Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-23T01:43:56.884Z Has data issue: false hasContentIssue false

1400 years of extreme precipitation patterns over the Mediterranean French Alps and possible forcing mechanisms

Published online by Cambridge University Press:  05 April 2012

Bruno Wilhelm*
Affiliation:
EDYTEM, Université de Savoie, CNRS, Pôle Montagne, 73376 Le Bourget du Lac, France
Fabien Arnaud
Affiliation:
EDYTEM, Université de Savoie, CNRS, Pôle Montagne, 73376 Le Bourget du Lac, France
Pierre Sabatier
Affiliation:
EDYTEM, Université de Savoie, CNRS, Pôle Montagne, 73376 Le Bourget du Lac, France
Christian Crouzet
Affiliation:
ISTerre, Université de Savoie, CNRS, bâtiment Belledonne, 73376 Le Bourget du Lac, France
Elodie Brisset
Affiliation:
IMBE, Aix-Marseille Université, CNRS, Europole de l'Arbois, BP 80 13545 Aix-en-Provence cedex 04, France CEREGE, Aix-Marseille Univ, CNRS, IRD, College de France, Technopole de l'Arbois, BP 80, 13545 Aix en Provence, France
Eric Chaumillon
Affiliation:
LIENSs, Université de La Rochelle, CNRS, Institut du Littoral et de l'Environnement, 2 rue Olympe de Gouges, 17000 La Rochelle, France
Jean-Robert Disnar
Affiliation:
ISTO, Université d'Orléans, CNRS, Campus Géosciences, bâtiment ISTE, 1A rue de la Férolerie, 45071 Orleans cedex 2, France
Frederic Guiter
Affiliation:
IMBE, Aix-Marseille Université, CNRS, Europole de l'Arbois, BP 80 13545 Aix-en-Provence cedex 04, France
Emmanuel Malet
Affiliation:
EDYTEM, Université de Savoie, CNRS, Pôle Montagne, 73376 Le Bourget du Lac, France
Jean-Louis Reyss
Affiliation:
LSCE, Université de Versailles Saint-Quentin CEA-CNRS, avenue de la terrasse, 91198 Gif-sur-Yvette cedex, France
Kazuyo Tachikawa
Affiliation:
CEREGE, Aix-Marseille Univ, CNRS, IRD, College de France, Technopole de l'Arbois, BP 80, 13545 Aix en Provence, France
Edouard Bard
Affiliation:
CEREGE, Aix-Marseille Univ, CNRS, IRD, College de France, Technopole de l'Arbois, BP 80, 13545 Aix en Provence, France
Jean-Jacques Delannoy
Affiliation:
EDYTEM, Université de Savoie, CNRS, Pôle Montagne, 73376 Le Bourget du Lac, France
*
Corresponding author. Fax: + 33 4 79 75 81 71. Email Address:[email protected]

Abstract

Investigation of Lake Allos sediments revealed ~ 160 graded layers, interpreted as flood deposits, over the last 1400 yr. Comparisons with records of historic floods support the interpretation of flood deposits and suggest that most recorded flood events are the result of intense meso-scale precipitation events. As there is no evidence for any major changes in erosion processes in the catchment since the Medieval Warm Period (MWP), we interpret the Allos record in terms of repeated intense precipitation events over the last millennium, with a low flood frequency during the MWP and more frequent and more intense events during the Little Ice Age. This interpretation is consistent with the pattern of increasingly humid conditions in the northwestern Mediterranean region. This long-term trend is superimposed on high frequency oscillations that correlate with solar activity and autumnal North Atlantic Oscillation (NAO). Finally, a comparison of flood records across the northwestern Mediterranean region showed that intense precipitation events in Allos (east of the Rhône Valley) were out of phase with events in the Cévennes (west of the Rhône) but in phase with events in eastern Spain. Supported by meteorological analyses, this suggests an oscillation in atmospheric circulation patterns over the northwestern Mediterranean.

