Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2025-01-05T15:44:57.749Z Has data issue: false hasContentIssue false

A 3000-year record of vegetation changes and fire at a high-elevation wetland on Kilimanjaro, Tanzania

Published online by Cambridge University Press:  23 October 2020

Colin J. Courtney Mustaphi*
Affiliation:
Geoecology, Department of Environmental Science, University of Basel, 4056Basel, Switzerland Center for Water Infrastructure and Sustainable Energy (WISE) Futures, Nelson Mandela African Institution of Science and Technology, P.O. Box 9124 Nelson Mandela, Tengeru, Arusha, Tanzania
Rahab Kinyanjui
Affiliation:
Palynology and Palaeobotany Section, Department of Earth Sciences, National Museums of Kenya, Nairobi, Kenya
Anna Shoemaker
Affiliation:
Center for Water Infrastructure and Sustainable Energy (WISE) Futures, Nelson Mandela African Institution of Science and Technology, P.O. Box 9124 Nelson Mandela, Tengeru, Arusha, Tanzania Department of Archaeology and Ancient History, Uppsala University, P.O. Box 256, 751 05Uppsala, Sweden Paleoecological Assessment and Research Laboratory (PEARL), Department of Biology, Queen's University, Kingston, Canada
Cassian Mumbi
Affiliation:
Tanzania Wildlife Research Institute (TAWIRI), Njiro Road, Arusha, Tanzania
Veronica Muiruri
Affiliation:
Palynology and Palaeobotany Section, Department of Earth Sciences, National Museums of Kenya, Nairobi, Kenya
Laura Marchant
Affiliation:
York Institute for Tropical Ecosystems, Department of Geography and Environment, University of York, York, YO10 5NG, United Kingdom
Stephen M. Rucina
Affiliation:
Department of Archaeology and Ancient History, Uppsala University, P.O. Box 256, 751 05Uppsala, Sweden
Rob Marchant
Affiliation:
York Institute for Tropical Ecosystems, Department of Geography and Environment, University of York, York, YO10 5NG, United Kingdom
*
*Corresponding author email address: [email protected] (C.J. Courtney Mustaphi).

Abstract

Kilimanjaro is experiencing the consequences of climate change and multiple land-use pressures. Few paleoenvironmental and archeological records exist to examine historical patterns of late Holocene ecosystem changes on Kilimanjaro. Here we present pollen, phytolith, and charcoal (>125 μm) data from a palustrine sediment core that provide a 3000-year radiocarbon-dated record collected from a wetland near the headwaters of the Maua watershed in the alpine and ericaceous vegetation zones. From 3000 to 800 cal yr BP, the pollen, phytolith, and charcoal records show subtle variability in ericaceous and montane forest assemblages with apparent multicentennial secular variability and a long-term pattern of increasing Poaceae and charcoal. From 800 to 600 cal yr BP, montane forest taxa varied rapidly, Cyperaceae abundances increased, and charcoal remained distinctly low. From 600 yr cal BP to the present, woody taxa decreased, and ericaceous taxa and Poaceae dominated, with a conspicuously increased charcoal influx. Uphill wetland ecosystems are crucial for ecological and socioeconomic resilience on and surrounding the mountain. The results were synthesized with the existing paleoenvironmental and archaeological data to explore the high spatiotemporal complexity of Kilimanjaro and to understand historical human-environment interactions. These paleoenvironmental records create a long-term context for current climate, biodiversity, and land-use changes on and around Kilimanjaro.

