Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-24T16:58:10.488Z Has data issue: false hasContentIssue false

A 6000-year record of ecological and hydrological changes from Laguna de la Leche, north coastal Cuba

Published online by Cambridge University Press:  20 January 2017

Matthew C. Peros
Affiliation:
Department of Geography, University of Toronto, 100 St. George Street, Toronto, Ontario, Canada M5S 2E1
Eduard G. Reinhardt
Affiliation:
School of Geography and Earth Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4M1
Anthony M. Davis
Affiliation:
Department of Geography, University of Toronto, 100 St. George Street, Toronto, Ontario, Canada M5S 2E1

Abstract

Laguna de la Leche, north coastal Cuba, is a shallow (≤ 3 m), oligohaline (∼ 2.0–4.5‰) coastal lake surrounded by mangroves and cattail stands. A 227-cm core was studied using loss-on-ignition, pollen, calcareous microfossils, and plant macrofossils. From ∼6200 to ∼ 4800 cal yr BP, the area was an oligohaline lake. The period from ∼ 4800 to ∼ 4200 cal yr BP saw higher water levels and a freshened system; these changes are indicated by an increase in the regional pollen rain, as well as by the presence of charophyte oogonia and an increase in freshwater gastropods (Hydrobiidae). By ∼ 4000 cal yr BP, an open mesohaline lagoon had formed; an increase in salt-tolerant foraminifers suggests that water level increase was driven by relative sea level rise. The initiation of Laguna de la Leche correlates with a shift to wetter conditions as indicated in pollen records from the southeastern United States (e.g., Lake Tulane). This synchronicity suggests that sea level rise caused middle Holocene environmental change region-wide. Two other cores sampled from mangrove swamps in the vicinity of Laguna de la Leche indicate that a major expansion of mangroves was underway by ∼ 1700 cal yr BP.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alvarez García, N.O., and Borro García, P. Las facies marinas del reciente de Cuba (foraminiferos) Ciencias, Serie 8. Investigaciones Marinas 47, (1979). 143.Google Scholar
Alvarez García, N.O., and Borro García, P. Los foraminiferos del Golfo de Batabano. Ciencias, Serie 8. Investigaciones Marinas 47, (1979). 4571.Google Scholar
Beaudoin, A. A comparison of two methods for estimating the organic content of sediments. Journal of Paleolimnology 29, (2003). 387390.Google Scholar
Borhidi, A. Phytogeography and Vegetation Ecology of Cuba. (1996). Akademiai Kiado, Budapest.Google Scholar
Borhidi, A., and Muñiz, O. Mapa de la vegetacion potencial de Cuba. (1984). Imp. Juceplan, La Habana.Google Scholar
Brasier, M.D. The ecology and distribution of recent foraminifera from the reefs and shoals around Barbuda, West Indies. Journal of Foraminiferal Research 5, (1975). 193210.Google Scholar
Bush, M.B., Weng, C., in press. Introducing a new (freeware) tool for palynology. Journal of Biogeography.Google Scholar
Buzas, M.A., Smith, R.K., and Beem, K.A. Ecology and Systematics of Foraminifera in Two Thalassia Habitats, Jamaica, West Indies. (1977). Smithsonian Institution Press, Washington DC.Google Scholar
Byrne, A.R. (2005). Common vascular plants in the tidal marshes of the San Francisco Bay estuary. http://geography.berkeley.edu/ProjectsResources/SF_Estuary_Bay_Area_Seeds.html.Google Scholar
Carew, J.L., and Mylroie, J.E. Quaternary tectonic stability of the Bahamian Archipelago: evidence from fossil coral reefs and flank margin caves. Quaternary Science Reviews 14, (1995). 145153.Google Scholar
Colinvaux, P.A., De Oliveira, P.E., and Moreno, E. Amazon Pollen Manual and Atlas. (1999). Harwood Academic Publishers, Amsterdam.Google Scholar
Curtis, J.H., Hodell, D.A., and Brenner, M. Climate variability on the Yucatan Peninsula (Mexico) during the last 3500 years, and implications for Maya cultural evolution. Quaternary Research 46, (1996). 3747.Google Scholar
Cwynar, L.C., Burden, E., and McAndrews, J.H. Inexpensive sieving method for concentrating pollen and spores from fine-grained sediments. Canadian Journal of Earth Sciences 16, (1979). 11151120.Google Scholar
Dean, W.E. Jr. Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition: comparison with other methods. Journal of Sedimentary Petrology 44, (1974). 242248.Google Scholar