Type
Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexandrescu, M., Courtillot, V., and Le Mouël, J.-L. High-resolution secular variation of the geomagnetic field in western Europe over the last 4 centuries: comparison and integration of historical data from Paris and London. Journal of Geophysical Research 102, (1997). 2024520258.Google Scholar
Appleby, P.G., Richardson, N., and Nolan, P.J. 241Am dating of lake sediments. Hydrobiologia 214, (1991). 3542.CrossRefGoogle Scholar
Arnaud, F., Lignier, V., Revel, M., Desmet, M., Pourchet, M., Beck, C., Charlet, F., Trentesaux, A., and Tribovillard, N. Flood and earthquake disturbance of 210Pb geochronology (Lake Anterne, North French Alps). Terra Nova 14, (2002). 225232.Google Scholar
Arnaud, F., Revel, M., Chapron, E., Desmet, M., and Tribovillard, N. 7200 years of Rhône river flooding activity in Lake Le Bourget, France: a high-resolution sediment record of NW Alps hydrology. The Holocene 15, 3 (2005). 420428.CrossRefGoogle Scholar
Bakke, J., Lie, Ø., Dahl, S.O., Nesje, A., and Bjune, A.E. Strength and spatial patterns of the Holocene wintertime westerlies in the NE Atlantic region. Global and Planetary Change 60, (2008). 2841.CrossRefGoogle Scholar
Barletta, F., St-Onge, G., Channell, J.E.T., and Rochon, A. Dating of Holocene western Canadian Arctic sediments by matching paleomagnetic secular variation to a geomagnetic field model. Quaternary Science Reviews 29, (2010). 23152324.CrossRefGoogle Scholar
Barrera, A., Llast, M.C., and Barriendos, M. Estimation of extreme flash flood evolution in Barcelona County from 1351 to 2005. Natural Hazards Earth Systems Sciences 6, (2006). 505518.Google Scholar
Barriendos, M. Climatic variations in the Iberian Peninsula during the late Maunder Minimum (AD 1675–1715): an analysis of data from rogation ceremonies. The Holocene 7, (1997). 105111.Google Scholar
Barriendos Vallve, M., and Martin-Wide, J. Secular climatic oscillations as indicated by catastrophic floods in the Spanish Mediterranean coastal area (14th–19th centuries). Climatic Change 38, (1998). 473491.CrossRefGoogle Scholar
Beierle, B.D., Lamoureux, S.F., Cockburn, J.M.H., and Spooner, I. A new method for visualizing sediment particle size distributions. Journal of Paleolimnology 27, (2002). 279283.CrossRefGoogle Scholar
Belotti, P., Caputo, C., Davoli, L., Evangelista, S., Garzanti, E., Pugliese, F., and Valeri, P. Morpho-sedimentary characteristics and Holocene evolution of the emergent part of the Ombrone River delta (southern Tuscany). Geomorphology 61, (2004). 7190.Google Scholar
Bengtsson, L., and Hodges, K.I. Storm tracks and climate change. Journal of Climate 19, (2006). 35183543.Google Scholar
Beniston, M., Stephenson, D.B., Christensen, O.B., Ferro, C.A.T., Frei, C., Goyette, S., Halsnaes, K., Holt, T., Jylhä, K., Koffi, B., Palutlikof, J., Schöll, R., Semmler, T., and Woth, K. Future extreme events in European climate: an exploration of regional climate model projections. Climatic Change 81, (2007). 7195.Google Scholar
Benito, G., Díez-Herrero, A., and Fernández de Villalta, M. Magnitude and frequency of flooding in the Tagus Basin (Central Spain) over the last millennium. Climatic Change 58, (2003). 171192.Google Scholar
Blaauw, M. Methods and code for ‘classical’ age-modelling of radiocarbon sequences. Quaternary Geochronology 5, (2010). 512518.CrossRefGoogle Scholar
Blanchemanche, P. Crues historiques et vendanges en Languedoc méditerranéen oriental: la source, le signal et l'interprétation. In: Changement global, effets locaux: Le Petit Age Glaciaire dans le Sud de la France: Impacts morphogéniques et sociétaux. Archéologie du Midi Médiéval 27, (2009). 225235.CrossRefGoogle Scholar
Blass, A., Grosjean, M., Livingstone, D.M., and Sturm, M. Signature of explosive volcanic eruptions in the sediments of a high-altitude Swiss lake. Journal of Paleolimnology 39, (2008). 3542.Google Scholar
