the ALT and Sr/Ca records on multi-decadal to centennial scales, suggesting that the Hulu δ18O signal is strongly associated with varying local rainfall amounts on short timescales. A monsoon failure event at ~ 22.2 ka correlates with a decrease in tropical rainfall, a reduction in global CH 4 and an ice-rafted event in the North Atlantic. This correlation highlights roles of the Asian monsoon and tropical hydrological cycle in modulating global CH 4, because the high-latitude emission was inhibited during the Last Glacial Maximum (LGM). Spectral analysis of the δ18O record displays peaks at periodicities of 139, 59, 53, 43, 30, 23 and 19"15 yr. The absence of typical centennial solar cycles may be related to muted changes in ocean circulation during the LGM.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andersen, K.K., Svensson, A., Johnsen, S.J., Rasmussen, S.O., Bigler, M., Rothlisberger, R., Ruth, U., Siggaard-Andersen, M.-L., Steffensen, J.P., Dahl-Jensen, D., Vinther, B.M., and Clausen, H.B. (2006). The Greenland Ice Core Chronology 2005, 15"42 ka. Part 1: constructing the time scale. Quaternary Science Reviews 25, 32463257.Google Scholar
Asmerom, Y., Polyak, V.J., and Burns, S.J. (2010). Variable winter moisture in the southwestern United States linked to rapid glacial climate shifts. Nature Geoscience 3, 114117.CrossRefGoogle Scholar
Asmerom, Y., Polyak, V.J., Rasmussen, J.B., Burns, S.J., and Lachniet, M. (2013). Multidecadal to multicentury scale collapses of Northern Hemisphere monsoons over the past millennium. Proceedings of the National Academy of Sciences of the United States of America 110, 96519656.CrossRefGoogle ScholarPubMed
Bakke, J., Lie, "., Heegaard, E., Dokken, T., Haug, G.H., Birks, H.H., Dulski, P., and Nilsen, T. (2009). Rapid oceanic and atmospheric changes during the Younger Dryas cold period. Nature Geoscience 2, 202205.Google Scholar
Barnett, T.P., Damenil, K., and Schlese, U. (1989). The effect of Eurasian snow cover on regional and global climate variations. Journal of the Atmospheric Sciences 46, 661685.2.0.CO;2>CrossRefGoogle Scholar
Baumgartner, M., Schilt, A., Eicher, O., Schmitt, J., Schwander, J., Spahni, R., Fischer, H., and Stocker, T.F. (2012). High-resolution interpolar difference of atmospheric methane around the Last Glacial Maximum. Biogeosciences 9, 39613977.Google Scholar
Blunier, T., and Brook, E.J. (2001). Timing of millennial-scale climate change in Antarctica and Greenland during the last glacial period. Science 291, 109112.Google Scholar
Bond, G.C., and Lotti, R. (1995). Iceberg discharges into the North Atlantic on millennial timescales during the last glaciations. Science 267, 10051010.Google Scholar
Bond, G., Broecker, W., Johnsen, S., McManus, J., Labeyrie, L., Jouzel, J., and Bonani, G. (1993). Correlation between climate records from North Atlantic sediments and Greenland ice. Nature 365, 143147.Google Scholar
Broccoli, A.J., Dahl, K.A., and Stouffer, R.J. (2006). Response of the ITCZ to Northern Hemisphere cooling. Geophysical Research Letters 33, L01702 10.1029/2005GL024546.Google Scholar
Broecker, W.S. (2003). Does the trigger for abrupt climate change reside in the ocean or in the atmosphere?. Science 300, 15191522.Google Scholar
