Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-23T05:29:09.414Z Has data issue: false hasContentIssue false

A 24,700-yr paleolimnological history from the Peruvian Andes

Published online by Cambridge University Press:  20 January 2017

Rachel Hillyer
Affiliation:
Department of Biological Sciences, Florida Institute of Technology, 150 W. University Blvd., Melbourne, FL 32901, USA Department of Biology, Wake Forest University, Winston Salem, NC 27109, USA
Bryan G. Valencia
Affiliation:
Department of Biological Sciences, Florida Institute of Technology, 150 W. University Blvd., Melbourne, FL 32901, USA
Mark B. Bush*
Affiliation:
Department of Biological Sciences, Florida Institute of Technology, 150 W. University Blvd., Melbourne, FL 32901, USA
Miles R. Silman
Affiliation:
Department of Biology, Wake Forest University, Winston Salem, NC 27109, USA
Miriam Steinitz-Kannan
Affiliation:
Department of Biology, Northern Kentucky University, Highland Heights, KY 41099, USA
*
*Corresponding author. Email Address:[email protected] (M.B. Bush).

Abstract

A new paleolimnological dataset from Lake Pacucha (13 °S, 3095 m elevation) in the Peruvian Andes provides evidence of changes in lake level over the past 24,700 yr. A late-glacial highstand in lake level gave way to an early-Holocene lowstand. This transition appears to have paralleled precessional changes that would have reduced insolation during the wet-season. The occurrence of benthic/salt-tolerant diatoms and CaCO3 deposition suggest that the lake had lost much of its volume by c. 10,000 cal yr BP. Pronounced Holocene oscillations in lake level included a second phase of low lake level and heightened volatility lasting from c. 8300 to 5000 cal yr BP. While a polymictic lake formed at c. 5000 cal yr BP. These relatively wet conditions were interrupted by a series of drier events, the most pronounced of which occurred at c. 750 cal yr BP. Paleolimnological changes in the Holocene were more rapid than those of either the last glacial maximum or the deglacial period.

Type
Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aalto, R., Maurice-Bourgoin, L., Dunne, T., Montgomery, D. r., Nittouer, C.A., and Guyot, J.-L. Episodic sediment accumulation on Amazonian flood plains influenced by El Nino/Southern Oscillation. Nature 425, (2003). 493497.CrossRefGoogle ScholarPubMed
Abbott, M.B., Wolfe, B.B., Wolfe, A.P., Seltzer, G.O., Aravena, R., Mark, B.G., Polissar, P.J., Rodbell, D.T., Rowe, H.D., and Vuille, M. Holocene paleohydrology and glacial history of the central Andes using multiproxy lake sediment studies. Palaeogeography Palaeoclimatology Palaeoecology 194, (2003). 123138.Google Scholar
Absy, M.L., Clief, A., Fournier, M., Martin, L., Servant, M., Sifeddine, A., Silva, F. d., Soubiès, F., Suguio, K.T., and van der Hammen, T. Mise en évidence de quatre phases d'ouverture de la forêt dense dans le sud-est de L'Amazonie au cours des 60,000 dernières années. Première comparaison avec d'autres régions tropicales. Comptes Rendus Academie des Sciences Paris, Series II 312, (1991). 673678.Google Scholar
Baker, P.A. Trans-Atlantic climate connections. Science 5565, (2002). 6768.Google Scholar
Baker, P.A., Bush, M.B., Fritz, S., Rigsby, C.A., Seltzer, G., and Silman, M.R. Last galcial maximum in an Andean cloud forest environment (eastern Cordillera, Bolivia): Comment. Geology (2003). e26 CrossRefGoogle Scholar
Baker, P.A., Rigsby, C.A., Seltzer, G.O., Fritz, S.C., Lowenstein, T.K., Bacher, N.P., and Veliz, C. Tropical climate changes at millennial and orbital timescales on the Bolivian Altiplano. Nature 409, (2001). 698701.CrossRefGoogle ScholarPubMed
Baker, P.A., Seltzer, G.O., Fritz, S.C., Dunbar, R.B., Grove, M.J., Tapia, P.M., Cross, S.L., Rowe, H.D., and Broda, J.P. The history of South American tropical precipitation for the past 25,000 years. Science 291, (2001). 640643.CrossRefGoogle ScholarPubMed