Bøe, A.G., Olaf Dahl, S., Lie, O., and Nesje, A. Holocene river floods in the upper Glomma catchment, southern Norway: a high-resolution multiproxy record from lacustrine sediments. The Holocene 16, 3 (2006). 445455.Google Scholar
Boudevillain, B., Argence, S., Claud, C., Ducrocq, V., Joly, B., Lambert, D., Nuissier, O., Plu, M., Ricard, D., Arbogast, P., Berne, A., Chaboureau, J.P., Chapon, B., Crépin, F., Delrieu, G., Doerflinger, E., Funatsu, B.M., Kirstetter, P.E., Masson, F., Maynard, K., Richard, E., Sanchez, E., Terray, L., and Walfpersdorf, A. Cyclogenèses et précipitations intenses en région méditerranéenne:origines et caractéristiques. La Météorologie 66, (2009). 1828.CrossRefGoogle Scholar
Bucur, I. The direction of the terrestrial magnetic field in France during the last 21 centuries. Physics of the Earth and Planetary Interiors 87, (1994). 95109.Google Scholar
Buzzi, A., and Foschini, L. Mesoscale meteorological features associated with heavy precipitation in the Southern Alpine region. Meteorology and Atmospheric Physics 72, (2000). 131146.Google Scholar
Corona, C., Edouard, J.L., Guibal, F., Guiot, J., Bernard, S., Thomas, A., and Denelle, N. Long-term summer (AD 751–2008) temperature fluctuation in the French Alps based on tree-ring data. Boreas 40, 2 (2011). 351366.Google Scholar
Couteaux, M. La limite supérieure de la forêt et sa valeur de seuil. Actes du colloque de Perpignan. (1991). 139159.Google Scholar
Crowley, J.C., Zielinski, G., Vinther, B., Udisti, R., Kreutz, K., Cole-Dai, J., and Castellano, E. Volcanism and the Little Ice Age. PAGES Newsletters 16, (2008). 2223.Google Scholar
Dapples, F., Lotter, A.F., van Leeuwen, J.F.N., van der Knapp, W.O., Dimitriadis, S., and Oswald, D. Paleolimnological evidence for increased landslide activity due to forest clearing and land-use since 3600 cal BP in the western Swiss Alps. Journal of Paleolimnology 27, (2002). 239248.Google Scholar
Debret, M., Chapron, E., Desmet, M., Rolland-Revel, M., Magand, O., Trentesaux, A., Bout-Roumazeille, V., Nomade, J., and Arnaud, F. North western Alps Holocene paleohydrology recorded by flooding activity in Lake Le Bourget, France. Quaternary Science Reviews 29, (2010). 21852200.Google Scholar
Delaygue, G., and Bard, E. An Antarctic view of Beryllium-10 and solar activity for the past millennium. Climate Dynamics 36, (2011). 22012218.CrossRefGoogle Scholar
Ducrocq, V., Nuissier, O., Ricard, D., Lebeaupin, C., and Thouvenin, T. A numerical study of three catastrophic precipitating events over southern France. II: Mesoscale triggering and stationarity factors. Quarterly Journal of the Royal Meteorological Society 134, (2008). 131145.Google Scholar
Enters, D., Arnaud, F., Poulenard, J., Giguet-Covex, C., Malet, E., and Wilhelm, B. A coupled environmental monitoring and lake sediment study to understand factors generating torrential floods in an Alpine catchment (Giffre Valley, NW French Alps). Geophysical Research Abstracts 11, EGU2009-8837-1, EGU General Assembly, Vienna, Austria. (2009). Google Scholar
Faegri, K., and Iversen, J. Textbook of Pollen Analysis. (1989). John Wiley & Sons, New York. 328 pp.Google Scholar
Francus, P., Bradley, R.S., Abbott, M.B., Patridge, W., and Keimig, F. Paleoclimate studies of minerogenic sediments using annually resolved textural parameters. Geophysical Research Letters 29, 20 (2002). 1998 CrossRefGoogle Scholar
Frei, C., and Schär, C. A precipitation climatology of the Alps from high-resolution rain-gauge observations. International Journal of Climatololgy 18, (1998). 873900.Google Scholar
Gallet, Y., Genevey, A., and Le Goff, M. Three millennia of directional variation of the Earth's magnetic field in western Europe as revealed by archeological artefacts. Physics of the Earth and Planetary Interiors 131, (2002). 8189.Google Scholar