Burns, S.J. (2011). Speleothem records of changes in tropical hydrology over the Holocene and possible implications for atmospheric methane. The Holocene 21, 735741.Google Scholar
Burns, S.J., Fleitmann, D., Mudelsee, M., Neff, U., Matter, A., and Mangini, A. (2002). A 780-year annually resolved record of Indian Ocean monsoon precipitation from a speleothem from south Oman. Journal of Geophysical Research 107, 4434 10.1029/2001JD001281.Google Scholar
Burns, S.J., Fleitmann, D., Matter, A., Kramers, J., and Al-Subbary, A.A. (2003). Indian Ocean climate and an absolute chronology over Dansgaard/Oeschger events 9 to 13. Science 301, 13651367.CrossRefGoogle Scholar
Cai, Y.J., Tan, L.C., Cheng, H., An, Z.S., Edwards, R.L., Kelly, M.J., Kong, X.G., and Wang, X.F. (2010). The variation of summer monsoon precipitation in central China since the last deglaciation. Earth and Planetary Science Letters 291, 2131.CrossRefGoogle Scholar
Chappellaz, J.A., Fung, I.Y., and Thompson, A.M. (1993). The atmospheric CH 4 increase since the Last Glacial Maximum. (1). Source estimates. Tellus B 45, 228241.CrossRefGoogle Scholar
Cheng, H., Edwards, R.L., Wang, Y., Kong, X., Ming, Y., Kelly, M.J., Wang, X.F., Gallup, C.D., and Liu, W.G. (2006). A penultimate glacial monsoon record from Hulu Cave and two-phase glacial terminations. Geology 34, 217220.Google Scholar
Cheng, H., Edwards, R.L., Broecker, W.S., Denton, G.H., Kong, X., Wang, Y., Zhang, R., and Wang, X. (2009). Ice age terminations. Science 326, 248252.Google Scholar
Cheng, H., Sinha, A., Wang, X., Cruz, F.W., and Edwards, R.L. (2012). The Global Paleomonsoon as seen through speleothem records from Asia and the Americas. Climate Dynamics 39, 10451062.Google Scholar
Cheng, H., Sinha, A., Cruz, F.W., Wang, X., Edwards, R.L., d'Horta, F.M., Ribas, C.C., Vuille, M., Stott, L.D., and Auler, A.S. (2013). Climate change patterns in Amazonia and biodiversity. Nature Communication 4, 1411 10.1038/ncomms2415.Google Scholar
Clemens, S.C., Murray, D.W., and Prell, W.L. (1996). Nonstationary phase of the Plio-Pleistocene Asian monsoon. Science 274, 943948.CrossRefGoogle ScholarPubMed
Cruz, F.W., Burns, S.J., Jercinovic, M., Karmann, I., Sharp, W.D., and Vuille, M. (2007). Evidence of rainfall variations in Southern Brazil from trace element ratios (Mg/Ca and Sr/Ca) in a Late Pleistocene stalagmite. Geochimica et Cosmochimica Acta 71, 22502263.Google Scholar
Cui, Y.F., Wang, Y.J., Cheng, H., Zhao, K., and Kong, X.G. (2012). Isotopic and lithologic variations of one precisely-dated stalagmite across the Medieval/LIA period from Heilong Cave, central China. Climate of the Past 8, 15411550.Google Scholar
D"llenbach, A., Blunier, T., Fl"ckiger, J., Stauffer, B., Chappellaz, J., and Raynaud, D. (2000). Changes in the atmospheric CH 4 gradient between Greenland and Antarctica during the Last Glacial and the transition to the Holocene. Geophysical Research Letters 27, 10051008.CrossRefGoogle Scholar
Dansgaard, W., Johnsen, S.J., Clausen, H.B., Dahl-Jensen, D., Gundestrup, N.S., Hammer, C.U., Hvidber, C.S., Steffensen, J.P., Sveinbj"rnsdottir, A.E., Zouzel, J., and Bond, G. (1993). Evidence for general instability of past climate from a 250-kyr ice-core record. Nature 364, 218220.Google Scholar