Battarbee, R.W. Handbook of Holocene Palaeoecology and Palaeohydrology. (1986). John Wiley and Sons, New York.Google Scholar
Behling, H. Late Quaternary vegetation and climate dynamics in southeastern Amazonia inferred from Lagoa da Confusao in Tocantins State. Northern Brazil Amazoniana 17, (2002). 2739.Google Scholar
Berger, A. Astronomical theory of paleoclimates and the last glacial–interglacial cycle. Quaternary Science Reviews 11, (1992). 571581.CrossRefGoogle Scholar
Birks, H.J.B., and Birks, H.J.B. D.G. Frey and E.S. Deevey Review 1: Numerical tools in palaeolimnology—Progress, potentialities, and problems. Journal of Paleolimnology 20, (1998). 307332.CrossRefGoogle Scholar
Bush, M.B. Of orogeny, precipitation, precession and parrots. Journal of Biogeography 32, (2005). 13011302.CrossRefGoogle Scholar
Bush, M.B., De Oliveira, P.E., Colinvaux, P.A., Miller, M.C., and Moreno, E. Amazonian paleoecological histories: one hill, three watersheds. Palaeogeography Palaeoclimatology Palaeoecology 214, (2004). 359393.CrossRefGoogle Scholar
Bush, M.B., Gosling, W.D., and Colinvaux, P.A. Climate Change in the Lowlands of the Amazon Basin. Bush, M.B., and Flenley, J.R. Tropical Rainforest Responses to Climate Change. (2007). Praxis Springer, Chichester. 5571.Google Scholar
Bush, M.B., Hanselman, J.A., and Hooghiemstra, H. Andean montane forests and climate change. Bush, M.B., and Flenley, J.R. Tropical rainforest responses to climate change.. (2007). Praxis Springer, Chichester. 3348.Google Scholar
Bush, M.B., Hansen, B.C.S., Rodbell, D., Seltzer, G.O., Young, K.R., León, B., Silman, M.R., Abbott, M.B., and Gosling, W.D. A 17,000 year history of Andean climatic and vegetation change from Laguna de Chochos, Peru. Journal of Quaternary Science 20, (2005). 703714.CrossRefGoogle Scholar
Bush, M.B., Miller, M.C., de Oliveira, P.E., and Colinvaux, P.A. Orbital forcing signal in sediments of two Amazonian lakes. Journal of Paleolimnology 27, (2002). 341352.CrossRefGoogle Scholar
Bush, M.B., and Silman, M.R. Observations on Late Pleistocene cooling and precipitation in the lowland Neotropics. Journal of Quaternary Science 19, (2004). 677684.CrossRefGoogle Scholar
Bush, M.B., Silman, M.R., and Urrego, D.H. 48,000 years of climate and forest change from a biodiversity hotspot. Science 303, (2004). 827829.CrossRefGoogle Scholar
Bush, M.B., Stute, M., Ledru, M. -P., Behling, H., Colinvaux, P.A., De Oliveira, P.E., Grimm, E.C., Hooghiemstra, H., Haberle, S., Leyden, B.W., Salgado-Labouriau, M.-L., and Webb, R. Paleotemperature estimates for the lowland Americas between 30°S and 30°N at the last glacial maximum. Markgraf, V. Interhemispheric Climate Linkages: Present and Past Interhemispheric Climate Linkages in the Americas and their Societal Effects.. (2001). Academic Press, New York. 293306.Google Scholar
Clement, A.C., Cane, M.A., and Seager, R. An orbitally driven tropical source for abrupt climate change. Journal of Climate 14, (2001). 23692375.2.0.CO;2>CrossRefGoogle Scholar
Colinvaux, P.A., Bush, M.B., Steinitz-Kannan, M., and Miller, M.C. Glacial and postglacial pollen records from the Ecuadorian Andes and Amazon. Quaternary Research 48, (1997). 6978.Google Scholar
Colinvaux, P.A., De Oliveira, P.E., and Moreno, J.E. Amazon pollen manual and atlas.. (1999). Harwood Academic Press, New York.Google Scholar
Colinvaux, P.A., De Oliveira, P.E., Moreno, J.E., Miller, M.C., and Bush, M.B. A long pollen record from lowland Amazonia: Forest and cooling in glacial times. Science 274, (1996). 8588.CrossRefGoogle Scholar
Colinvaux, P.A., Irion, G., Räsänen, M.E., Bush, M.B., and Nunes de Mello, J.A.S. A paradigm to be discarded: geological and paleoecological data falsify the Haffer and Prance refuge hypothesis of Amazonian speciation. Amazoniana 16, (2001). 609646.Google Scholar