Delcourt, P.A. Goshen Springs: late Quaternary vegetation record for southern Alabama. Ecology 61, (1980). 371386.Google Scholar
Dix, G.R., Patterson, R.T., and Park, L.E. Marine saline ponds as sedimentary archives of late Holocene climate and sea-level variation along a carbonate platform margin: Lee Stocking Island, Bahamas. Palaeogeography, Palaeoclimatology, Palaeoecology 150, (1999). 223246.Google Scholar
Faegri, K., and Iversen, J. Textbook of Pollen Analysis. (1989). John Wiley and Sons, Chichester, UK.Google Scholar
Farquhar, G.D., Ehleringer, J.R., and Hubick, K.T. Carbon isotope discrimination and photosynthesis. Annual Review of Plant Physiology and Plant Molecular Biology 40, (1989). 503537.Google Scholar
Finkelstein, S.A., Peros, M.C., and Davis, A.M. Late Holocene paleoenvironmental change in a Great Lakes coastal wetland: integrating pollen and diatom datasets. Journal of Paleolimnology 33, (2005). 112.Google Scholar
García, A. Charophyta: their use in paleolimnology. Journal of Paleolimnology 10, (1994). 4352.Google Scholar
Glenn, E., Thompson, T.L., Frye, R., Riley, J., and Baumgartner, D. Effects of salinity on growth and evapotranspiration of Typha domingensis Pers. Aquatic Botany 52, (1995). 7591.Google Scholar
Godfrey, R., and Wooten, J. Aquatic and Wetland Plants of Southeastern United States, Dicotyledons. (1989). University of Georgia Press, Athens.Google Scholar
Grimm, E.C. CONISS: a Fortran-77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares. Computers and Geosciences 13, (1987). 1335.Google Scholar
Grimm, E.C., Jacobson, G.L. Jr., Watts, W.A., Hansen, B.C.S., and Maasch, K.A. A 50,000-year record of climate oscillations from Florida and its temporal correlation with the Heinrich events. Science 261, (1993). 198200.Google Scholar
Heiri, O., Lotter, A.F., and Lemcke, G. Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. Journal of Paleolimnology 25, (2001). 101110.Google Scholar
Higuera-Gundy, A., Brenner, M., Hodell, D.A., Curtis, J.H., Leyden, B.W., and Binford, M.W. A 10,300 14C yr record of climate and vegetation change from Haiti. Quaternary Research 52, (1999). 159170.Google Scholar
Hodell, D.A., Curtis, J.H., Jones, G.A., Higuera-Gundy, A., Brenner, M., Binford, M.W., and Dorsey, K.T. Reconstruction of Caribbean climate change over the past 10,500 years. Nature 353, (1991). 790793.CrossRefGoogle Scholar
Hogarth, P.J. The Biology of Mangroves. (1999). Oxford Univ. Press, Oxford.Google Scholar
Holmes, J.A. A late Quaternary ostracod record from Wallywash Great Pond, a Jamaican marl lake. Journal of Paleolimnology 19, (1998). 115128.CrossRefGoogle Scholar
Islebe, G.A., Hooghiemstra, H., Brenner, M., Curtis, J.H., and Hodell, D.A. A Holocene vegetation history from lowland Guatemala. The Holocene 6, (1996). 265271.CrossRefGoogle Scholar
Iturralde-Vinent, M.A., and Roque Marrero, F.D. Nuevos datos sobre las estructuras diapiricas de Punta Alegre y Turiguano, en la Provincia Ciego de Avila. Ciencias de la Tierra y del Espacio 4, (1982). 4755.Google Scholar
Jones, J.I., and Bock, W.D. A Symposium of Recent South Florida Foraminifera. (1971). Miami Geological Society, Miami.Google Scholar
Kjellmark, E. Late Holocene climate change and human disturbance on Andros Island, Bahamas. Journal of Paleolimnology 15, (1996). 133145.Google Scholar
Legendre, P., and Legendre, L. Numerical Ecology. (1998). Elsevier, Amsterdam.Google Scholar
Lewis, J.F., and Draper, G. Geology and tectonic evolution of the northern Caribbean margin. Dengo, G., and Case, J.E. The Caribbean Region. (1990). Geological Society of America, Boulder. 77140.Google Scholar
Leyden, B.W. Late Quaternary aridity and Holocene moisture fluctuations in the Lake Valencia basin, Venezuela. Ecology 66, (1985). 12791295.Google Scholar
MacDonald, G.M., Beukens, R.P., Kieser, W.E., and Vitt, D.H. Comparative radiocarbon dating of terrestrial plant macrofossils and aquatic moss from the “Ice-Free Corridor” of Western Canada. Geology 15, (1987). 837840.Google Scholar
McAndrews, J.H., and Ramcharan, E.K. Holocene pollen diagram from Lake Antoine, Grenada. Congress of the International Union for Quaternary Research 16, (2003). 122 Google Scholar