Dayem, K.E., Molnar, P., Battisti, D.S., and Roe, G.H. (2010). Lessons learned from oxygen isotopes in modern precipitation applied to interpretation of speleothem records of paleoclimate from eastern Asia. Earth and Planetary Science Letters 295, 219230.Google Scholar
Deplazes, G., L"ckge, A., Peterson, L.C., Timmermann, A., Hamann, Y., Hughen, K.A., R"hl, U., Laj, C., Cane, M.A., Sigman, D.M., and Haug, G.H. (2013). Links between tropical rainfall and North Atlantic climate during the last glacial period. Nature Geoscience 6, 213217.Google Scholar
Duan, F.C., Liu, D.B., Cheng, H., Wang, X.F., Wang, Y.J., Kong, X.G., and Chen, S.T. (2014a). A high-resolution monsoon record of millennial-scale oscillations during Late MIS 3 from Wulu Cave, south-west China. Journal of Quaternary Science 29, 8390.Google Scholar
Duan, F.C., Wang, Y.J., Shen, C.-C., Wang, Y., Cheng, H., Wu, C.-C., Hu, H.-M., Kong, X.G., Liu, D.B., and Zhao, K. (2014b). Evidence for solar cycles in a late Holocene speleothem record from Dongge Cave, China. Scientific Reports 4, 5159 10.1038/srep05159.Google Scholar
Edwards, R.L., Chen, J.H., Wasserburg, G.J.1986/(1987). 238U"234U"230Th"232Th systematics and the precise measurement of time over the past 500,000 years. Earth and Planetary Science Letters 81, 175192.Google Scholar
(2006). EPICA Community Members. One-to-one coupling of glacial climate variability in Greenland and Antarctica, Nature 444, 195198.Google Scholar
Fairchild, I.J., and Treble, P.C. (2009). Trace elements in speleothems as recorders of environmental change. Quaternary Science Reviews 28, 449468.CrossRefGoogle Scholar
Fairchild, I.J., Borsato, A., Tooth, A.F., Frisia, S., Hawkesworth, C.J., Huang, Y., Mcdermott, F., and Spiro, B. (2000). Controls on trace element (Sr"Mg) compositions of carbonate cave waters: implications for speleothem climatic records. Chemical Geology 166, 255269.Google Scholar
Fairchild, I.J., Baker, A., Borsato, A., Frisia, S., Hinton, R.W., McDermott, F., and Tooth, A.F. (2001). Annual to sub-annual resolution of multiple trace-element trends in speleothems. Journal of the Geological Society (London) 158, 831841.Google Scholar
Fleitmann, D., Burns, S.J., Mudelsee, M., Neff, U., Kramers, J., Mangini, A., and Matter, A. (2003). Holocene forcing of the Indian monsoon recorded in a stalagmite from Southern Oman. Science 300, 17371739.Google Scholar
Fleitmann, D., Burns, S.J., Neff, U., Mudelsee, M., Mangini, A., and Matter, A. (2004). Palaeoclimatic interpretation of high-resolution oxygen isotope profiles derived from annually laminated speleothems from Southern Oman. Quaternary Science Reviews 23, 935945.CrossRefGoogle Scholar
Ganopolski, A., and Rahmstorf, S. (2001). Rapid changes of glacial climate simulated in a coupled climate model. Nature 409, 153158.Google Scholar
Gat, J.R. (1996). Oxygen and hydrogen isotopes in the hydrological cycle. Annual Review of Earth and Planetary Sciences 24, 225262.Google Scholar
Genty, D., Blamart, D., Ouahdi, R., Gilmour, M., Baker, A., Jouzel, J., and Van-Exter, S. (2003). Precise dating of Dansgaard"Oeschger climate oscillations in western Europe from stalagmite data. Nature 421, 833837.Google Scholar
Grinsted, A., Moore, J.C., and Jevrejeva, S. (2004). Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Processes in Geophysics 11, 561566.Google Scholar