Cowling, S.A., Betts, R.A., Cox, P.M., Ettwein, V.J., Jones, C.D., Maslin, M.A., and Spall, S.A. Contrasting simulated past and future responses of the Amazonian forest to atmospheric change. Philosophical Transactions of the Royal Society of London ser. b 359, (2004). 539547.CrossRefGoogle ScholarPubMed
Cowling, S.A., Maslin, M.A., and Sykes, M.T. Paleovegetation simulations of lowland Amazonia and implications for neotropical allopatry and speciation. Quaternary Research 55, (2001). 140149.CrossRefGoogle Scholar
Cruz, F.W. Jr, Burns, S.J., Karmann, I., Sharp, W.D., Vuille, M., Cardoso, A.O., Ferrari, J.A., Silva Dias, P.L., Vlana, O. Jr Insolation-driven changes in atmospheric circulation over the past 116,000 years in subtropical Brazil. Nature 434, (2005). 6366.CrossRefGoogle Scholar
De Oliveira, P.E., Steinitz-Kannan, M., Miller, M.C., and Colinvaux, P.A. 1986 Las diatomeas del Ecuador III. Diatomeas fósiles de la laguna de Kumpaka Provincia de Morona Santiago. Revista Geográfica, Instituto Geográfico Militar, Quito 24, (1986). 4160.Google Scholar
Ellenberg, H. Wald oder steppe? Die natürliche pflanzendecke der Anden Perus. Umschau 1958, (1958). 645681.Google Scholar
EPICA PROJECT MEMBERS, One-to-one coupling of glacial climate variability in Greenland and Antartica. Nature 444, (2006). 195198.Google Scholar
Fairbanks, R.G., Richard, A., Mortlock, R.A., Chiu, T.-C., Cao, L., Kaplan, A., Guilderson, T.P., Fairbanks, T.W., and Bloom, A.L. Marine radiocarbon calibration curve spanning 0 to 50,000 years B.P. based on paired 230Th/234U/238U and 14C dates on pristine corals. Quaternary Science Reviews 24, (2005). 17811796.CrossRefGoogle Scholar
Fritz, S.C., Baker, P.A., Lowenstein, T.K., Seltzer, G.O., Rigsby, C.A., Dwyer, G.S., Tapia, P.M., Arnold, K.K., Ku, T.L., and Luo, S. Hydrologic variation during the last 170,000 years in the southern hemisphere tropics of South America. Quaternary Research 61, (2004). 95104.CrossRefGoogle Scholar
Fritz, S.C., Baker, P.A., Seltzer, G.O., Ballantyne, A., Tapia, P.M., Cheng, H., and Edwards, R.L. Quaternary glaciation and hydrologic variation in the South American tropics as reconstructed from the Lake Titicaca drilling project. Quaternary Research 68, (2007). 410420.CrossRefGoogle Scholar
Gasse, F., Barker, P., Gell, P.A., Fritz, S.C., and Chalie, F. Diatom-inferred salinity in paleolakes: an indirect tracer of climate change. Quaternary Science reviews 16, (1997). 547563.CrossRefGoogle Scholar
Hansen, B.C.S. A review of lateglacial pollen records from Ecuador and Peru with reference to the Younger Dryas Event. Quaternary Science Reviews 14, (1995). 853865.CrossRefGoogle Scholar
Heine, J.T. A reevaluation of the evidence for a Younger Dryas climatic reversal in the tropical Andes. Quaternary Science Reviews 12, (1993). 769779.CrossRefGoogle Scholar
Heiri, O., Lotter, A.F., and Lemcke, G. Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. Journal of Paleolimnology 25, (2001). 101110.CrossRefGoogle Scholar
Hooghiemstra, H. Vegetational and climatic history of the high plain of Bogota, Colombia. Dissertaciones Botanicae. (1984). J. Cramer, Vaduz. 79 Google Scholar
Jenny, B., Valero-Garces, B., Urrutia, R., Kelts, K., Veit, H., Appleby, P.G., and Geyh, M. Moisture changes and fluctuations of the westerlies in Mediterranean Central Chile during the last 2000 years: The Laguna Aculeo record (33°59′S). Quaternary International 87, (2002). 318.CrossRefGoogle Scholar
Lange Bertalot, H. (1998). Tropical diatoms of South America I. Iconographia diatomologica. Koeltz Scientific Books.Google Scholar
Lange Bertalot, H. (2000). Diatoms of the Andes From Venezuela to Patagonia/Tierra del Fuego. Koeltz Scientific Books.Google Scholar
Liu, K.-b., and Colinvaux, P.A. Forest changes in the Amazon basin during the last glacial maximum. Nature 318, (1985). 556557.CrossRefGoogle Scholar
Marengo, J. Climatology of the LLJ east of the Andes as derived from NCEP reanalyses. Journal of Climate 17, (2004). 22612280.2.0.CO;2>CrossRefGoogle Scholar
