Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-26T02:35:38.324Z Has data issue: false hasContentIssue false

8000 yr of black carbon accumulation in a colluvial soil from NW Spain

Published online by Cambridge University Press:  20 January 2017

Joeri Kaal*
Affiliation:
Laboratorio de Arqueología del Paisaje (LAr), Instituto de Estudios Gallegos Padre Sarmiento, IEGPS-CSIC-XuGa, Rúa San Roque 2, 15704 Santiago de Compostela, Spain
Antonio Martínez-Cortizas
Affiliation:
Departamento de Edafología y Química Agrícola, Fac. Biología, Universidad de Santiago de Compostela, Campus Universitario Sur, 15782 Santiago de Compostela, Spain
Peter Buurman
Affiliation:
ESS-CC (Earth System Science-Climate Change), Wageningen University, P.O. Box 47, 6700 AA Wageningen, The Netherlands
Felipe Criado Boado
Affiliation:
Laboratorio de Arqueología del Paisaje (LAr), Instituto de Estudios Gallegos Padre Sarmiento, IEGPS-CSIC-XuGa, Rúa San Roque 2, 15704 Santiago de Compostela, Spain
*
*Corresponding author. Fax: +34 981547104.E-mail address:[email protected] (J. Kaal).

Abstract

Analytical pyrolysis-GC/MS and solid-state13C NMR (nuclear magnetic resonance) were applied to the NaOH-extractable organic matter fraction of a colluvial soil from Galicia (NW Spain) that represents more than 8500 yr of accumulation. While molecular indicators of vegetation change were looked for, it seemed likely that any such signal was disturbed by the intense fire regime of the area. This conclusion was drawn from (1) the presence of three charcoal layers, (2) the high proportion of aryl C in NMR spectra (non-quantitative) and (3) the prevalence of benzenes and polycyclic aromatic hydrocarbons (PAHs) in the chromatograms (38±6% of total identified peak area), also in charcoal-poor samples. If this conclusion is accurate, the area has been subjected to burning episodes for at least 8000 yr. Additionally, the results indicate that biomass burning residues (black carbon; BC) may become NaOH extractable after long periods of degradation in mineral soil. These results add to our knowledge of the long-term fate of BC in soil, which is a potential agent in the global C cycle.