Grootes, P.M., Stuiver, M., White, J.W.C., Johnsen, S., and Jouzel, J. (1993). Comparison of oxygen isotope records from the GISP2 and GRIP Greenland ice cores. Nature 366, 552554.CrossRefGoogle Scholar
Gupta, A.K., Mohan, K., Das, M., and Singh, R.K. (2013). Solar forcing of the Indian summer monsoon variability during the "ller"d period. Scientific Reports 3, 2753 10.1038/srep02753.Google Scholar
Heinrich, H. (1988). Origin and consequence of cyclic ice rafting in the northeast Atlantic Ocean during the past 130,000 years. Quaternary Research 29, 142152.Google Scholar
Hendy, C.H. (1971). The isotopic geochemistry of speleothems"I. The calculation of the effects of different modes of formation on the isotopic composition of speleothems and their applicability as palaeoclimatic indicators. Geochimica et Cosmochimica Acta 35, 801824.CrossRefGoogle Scholar
Huang, Y., and Fairchild, I.J. (2001). Partitioning of Sr2 + and Mg2 + into calcite under karst-analogue experimental conditions. Geochimica et Cosmochimica Acta 65, 4762.CrossRefGoogle Scholar
Huang, H.M., Fairchild, I.J., Borsato, A., Frisia, S., Cassidy, N.J., McDermott, F., and Hawkesworth, C.J. (2001). Seasonal variations in Sr, Mg and P in modern speleothems (Grotta di Ernesto, Italy). Chemical Geology 175, 429448.Google Scholar
Johnsen, S.J., Clausen, H.B., Dansgaard, W., Fuhrer, K., Gunde-strup, N., Hammer, C.U., Iversen, P., Jouzel, J., Stauffer, B., and Steffensen, J.P. (1992). Irregular glacial interstadials recorded in a new Greenland ice core. Nature 359, 311313.Google Scholar
Johnson, K.R., Hu, C.Y., Belshaw, N.S., and Henderson, G.M. (2006). Seasonal trace-element and stable-isotope variations in a Chinese speleothem: the potential for high-resolution paleomonsoon reconstruction. Earth and Planetary Science Letters 244, 394407.Google Scholar
Kanner, L.C., Burns, S.J., Cheng, H., and Edwards, R.L. (2012). High-latitude forcing of the South American summer monsoon during the Last Glacial. Science 335, 570573.CrossRefGoogle ScholarPubMed
Kim, S.-T., and O'Neil, J.R. ('Neil, 1997). Equilibrium and nonequilibrium oxygen isotope effects in synthetic carbonates. Geochimica et Cosmochimica Acta 61, 34613475.CrossRefGoogle Scholar
Knudsen, M.F., Riisager, P., Jacobsen, B.H., Muscheler, R., Snowball, I., and Seidenkrantz, M.S. (2009). Taking the pulse of the Sun during the Holocene by joint analysis of 14C and 10Be. Geophysical Research Letters 36, L16701 10.1029/2009GL039439.Google Scholar
Knudsen, M.F., Jacobsen, B.H., Riisager, P., Olsen, J., and Seidenkrantz, M.S. (2011). Evidence of Suess solar-cycle bursts in subtropical Holocene speleothem δ18O records. The Holocene 22, 597602.Google Scholar
Kutzbach, J.E. (1981). Monsoon climate of the early Holocene: climate experiment with the Earth's orbital parameters for 9000 year ago. Science 214, 5961.Google Scholar
Lachniet, M.S. (2009). Climatic and environmental controls on speleothem oxygen-isotope values. Quaternary Science Reviews 28, 412432.Google Scholar
Lee, J.-E., and Swann, A.L. (2010). Evaluation of the "amount effect" at speleothem sites in the Asian monsoon region. IOP Conference Series. Earth and Environmental Science 9, 012023 10.1088/1755-1315/9/1/012023.Google Scholar
LeGrande, A., and Schmidt, G. (2009). Sources of Holocene variability of oxygen isotopes in paleoclimate archives. Climate of the Past 5, 441455.Google Scholar