Marengo, J. Climate change and the hydrological modes of the wet tropics. Bush, M.B., and Flenley, J.R. Tropical Rainforest Responses to Climate Change.. (2007). Praxis, Chichester. 237268.Google Scholar
Marengo, J.A., Nobre, C.A., Tomasella, J., Oyama, M.D., Sampaio de Oliveira, G., de Oliveira, R., Camargo, H., Alves, L.M., and Brown, I.F. The Drought of Amazonia in 2005. Journal of Climate 21, (2008). 495516.CrossRefGoogle Scholar
Marengo, J.A., and Nobre, C.A. General characteristics and variability of climate in the Amazon Basin and its links to the global climate system. McClain, M.E., Victoria, R.L., and Richey, J.E. The Biogeochemistry of the Amazon Basin.. (2001). Oxford University Press, Oxford. 1741.Google Scholar
Maslin, M., and Burns, S.J. Reconstruction of the Amazon Basin effective moisture availability over the past 14,000 years. Science 290, (2000). 22852287.Google Scholar
Mayle, F.E., Burbridge, R., and Killeen, T.J. Millennial-scale dynamics of southern Amazonian rain forests. Science 290, (2000). 22912294.Google Scholar
McCune, B., and Mefford, M.J. PC_ORD. Multivariate analysis of ecological data. (1999). Software Design, Gleneden Beach, Oregon.Google Scholar
Mortimer, C.H. The oxygen content of air-saturated fresh water, and aids in calculating percentage saturation. Mitteilung Internationale Vereinigung für Limnologie 6, (1956). 120 Google Scholar
Mourguiart, P., and Ledru, M.P. Last Glacial Maximum in an Andean cloud forest environment (Eastern Cordillera, Bolivia). Geology 31, (2003). 195198.Google Scholar
Moy, C.M., Seltzer, G.O., Rodbell, D.T., and Anderson, D.M. Variability of El Nino/Southern Oscillation activity at millennial timescales during the Holocene epoch. Nature 420, (2002). 162164.CrossRefGoogle ScholarPubMed
Paduano, G. (2001). Vegetation and fire history of two tropical Andean lakes, Titicaca (Peru/Bolivia), and Caserochocha (Peru) with special emphasis on the Younger Dryas chronozone. Unpublished Ph.D. thesis, Florida Institute of Technology, .Google Scholar
Paduano, G.M., Bush, M.B., Baker, P.A., Fritz, S.C., and Seltzer, G.O. A vegetation and fire history of Lake Titicaca since the Last Glacial Maximum. Palaeogeography, Palaeoclimatology, Palaeoecology 194, (2003). 259279.CrossRefGoogle Scholar
Patrick, R., and Reimer, C.W. The diatoms of the United States: Volume 1. (1966). Google Scholar
Patrick, R., and Reimer, C.W. The diatoms of the United States: Volume 2. (1975). Google Scholar
Pienitz, R., Smol, J.P., and Birks, H.J.B. Assessment of freshwater diatoms as quantitative inidactors of past climatic change in the Yukon and Northwest Territories, Canada. Journal of Paleolimnology 13, (1995). 2149.CrossRefGoogle Scholar
Placzek, C., Quade, J., and Patchett, P.J. Geochronology and stratigraphy of late Pleistocene lake cycles on the southern Bolivian Altiplano: Implications for causes of tropical climate change. Geol Soc Am Bullfs 118, (2006). 515532.CrossRefGoogle Scholar
Rein, B. How do the 1982/83 and 1997/98 El Niños rank in a geological record from Peru?. Quaternary International (2007). 5666.Google Scholar
Riedinger, M.A., Steinitz-Kannan, M., Last, W.M., and Brenner, M. A 6100 14C yr record of El Nino activity from the Galapagos Islands. Journal of Paleolimnology 27, (2002). 17.CrossRefGoogle Scholar
Rodbell, D.T., Seltzer, G.O., Anderson, D.M., Abbott, M.B., Enfield, D.B., and Newman, J.H. An ~ 15,000-year record of El Niño-driven alluviation in southwestern Ecuador. Science 283, (1999). 516520.CrossRefGoogle ScholarPubMed
Rühland, K.M., Smol, J.P., and Pienitz, R. Ecology and spatial distributions of surface-sediment diatoms from 77 lakes in the subarctic Canadian treeline region. Canadian Journal of Botany 81, (2003). 5773.CrossRefGoogle Scholar