Type
Research Article
Copyright
Elsevier Inc.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alcañiz, J.M., Granada, E., Comellas, L., (1994). Simulating the effects of burning on soil organic matter in a forest soil studied by pyrolysis gas chromatography. Senesi, N., Miano, T.M., Humic substances in the global environment and implications on human health. Elsevier, Amsterdam., 205212.Google Scholar
Almendros, G., González-Vila, F.J., Martín, F., Fründ, R., Lüdemann, H.-D., (1992). Solid state NMR studies of fire-induced changes in the structure of humic substances. Science of the Total Environment 117/118, 6374.Google Scholar
Almendros, G., Knicker, H., González-Vila, F.J., (2003). Rearrangement of carbon and nitrogen forms in peat after progressive thermal oxidation as determined by solid-state 13C- and 15N-NMR spectroscopy. Organic Geochemistry 34, 15591568.Google Scholar
Baldock, J.A., Smernik, R.J., (2002). Chemical composition and bioavailability of thermally altered Pinus resinosa (Red pine) wood. Organic Geochemistry 33, 10931109.Google Scholar
Brodowski, S., Amelung, W., Haumaier, L., Abetz, C., Zech, W., (2005). Morphological and chemical properties of black carbon in physical soil fractions as revealed by scanning electron microscopy and energy-dispersive X-ray spectroscopy. Geoderma 128, 116129.Google Scholar
Carballas, T., Duchaufour, P., Jacquin, F., (1967). Évolution de la matière organique des rankers. Bulletin de l'Ecole Nationale Superieure Agronomique de Nancy 9, 2028.,(in French).Google Scholar
Challinor, J.M., (2001). Review: The development and applications of thermally assisted hydrolysis and methylation reactions. Journal of Analytical and Applied Pyrolysis 61, 334.Google Scholar
Chiavari, G., Galletti, G.C., (1992). Pyrolysis-gas chromatography/mass spectrometry of amino acids. Journal of Analytical and Applied Pyrolysis 24, 123137.Google Scholar
Conte, P., Spaccini, R., Piccolo, A., (2004). State of the art of CPMAS 13C-NMR spectroscopy applied to natural organic matter. Progress in Nuclear Magnetic Resonance Spectroscopy 44, 215223.Google Scholar
Costa Casais, M., Martínez Cortizas, A., Pontevedra-Pombal, X., Criado Boado, F., in press. Analysis of landforms in geoarchaeology: Campo Lameiro, NW Iberian Peninsula. In: Coratza, P., Palli, L., Panizza, M., Nesci, O., Reynard, E., (Eds.). Special Issue of Geografía Física y Dinámica Quaternaria—GFDQ .Google Scholar
Delvaux, B., Strebl, F., Maes, E., Herbillon, A.J., Brahy, V., Gerzabek, M., (2004). An Andosol–Cambisol toposequence on granite in the Austrian Bohemian Massif. Catena 56, 3143.CrossRefGoogle Scholar
Dignac, M.-F., Houot, S., Derenne, S., (2006). How the polarity of the separation column may influence the characterization of compost organic matter by pyrolysis-GC/MS. Journal of Analytical and Applied Pyrolysis 75, 128139.Google Scholar
Duchaufour, P., (1982). Pedology: Pedogenesis and classification. George Allen & Unwin, London., 448 pp.Google Scholar
Fernández, I., Cabaneiro, A., Carballas, T., (2001). Thermal resistance to high temperatures of different organic fractions from soils under pine forests. Geoderma 104, 281298.Google Scholar
García-Rodeja, E., Nóvoa, J.C., Pontevedra, X., Martínez-Cortizas, A., Buurman, P., (2004). Aluminium fractionation of European volcanic soils by selective dissolution techniques. Catena 56, 155183.Google Scholar
Goldberg, E.D., (1985). Black carbon in the environment. John Wiley and Sons, New York., 198 pp.Google Scholar
González-Pérez, J.A., González-Vila, F.J., Almendros, G., Knicker, H., (2004). The effect of fire on soil organic matter—A review. Environment International 30, 855870.Google Scholar
Haumaier, L., Zech, W., (1995). Black carbon—Possible source of highly aromatic components of soil humic acids. Organic Geochemistry 23, 191196.Google Scholar
Islas, C.A., Suelves, I., Carter, J.F., Li, W., Morgan, T.J., Herod, A.A., Kandiyoti, R., (2002). Pyrolysis-gas chromatography/mass spectrometry of fractions separated from a low-temperature coal tar: An attempt to develop a general method for characterising structures and compositions of heavy hydrocarbon liquids. Rapid Communications in Mass Spectrometry 16, 774784.CrossRefGoogle ScholarPubMed
Kaal, J., Costa Casais, M., Ferro Vázquez, C., Pontevedra Pombal, X., Martínez Cortizas, A., in press. Soil formation of "Atlantic Rankers" from NW Spain—A high resolution aluminium and iron fractionation study. Pedosphere.Google Scholar
Knicker, H., González-Vila, F.J., Polvillo, O., González-Pérez, J.A., Almendros, G., (2005). Fire-induced transformation of C- and N-forms in different organic soil fractions from a Dystric Cambisol under a Mediterranean pine forest (Pinus pinaster). Soil Biology & Biochemistry 37, 701718.Google Scholar
Knicker, H., Almendros, G., González-Vila, F.J., González-Pérez, J.A., Polvillo, O., (2006). Characteristic alterations of quantity and quality of soil organic matter caused by forest fires in continental Mediterranean ecosystems: A solid-state 13C NMR study. European Journal of Soil Science 57, 558569.Google Scholar
Kumada, K., (1983). Carbonaceous materials as a possible source of soil humus. Soil Science and Plant Nutrition 29, 383386.Google Scholar
Martín, F., González-Vila, F.J., del Río, J.C., Verdejo, T., (1994). Pyrolysis derivatization of humic substances. I: Pyrolysis of fulvic acids in the presence of tetramethylammonium hydroxide. Journal of Analytical and Applied Pyrolysis 28, 7180.CrossRefGoogle Scholar
Martínez Cortizas, A., Mighall, T., Pontevedra Pombal, X., Nóvoa Muñoz, J.C., Peiteado Varela, E., Piñeiro Rebolo, R., (2005). Linking changes in atmospheric dust deposition, vegetation change and human activities in northwest Spain during the last 5300 years. Holocene 15, 698706.Google Scholar
Nierop, K.G.J., van Lagen, B., Buurman, P., (2001). Composition of plant tissues and soil organic matter in the first stages of a vegetation succession. Geoderma 100, 124.Google Scholar
Pastorova, I., Botto, R.E., Arisz, P.W., Boon, J.J., (1994). Cellulose char structure: A combined analytical Py-GC-MS, FTIR, and NMR study. Carbohydrate Research 262, 2747.CrossRefGoogle Scholar
Poirier, N., Sohi, S.P., Gaunt, J.L., Mahieu, N., Randall, E.W., Powlson, D.S., Evershed, R.P., (2005). The chemical composition of measurable soil organic matter pools. Organic Geochemistry 36, 11741189.Google Scholar
Saiz-Jiménez, C., (1995). The origin of alkylbenzenes and thiophenes in pyrolysates of geochemical samples. Organic Geochemistry 23, 8185.Google Scholar
Schmidt, M.W.I., Noack, A.G., (2000). Black carbon in soils and sediments: Analysis, distribution, implications, and current challenges. Global Biogeochemical Cycles 14, 777793.Google Scholar
Shindo, H., Honna, T., Yamamoto, S., Honma, H., (2004). Contribution of charred plant fragments to soil organic carbon in Japanese volcanic ash soils containing black humic acids. Organic Geochemistry 35, 235241.Google Scholar
Smernik, R.J., Baldock, J.A., Oades, J.M., Whittaker, A.K., (2002). Determination of T 1ρ H relaxation rates in charred and uncharred wood and consequences for NMR quantitation. Solid State Nuclear Magnetic Resonance 22, 5070.CrossRefGoogle Scholar