Lenton, T.M., Held, H., Kriegler, E., Hall, J.W., Lucht, W., Rahmstorf, S., and Schellnhuber, H.J. (2008). Tipping elements in the Earth's climate system. Proceedings of the National Academy of Sciences of the United States of America 105, 17861793.Google Scholar
Levine, J.G., Wolff, E.W., Hopcroft, P.O., and Valdes, P.J. (2012). Controls on the tropospheric oxidizing capacity during an idealized Dansgaard"Oeschger event, and their implications for the rapid rises in atmospheric methane during the last glacial period. Geophysical Research Letters 39, L12805 10.1029/2012GL051866.Google Scholar
Li, C., Battisti, D.S., and Bitz, C.M. (2010). Can North Atlantic Sea ice anomalies account for Dansgaard"Oeschger climate signals?. Journal of Climate 23, 54575475.CrossRefGoogle Scholar
Liu, D.B., Wang, Y.J., Cheng, H., Edwards, R.L., Kong, X.G., Wang, X.F., Hardt, B., Wu, J.Y., Chen, S.T., Jiang, X.Y., He, Y.Q., Dong, J.G., and Zhao, K. (2010). Sub-millennial variability of Asian monsoon intensity during the early MIS 3 and its analogue to the ice age terminations. Quaternary Science Reviews 29, 11071115.CrossRefGoogle Scholar
Liu, Z.Y., Wen, X.Y., Brady, E.C., Otto-Bliesner, B., Yu, G., Lu, H.Y., Cheng, H., Wang, Y.J., Zheng, W.P., Ding, Y.H., Edwards, R.L., Cheng, J., Liu, W., and Yang, H. (2014). Chinese cave records and the East Asia Summer Monsoon. Quaternary Science Reviews 83, 115128.Google Scholar
Loulergue, L., Schilt, A., Spahni, R., Masson-Delmotte, V., Blunier, T., Lemieux, B., Barnola, J.M., Raynaud, D., Stocker, T.F., and Chappellaz, J. (2008). Orbital and millennial-scale features of atmospheric CH 4 over the past 800,000 years. Nature 453, 383386.Google Scholar
Lynch-Stieglitz, J., Schmidt, M.W., Henry, L.G., Curry, W.B., Skinner, L.C., Mulitza, S., Zhang, R., and Chang, P. (2014). Muted change in Atlantic overturning circulation over some glacial-aged Heinrich events. Nature Geoscience 7, 144150.Google Scholar
Ma, Z.B., Cheng, H., Tan, M., Edwards, R.L., Li, H.-C., You, C.-F., Duan, W.-H., Wang, X., and Kelly, M.J. (2012). Timing and structure of the Younger Dryas event in northern China. Quaternary Science Reviews 41, 8393.Google Scholar
Maher, B.A. (2008). Holocene variability of the East Asian summer monsoon from Chinese cave records: a re-assessment. The Holocene 18, 861866.Google Scholar
Maher, B.A., and Thompson, R. (2012). Oxygen isotopes from Chinese caves: records not of monsoon rainfall but circulation regime. Journal of Quaternary Science 27, 615624.Google Scholar
Mariethoz, G., Kelly, B.F.J., and Baker, A. (2012). Quantifying the value of laminated stalagmites for paleoclimate reconstructions. Geophysical Research Letters 39, L05407 10.1029/2012GL050986.CrossRefGoogle Scholar
Moseley, G.E., Sp"tl, C., Svensson, A., Cheng, H., Brandst"tter, S., and Edwards, R.L. (2014). Multi-speleothem record reveals tightly coupled climate between central Europe and Greenland during Marine Isotope Stage 3. Geology 42, 10431046.Google Scholar
Pausata, F.S., Battisti, D.S., Nisancioglu, K.H., and Bitz, C.M. (2011). Chinese stalagmite δ18O controlled by changes in the Indian monsoon during a simulated Heinrich event. Nature Geoscience 4, 474480.Google Scholar