Sandweiss, D.H., Maasch, K.A., Burger, R.L., Richardson III, J.B., Rollins, H.B., and Clement, A. Variation in Holocene El Niño frequencies: Climate records and cultural consequences in ancient Peru. Geology 29, (2001). 603606.Google Scholar
Schmidt, R., Kamenik, C., Lange-Bertalot, H., and Klee, R. Fragilaria and Staurosira (Bacillariophyceaea) from sediment surfaces of 40 lakes in the Austrian Alps in relation to environmental variables, and their potential for palaeoclimatology. Journal of Limnology 63, (2004). 171189.CrossRefGoogle Scholar
Seltzer, G., Rodbell, D., and Burns, S. Isotopic evidence for late Quaternary climatic change in tropical South America. Geology 28, (2000). 3538.2.0.CO;2>CrossRefGoogle Scholar
Smith, J.A., Seltzer, G.O., Farber, D.L., Rodbell, D.T., and Finkel, R.C. Early local last glacial maximum in the tropical Andes. Science 308, (2005). 678681.CrossRefGoogle ScholarPubMed
Steinitz-Kannan, M., De Oliveira, P.E., Miller, M.C., and Colinvaux, P.A. Las diatomeas del Ecuador I. Diatomeas Fosiles de la Laguna de Cunro, Provincia de Imbabura. Revista del Museo Ecuatoriano de Cencias Naturales, Quito. (1986). Google Scholar
Steinitz-Kannan, M., Nienaber, M., Riedinger, M., and Kannan, R. The fossil diatoms of lake Yambo, Ecuador. A Possible Record of El Niño Events. Bulletin de I'Institut Français d'Études Andines 22, (1993). 227241.Google Scholar
Stuiver, M., and Reimer, P.J. Extended 14C database and revised CALIB radiocarbon calibration program. Radiocarbon 35, (1993). 215230.CrossRefGoogle Scholar
Stuiver, M., Reimer, P. J., and Reimer, R. W. (2005). Calib 5.0. [WWW program and documentation].Google Scholar
Sylvestre, F., Beck-Eichler, B., Duleba, W., and Debenay, J.-P. Modern benthic diatom distribution in a hypersaline coastal lagoon: the Lagoa de Araruama (R.J.), Brazil. Hydrobiologia 443, (2001). 213231.CrossRefGoogle Scholar
Tapia, P.M., Fritz, S.C., Baker, P.A., Seltzer, G.O., and Dunbar, R.B. A Late Quaternary diatom record of tropical climatic history from Lake Titicaca (Peru and Bolivia). Palaeogeography Palaeoclimatology Palaeoecology 194, (2003). 139164.Google Scholar
Thompson, L.G., Mosley-Thompson, E., Davis, M.E., Lin, P.-N., Henderson, K.A., Cole-Dai, J., Bolsan, J.F., and Liu, K.G. Late glacial stage and Holocene tropical ice core records from Huascaran, Peru. Science 269, (1995). 4650.CrossRefGoogle ScholarPubMed
Thompson, L.G., Mosley-Thompson, E., and Henderson, K.A. Ice-core palaeoclimate records in tropical South America since the Last Glacial Maximum. Journal of Quaternary Science 15, (2000). 377394.3.0.CO;2-L>CrossRefGoogle Scholar
Urrego, D.H., Silman, M.R., and Bush, M.B. The last glacial maximum: stability and change in an Andean cloud forest. Journal of Quaternary Science. Journal of Quaternary Science 20, (2005). 693701.CrossRefGoogle Scholar
Van 't Veer, R., Islebe, G.A., and Hooghiemstra, H. Climatic change during the younger Dryas Chron in northern south America: a test of the evidence. Quaternary Science Reviews 19, (2000). 18211835.CrossRefGoogle Scholar
Van der Hammen, T. The Pleistocene changes of vegetation and climate in tropical South America. Journal of Biogeography 1, (1974). 326.CrossRefGoogle Scholar
Van der Hammen, T., and Hooghiemstra, H. The El Abra stadial, a Younger Dryas equivalent in Colombia. Quaternary Science Reviews 14, (1995). 841851.CrossRefGoogle Scholar
Vuille, M., Bradley, R.S., and Keimig, F. Interannual climate variability in the Central Andes and its relation to tropical Pacific and Atlantic forcing. Journal of Geophysical Research 105, (2000). 1244712460.CrossRefGoogle Scholar
Whitmore, T.C., and Prance, G.T. Biogeography and Quaternary History in Tropical America.. (1987). Oxford Science Publications, Oxford.Google Scholar
Wirrmann, D., and Mourgiart, P. Late Quaternary spatio-temporal limnological variations in the Altiplano of Bolivia and Peru. Quaternary Research 34, (1995). 344354.CrossRefGoogle Scholar