Gaume, E., Bain, V., Bernardara, P., Newinger, O., Barbuc, M., Bateman, A., Blaškovicová, L., Blöschl, G., Borga, M., Dumitrescu, A., Daliakopoulos, I., Garcia, J., Irimescu, A., Kohnova, S., Koutroulis, A., Marchi, L., Matreata, S., Medina, V., Preciso, E., Sempere-Torres, D., Stancalie, G., Szolgay, J., Tsanis, I., Velasco, D., and Viglione, A. A compilation of data on European flash floods. Journal of Hydrology 367, (2009). 7078.Google Scholar
Giguet-Covex, C., Arnaud, F., Poulenard, J., Disnar, J.R., Delhon, C., Francus, P., David, F., Enters, D., Rey, P.J., and Delannoy, J.J. Changes in erosion patterns during the Holocene in a currently treeless subalpine catchment inferred and from lake sediment geochemistry (Lake Anterne, 2063 m a.s.l., NW French Alps): The role of climate human activities. The Holocene 21, 4 (2011). 651665.CrossRefGoogle Scholar
Giguet-Covex, C., Arnaud, F., Enters, D., Poulenard, J., Millet, L., Francus, P., David, F., Rey, P.J., Wilhelm, B., and Delannoy, J.J. Frequency and intensity of high-altitude floods over the last 3.5 ka in NW European Alps. Quaternary Research 77, 1 (2012). 1222.Google Scholar
Gilbert, R., Crookshanks, S., Hodder, K.R., Spagnol, J., and Stull, R.B. The record of an extreme flood in the sediments of montane Lillooet Lake, British Columbia: implications for paleoenvironmental assessment. Journal of Paleolimnology 35, (2006). 737745.Google Scholar
Giorgi, F., and Lionello, P. Climate change projections for the Mediterranean region. Global and Planetary Change 63, (2008). 90104.CrossRefGoogle Scholar
Giraudi, C. Late-Holocene alluvial events in the Central Apennines, Italy. The Holocene 15, (2005). 768773.Google Scholar
Goldberg, E.D. Geochronology with lead-210. Radioactive Dating. (1963). IAEA, Vienna, Austria. 121131. pp.Google Scholar
Guiot, J., Corona, C. ESCARSEL members Growing season temperatures in Europe and climate forcings over the past 1400 years. PLoS One 5, 4 (2010). e9972 http://dx.doi.org/10.1371/journal.pone.0009972Google Scholar
Haeberli, W. Untersuchungen zur Verbreitung von Parmafrost zwischen Flüelapass und Piz Grialetsch (Graubünden). Mitteilung der Versuchsanstalt für Wasserbau. Hydrologie und Glaziologie an der Eidgenössischen Technischen Hochschule Zürich 17, (1975). 221 p.Google Scholar
Hamilton, E.L. Compressional-wave attenuation in marine sediments. Geophysics 37, (1972). 620646.Google Scholar
Hurrel, J.W. Decadal trends in the North Atlantic Oscillation: regional temperature and precipitations. Science 269, 5224 (1995). 676679.CrossRefGoogle Scholar
IPCC, , Kostaschuck, R.A., MacDonald, G.M. Intergovernmental Panel on Climate Change Climate Change 2007—The Physical Science Basis. (2007). Cambridge University Press, Cambridge.Google Scholar
Irmler, R., Daut, G., and Mäusbacher, R. A debris flow calendar derived from sediments of lake Lago di Braies (N. Italy). Geomorphology 77, (2006). 6978.CrossRefGoogle Scholar
Jakob, M., Bovis, M., and Oden, M. The significance of channel recharge rates for estimating debris-flow magnitude and frequency. Earth Surface Processes and Landforms 30, (2005). 755766.CrossRefGoogle Scholar
Jansa, A., Genoves, A., and Garcia-Moya, J.A. Western Mediterranean cyclones and heavy rain. Part 1: Numerical experiment concerning the Piedmont flood case. Meteorological Applications 7, (2000). 323333.CrossRefGoogle Scholar
Juggins, S. C2 Version 1.5 User Guide. Software for Ecological and Palaeoecological Data Analysis and Visualisation. (2007). Newcastle University, Newcastle upon Tyne, UK. 73 pp.Google Scholar
Kieffer-Weisse, A., (1998). Etude des précipitations exceptionnelles de pas de temps court en relief accidenté (Alpes Françaises), Méthode de cartographie des précipitations extrêmes. Thèse de doctorat, Institut National de Polytechnique, Grenoble. 309 pp.Google Scholar
Kieffer-Weisse, A., and Bois, P. Estimation de paramètres statistiques des précipitations extrêmes dans les Alpes françaises. La Houille Blanche 1, (2001). 6270.Google Scholar