Petit, J.R., Jouzel, J., Raynaud, D., Barkov, N.I., Barnola, J.M., Basile, I., Bender, M., Chappellaz, J., Davis, M., Delaygue, G., Delmotte, M., Kotlyakov, V.M., Legrand, M., Lipenkov, V.Y., Lorius, C., P"pin, L., Ritz, C., Saltzman, E., and Stievenard, M. (1999). Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399, 429436.Google Scholar
Proctor, C., Baker, A., and Barnes, W. (2002). A three thousand year record of North Atlantic climate. Climate Dynamics 19, 449454.Google Scholar
Rasmussen, S.O., Bigler, M., Blockley, S.P., Blunier, T., Buchardt, S.L., Clausen, H.B., Cvijanovic, I., Dahl-Jensen, D., Johnsen, S.J., Fischer, H., Gkinis, V., Guillevic, M., Hoekf, W.Z., Lowe, J.J., Pedro, J.B., Popp, T., Seierstad, I.K., Steffensen, J.P., Svensson, A.M., Vallelonga, P., Vinther, B.M., Walkerh, M.J.C., Wheatley, J.J., and Winstrup, M. (2014). A stratigraphic framework for abrupt climatic changes during the last glacial period based on three synchronized Greenland ice-core records: refining and extending the INTIMATE event stratigraphy. Quaternary Science Reviews 106, 1428.Google Scholar
Schulz, M., and Mudelsee, M. (2002). REDFIT: estimating red-noise spectra directly from unevenly spaced paleoclimatic time series. Computers & Geosciences 28, 421426.Google Scholar
Shen, C.-C., Edwards, L.R., Cheng, H., Dorale, J.A., Thomas, R.B., Moran, S.B., Weinstein, S.E., and Edmonds, H.N. (2002). Uranium and thorium isotopic and concentration measurements by magnetic sector inductively coupled plasma mass spectrometry. Chemical Geology 185, 165178.Google Scholar
Singarayer, J.S., Valdes, P.J., Friedlingstein, P., Nelson, S., and Beerling, D.J. (2011). Late Holocene methane rise caused by orbitally controlled increase in tropical sources. Nature 470, 8285.Google Scholar
Steinhilber, F., Abreu, J.A., Beer, J., Brunner, I., Christl, M., Fischer, H., Heikkil", U., Kubik, P.W., Mann, M., McCracken, K.G., Miller, H., Miyahara, H., Oerter, H., and Wilhelms, F. (2012). 9,400 years of cosmic radiation and solar activity from ice cores and tree rings. Proceedings of the National Academy of Sciences 109, 59675971.Google Scholar
Stuiver, M., and Braziunas, T.F. (1993). Modeling atmospheric 14C influences and 14C ages of marine samples to 10000 BC. Radiocarbon 35, 137189.Google Scholar
Stuiver, M., and Grootes, P.M. (2000). GISP2 oxygen isotope ratios. Quaternary Research 53, 277284.Google Scholar
Svensson, A., Andersen, K.K., Bigler, M., Clausen, H.B., Dahl-Jensen, D., Davies, S.M., Johnsen, S.J., Muscheler, R., Rasmussen, S.O., Rothlisberger, R., Steffensen, J.P., and Vinther, B.M. (2006). The Greenland Ice Core Chronology 2005, 15"42 ka. Part 2: comparison to other records. Quaternary Science Reviews 25, 32583267.Google Scholar
Tan, M. (2014). Circulation effect: response of precipitation δ18O to the ENSO cycle in monsoon regions of China. Climate Dynamics 42, 10671077.Google Scholar
Tan, M., Liu, D.S., Hou, J., Qin, X.G., Zhang, H., and Li, T.Y. (2003). Cyclic rapid warming o centennial-scale revealed by a 2650-year stalagmite record of warm season temperature. Geophysical Research Letters 30, 16171621.Google Scholar
Treble, P., Shelley, J.M.G., and Chappell, J. (2003). Comparison of high resolution sub-annual records of trace elements in a modern (1911"1992) speleothem with instrumental climate data from southwest Australia. Earth and Planetary Science Letters 216, 141153.Google Scholar