McAndrews, J.H., Berti, A.A., and Norris, G. Key to the Quaternary pollen and spores of the Great Lakes region. (1973). Royal Ontario Museum, Toronto, Ontario.Google Scholar
Murray, J.W. Ecology and Palaeoecology of Benthic Foraminifera. (1991). John Wiley and Sons Inc., New York.Google Scholar
National Hurricane Center, (2005). NHC/TPC Archive of Past Hurricane Seasons. http://www.nhc.noaa.gov/pastall.shtml.Google Scholar
Nuevo Atlas Nacional de Cuba, (1989). Instituto de Geografia de la Academia de Ciencias de Cuba. La Habana.Google Scholar
Olsson, I.U., and Kaup, E. The varying radiocarbon activity of some recnt submerged Estonain plants grown in the early 1990s. Radiocarbon 43, (2001). 809820.Google Scholar
Peltier, W.R. On eustatic sea level history; last glacial maximum to Holocene. Quaternary Science Reviews 21, (2002). 377396.CrossRefGoogle Scholar
Pendergast, D.M., Graham, E., Calvera, J., and Jardines, J. Houses in the sea: excavation and preservation at Los Buchillones, Cuba. Purdy, B.A. Enduring Records: The Environmental and Cultural Heritage of Wetlands. (2001). Oxbow Books, Oxford. 7182.Google Scholar
Peros, M.C., Graham, E.G., and Davis, A.M. Stratigraphic investigations at Los Buchillones, a coastal Taino site in north central Cuba. Geoarchaeology 21, (2006). 403428.Google Scholar
Peros, M.C., Reinhardt, E.G., Schwarz, H.P., Davis, A.M., in press. High-resolution paleosalinity reconstruction from Laguna de la Leche, north coastal Cuba, using Sr, O, and C isotopes. Palaeo-3.Google Scholar
Reimer, P.J., Baillie, M.G.L., Bard, E., Bayliss, A., Beck, J.W., Bertrand, C.J.H., Blackwell, P.G., Buck, C.E., Burr, G.S., Cutler, K.B., Damon, P.E., Edwards, R.L., Fairbanks, R.G., Friedrich, M., Guilderson, T.P., Hogg, A.G., Hughen, K.A., Kromer, B., McCormac, F.G., Manning, S.W., Ramsey, C.B., Reimer, R.W., Remmele, S., Southon, J.R., Stuiver, M., Talamo, S., Taylor, F.W., van der Plicht, J., and Weyhenmeyer, C.E. IntCal04 terrestrial radiocarbon age calibration, 26-0 ka BP. Radiocarbon 46, (2004). 10291058.Google Scholar
Roubik, D.W., and Moreno, E. Pollen and Spores of Barro Colorado Island. (1991). Missouri Botanical Garden, St. Louis.Google Scholar
Ruter, A., Arzt, J., Varvus, S., Bryson, R.A., and Kutzbach, J.E. Climate and environment of the subtropical and tropical Americas (NH) in the mid-Holocene: comparison of observations with climate model simulations. Quaternary Science Reviews 23, (2004). 663679.Google Scholar
Stuiver, M., and Reimer, P.J. Extended 14C database and revised CALIB radiocarbon calibration program. Radiocarbon 35, (1993). 215230.Google Scholar
Thompson, F.G., (2004). An identification Manual for the Freshwater Snails of Florida. Florida Museum of Natural History, Gainesville. (URL: http://www.flmnh.ufl.edu/natsci/malacology/fl-snail/snails1.htm. Last accessed: June 3, 2005).Google Scholar
Tobe, J.D., Craddock Burks, K., Cantrell, R.W., Garland, M.A., Sweenley, M.E., Hall, D.W., Wallace, P., Anglin, G., Nelson, G., Cooper, J.R., Bickner, D., Gilbert, K., Aymond, N., Greenwood, K., and Raymond, N. Florida Wetland Plants: An Identification Manual. (1998). Institute of Food and Agricultural Sciences, University of Florida, Gainesville.Google Scholar
Watts, W.A. A pollen diagram from Mud Lake, Marion County, north-central Florida. Geological Society of America Bulletin 80, (1969). 631642.Google Scholar
Watts, W.A. Postglacial and interglacial vegetation history of southern Georgia and central Florida. Ecology 52, (1971). 676690.Google Scholar
Watts, W.A., and Hansen, B.C.S. Pre-Holocene and Holocene pollen records of vegetation history from the Florida peninsula and their climatic implications. Palaeogeography, Palaeoclimatology, Palaeoecology 109, (1994). 163176.Google Scholar
Watts, W.A., and Stuiver, M. Late Wisconsin climate of northern Florida and the origin of species-rich deciduous forest. Science 210, (1980). 25327.Google Scholar
Wodehouse, R.P. Pollen Grains. (1935). McGraw Hill Book Company, New York.Google Scholar
Wood, R.D. Charophytes of North America: A Guide to the Species of Charophyta of North America, Central America, and the West Indies. (1967). Stella's Printing, West Kingston, Rhode Island.Google Scholar