Kirov, B., and Georgieva, K. Long term variations and interrelations of ENSO, NAO and solar activity. Physics and Chemistry of the Earth 27, (2002). 441448.CrossRefGoogle Scholar
Lafargue, E., Marquis, F., and Pillot, D. Rock-Eval 6 applications in hydrocarbon exploration, production, and soil contamination studies. Revue de l'institut français du pétrole 53, (1998). 422437.Google Scholar
Lanci, L., Hirt, A.M., Lotter, A.F., and Sturm, M. A record of Holocene climate in the mineral magnetic record of Alpine lakes: Sägistalsee and Hinterburgsee. Earth and Planetary Science Letters 188, (2001). 2944.Google Scholar
Luterbacher, J., Xoplaki, E., Dietrich, D., Jones, P.D., Davies, T.D., Portis, D., Gonzalez-Rouco, J.F., von Storch, H., Gyalistras, D., Casty, C., and Wanner, H. Extending North Atlantic oscillation reconstructions back to 1500. Atmospheric Science Letters 2, (2002). 114124.Google Scholar
Magny, M., Bégeot, C., Guiot, J., and Peyron, O. Contrasting patterns of hydrological changes in Europe in response to Holocene climate cooling phases. Quaternary Science Reviews 22, (2003). 15891596.CrossRefGoogle Scholar
Merz, R., and Blöschl, G. A process typology of regional floods. Water Resources Research 39, 12 (2003). 1340 Google Scholar
Miramont, C., Jorda, M., and Pichard, G. Évolution historique de la morphogenèse et de la dynamique fluviale d'une rivière méditerranéenne : l'exemple de la moyenne Durance (France du sud-est). Géographie physique et Quaternaire 52, 3 (1998). 381392.Google Scholar
Molinaroli, E., Guerzoni, S., De Falco, G., Sarretta, A., Cucco, A., and Como, S. Relationships between hydrodynamic parameters and grain size in two contrasting transitional environments: the lagoons of Venice and Cabras, Italy. Sedimentary Geology 219, (2009). 196207.Google Scholar
Morellón, M., Valero-Garcés, B., Vegas-Vilarrúbia, T., González-Sampériz, P., Romero, Ó., Delgado-Huertas, A., Mata, P., Moreno, A., Rico, M., and Corella, J.P. Lateglacial and Holocene palaeohydrology in the western Mediterranean region: the Lake Estanya record (NE Spain). Quaternary Science Reviews 28, (2009). 25822599.CrossRefGoogle Scholar
Morellón, M., Valero-Garcés, B.L., González-Sampériz, P., Vegas-Vilarrúbia, T., Rubio, E., Rieradevall, M., Delgado-Huertas, A., Mata, P., Romero, O., Engstrom, D.R., López-Vicente, E., Navas, A., and Soto, J. Climate changes and human activities recorded in the sediments of Lake Estanya (NE Spain) during the Medieval Warm Period and Little Ice Age. Journal of Paleolimnology 46, (2011). 423452.Google Scholar
Moreno, A., Valero-Garcés, B., Gonzales-Sampériz, P., and Rico, M. Flood response to rainfall variability during the last 2000 years inferred from the Taravilla Lake record (Central Iberian Range, Spain). Journal of Paleolimnology 40, (2008). 943961.Google Scholar
Mulder, T., Migeon, S., Savoye, B., and Faugères, J.C. Inversely graded turibidite sequences in the deep Mediterranean: a record of deposits from flood-generated turbidity currents?. Geo-Marine Letters 21, (2001). 8693.Google Scholar
Nesje, A., Olaf Dahl, S., Matthews, J.A., and Berrisdorf, M.S. A 4500 years of river floods obtained from a sediment core in Lake Atnsjoen, eastern Norway. Journal of Paleolimnology 25, (2001). 329342.Google Scholar
Parris, A.S., Bierman, P.R., Noren, A.J., Prins, M.A., and Lini, A. Holocene paleostorms identified by particle size signatures in lake sediments from the northeastern United States. Journal of Paleolimnology 43, 1 (2010). 2949.CrossRefGoogle Scholar
Passega, R. Grain-size representation by CM patterns as a geological tool. Journal of Sedimentary Petrology 34, 4 (1964). 830847.CrossRefGoogle Scholar
Pauling, A., Luterbacher, J., Casty, C., and Wanner, H. Five hundred years of gridded high-resolution precipitation reconstructions over Europe and the connection to large-scale circulation. Climate Dynamics 26, (2006). 387405.Google Scholar