Voelker, A.H.L. (2002). Global distribution of centennial-scale records for Marine Isotope Stage (MIS) 3: a database.(workshop participants)Quaternary Science Reviews 21, 11851212.Google Scholar
Wang, H.J., and Chen, H.P. (2012). Climate control for southeastern China moisture and precipitation: Indian or East Asian monsoon?. Journal of Geophysical Research 117, D12109 10.1029/2012JD017734.Google Scholar
Wang, X.F., Auler, A.S., Edwards, R.L., Cheng, H., Ito, E., and Solheid, M. (2006). Interhemispheric anti-phasing of rainfall during the last glacial period. Quaternary Science Reviews 25, 33913403.Google Scholar
Wang, X.F., Auler, A.S., Edwards, R.L., Cheng, H., Ito, E., Wang, Y.J., Kong, X.G., and Solheid, M. (2007). Millennial-scale precipitation changes in southern Brazil over the past 90,000 years. Geophysical Research Letters 34, L23701 10.1029/2007GL031149.Google Scholar
Wang, Y.J., Cheng, H., Edwards, R.L., An, Z.S., Wu, J.Y., Shen, C.-C., and Dorale, J.A. (2001). A high-resolution absolute-dated Late Pleistocene monsoon record from Hulu Cave, China. Science 294, 23452348.Google Scholar
Wang, Y.J., Cheng, H., Edwards, R.L., He, Y., Kong, X., An, Z.S., Wu, J.Y., Kelly, M.J., Dykoski, C.A., and Li, X. (2005). The Holocene Asian monsoon: links to solar changes and North Atlantic climate. Science 308, 854857.Google Scholar
Wang, Y.J., Cheng, H., Edwards, R.L., Kong, X.G., Shao, X.H., Chen, S.T., Wu, J.Y., Jiang, X.Y., Wang, X.F., and An, Z.S. (2008). Millennial- and orbital-scale changes in the East Asian monsoon over the past 224,000 years. Nature 451, 10901093.Google Scholar
Webster, P.J., Magana, V.O., Palmer, T.N., Shukla, J., Tomas, R.A., Yanai, M.U., and Yasunari, T. (1998). Monsoons: processes, predictability, and the prospects for prediction. Journal of Geophysical Research 103, 1445114510.Google Scholar
Wu, J.Y., Shao, X.H., Kong, X.G., and Wang, Y.J. (2006). Imprint of solar activity on Nanjing stalagmite annual layer thickness sequence during the Last Glacial Maximum. Chinese Science Bulletin 51, 441447.Google Scholar
Yuan, D.X., Cheng, H., Edwards, R.L., Dykoski, C.A., Kelly, M.J., Zhang, M.L., Qing, J.M., Lin, Y.S., Wang, Y.J., Wu, J.Y., Dorale, J.A., An, Z.S., and Cai, Y.J. (2004). Timing, duration, and transitions of the Last Interglacial Asian monsoon. Science 304, 575578.Google Scholar
Zhang, P.Z., Cheng, H., Edwards, R.L., Chen, F.H., Wang, Y.J., Yang, X.L., Liu, J., Tan, M., Wang, X.F., Liu, J.H., An, C.L., Dai, Z.B., Zhou, J., Zhang, D.Z., Jia, J.H., Jin, L.Y., and Johnson, K.R. (2008). A test of climate, sun, and culture relationships from an 1810-year Chinese cave record. Science 322, 940942.Google Scholar
Zhang, W.H., Wu, J.Y., Wang, Y., Wang, Y.J., Cheng, H., Kong, X.G., and Duan, F.C. (2014). A detailed East Asian monsoon history surrounding the "Mystery Interval" derived from three Chinese speleothem records. Quaternary Research 82, 154163.Google Scholar
Zhao, K., Wang, Y.J., Edwards, R.L., Cheng, H., and Liu, D.B. (2010). High-resolution stalagmite δ18O records of Asian monsoon changes in central and southern China spanning the MIS 3/2 transition. Earth and Planetary Sciences Letters 298, 191198.Google Scholar