Peng, Y., Shen, C., Wang, W.C., and Xu, Y. Response of summer precipitation over Eastern China to large volcanic eruptions. Journal of Climate 23, (2010). 818824.Google Scholar
Raible, C.C., Yoshimori, M., Stocker, T.F., and Casty, C. Extreme midlatitude cyclones and their implications for precipitation and wind speed extremes in simulations of the Maunder Minimum versus present day conditions. Climate Dynamics 28, (2007). 409423.Google Scholar
Reimer, P.J., Baillie, M.G.L., Bard, E., Bayliss, A., Beck, J.W., and Blackwell, P.G. IntCal09 and Marine09 radiocarbon age calibration curves, 0–50,000 years cal BP. Radiocarbon 51, (2009). 11111150.Google Scholar
Remaître, A., (2006). Morphologie et dynamique des laves torrentielles : Applications aux torrents des Terres Noires du bassin de Barcelonnette (Alpes du Sud). Thèse de doctorant, Université De Caen-Basse Normandie, . 374 pp.Google Scholar
Reyss, J.L., Schimdt, S., Legeleux, F., and Bonte, P. Large low background well type detectors for measurements of environmental radioactivity. Nuclear Instruments and Methods in Physics Research 357, (1995). 391397.Google Scholar
Sanchez-Gomez, E., Terray, L., and Joly, B. Intra-seasonal atmospheric variability and extreme precipitation events in the European–Mediterranean region. Geophysical Research Letters 35, (2008). L15708 Google Scholar
Schiefer, E., Gilbert, R., and Hassan, M.A. A lake sediment-based proxy of floods in the Rocky Mountain Front Ranges, Canada. Journal of Paleolimnology 45, (2011). 137149.Google Scholar
Sivan, O., Miramont, C., Pichard, G., and Prosper-Laget, V. Les conditions climatiques de la torrentialité au cours du Petit Age Glaciaire de Provence. Archéologie du Midi Médiéval 26, (2009). 157168.Google Scholar
Solomon, S., Qin, D., Manning, M., Marquis, M., Averyt, K., Tignor, M.M.B., Miller, H., and Chen, Z. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. (2007). Cambridge University Press, Cambridge.Google Scholar
Stoffel, M., Lièvre, I., Conus, D., Grichting, M.A., Raetzo, H., Gärtner, H.W., and Monbaron, M. 400 years of debris-flow activity and triggering weather conditions: Ritigraben, Valais, Switzerland. Arctic, Antarctic, and Alpine Research 37, 3 (2005). 387395.Google Scholar
Stoffel, M., Bollschweiler, M., and Beniston, M. Rainfall characteristics for periglacial debris flows in the Swiss Alps: past incidences–potential future evolutions. Climatic Change 105, (2011). 263280.Google Scholar
Sturm, M., and Matter, A. Turbidites and varves in Lake Brienz (Switzerland): deposition of clastic detritus by density currents. Special Publications of International Association of Sedimentologists 2, (1978). 147168.Google Scholar
Tachikawa, K., Cartapanis, O., Vidal, L., Beaufort, L., Barlyaeva, T., and Bard, E. The precession phase of hydrological variability in the Western Pacific Warm Pool during the past 400 ka. Quaternary Science Review 30, (2011). 37163727.Google Scholar
Trigo, I.F., and Davies, T.D. Decline in Mediterranean rainfall caused by weakening of Mediterranean cyclones. Geophysical Research Letters 27, 18 (2000). 29132916.Google Scholar
Vacquero, J.M. Solar signal in the number of floods recorded for the Tagus River basin over the last millennium. Climatic Change 66, (2004). 2326.Google Scholar
Wilhelm, B., Arnaud, F., Enters, D., Allignol, F., Legaz, A., Magand, O., Revillon, S., Giguet-Covex, C., Malet, E., in press. Does global warming favour the occurrence of extreme floods in European Alps? First evidences from a NW Alps proglacial lake sediment record, Climatic Change. DOI: 10.1007/s10584-011-0376-2.Google Scholar
Zijderveld, J.D.A. AC demagnetization of rock: analysis of results. Collinson, D.W., Creer, K.M., and Runcorn, S.K. Methods in Paleomagnetism. (1967). Elsevier, Amsterdam. 254286.Google Scholar
Supplementary material: PDF

Wilhelm et al. Supplementary Material

Table S1

Download Wilhelm et al. Supplementary Material(PDF)
PDF 40.4 KB