Type
Research Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

**

authors contributed equally

References

REFERENCES

Adams, W.M., Anderson, D.M., 1988. Irrigation before development: indigenous and induced change in agricultural water management in East Africa. African Affairs 87, 519535.CrossRefGoogle Scholar
Adolf, C., Wunderle, S., Colombaroli, D., Weber, H., Gobet, E., Heiri, O., van Leeuwen, J.F., et al. , 2018. The sedimentary and remote-sensing reflection of biomass burning in Europe. Global Ecology and Biogeography 27, 199212.CrossRefGoogle Scholar
Albert, R.M., 1999. Study of Ash Layers through Phytolith Analyses from the Middle Palaeolithic Levels of Kebara and Tabun Caves. PhD dissertation, University of Barcelona, Spain.Google Scholar
Albert, R.M., Weiner, S., 2001. Study of phytoliths in prehistoric ash layers from Kebara and Tabun caves using a quantitative approach. In: Meunier, J.D., Colin, F. (Eds.), Phytoliths: Applications in Earth Sciences and Human History. A.A. Balkema Publishers, Leiden, the Netherlands. pp. 251266.Google Scholar
Alexandre, A., Meunier, J.D., Lezine, A.M., Vincens, A., Schwartz, D., 1997. Phytoliths: indicators of grassland dynamics during the late Holocene in intertropical Africa. Palaeogeography, Palaeoclimatology, Palaeoecology 136, 213229CrossRefGoogle Scholar
Alluaud, C., 1908. Les coléopterès de la faune alpine du Kilimandjaro avec notes sur la faune du Mont Meru (The alpine coleoptera fauna of Kilimanjaro with notes on the fauna of Mount Meru). Annales de la Société Entomologique de France 77, 2132.Google Scholar
Ambrose, S.H., Sikes, N.E., 1991. Soil carbon isotope evidence for Holocene habitat change in the Kenya Rift Valley. Science 253, 14021405.CrossRefGoogle ScholarPubMed
Archibald, S., Bond, W.J., Stock, W.D., Fairbanks, D.H.K., 2005. Shaping the landscape: fire-grazer interactions in an African savanna. Ecological Applications 15, 96109.CrossRefGoogle Scholar
Archibald, S., Staver, A.C., Levin, S.A., 2012. Evolution of human-driven fire regimes in Africa. Proceedings of the National Academy of Sciences 109, 847852.CrossRefGoogle ScholarPubMed
Assemien, P., Bonnefille, R., Cambon-Bou, G., Caratini, C., Cerceau, M., Dang, C.D., Fredoux, A., et al. ., 1974. Pollen et spores d'Afrique tropicale. Centre d’Étude de Géographie Tropicale, Association des palynogues de langue française, Université de Bordeaux, Talence, France.Google Scholar
Bamber, R.N., 1982. Sodium hexametaphosphate as an aid in benthic sample sorting. Marine Environmental Research 7, 251255.CrossRefGoogle Scholar
Barboni, D., Bremond, L., 2009. Phytoliths of East African grasses: an assessment of their environmental and taxonomic significance based on floristic data. Review of Palaeobotany and Palynology 158, 2941.CrossRefGoogle Scholar
Barker, P.A., Hurrell, E.R., Leng, M.J., Wolff, C., Cocquyt, C., Sloane, H.J., Verschuren, D., 2011. Seasonality in equatorial climate over the past 25 k.y. revealed by oxygen isotope records from Mount Kilimanjaro. Geology 39, 11111114.CrossRefGoogle Scholar
Beale, C.M., Courtney Mustaphi, C.J., Morrison, T.A., Archibald, S., Anderson, T.M., Dobson, A.P., Donaldson, J.E., et al. , 2018. Pyrodiversity interacts with rainfall to increase bird and mammal richness in African savannas. Ecology Letters 21, 557567.CrossRefGoogle ScholarPubMed
Beall, C.M., 2014. Adaptation to high altitude: phenotypes and genotypes. Annual Review of Anthropology 43, 251272.CrossRefGoogle Scholar
Belokopytkov, I.E., Beresnevich, V.V., 1955. Giktorf's peat borers. Torfânaâ Promyslennost 8, 910.Google Scholar
Bender, M.V., 2016. Do not imagine that every cloud will bring rain: a history of irrigation on Kilimanjaro, Tanzania. In: Tvedt, T, Oestigaard, T. (Eds.) A History of Water. Vol. 13, Water and Food. Tauris, London, pp. 185209.Google Scholar
Bennett, K.D., 1996. Determination of the number of zones in a biostratigraphical sequence. New Phytologist 132, 155170.CrossRefGoogle Scholar
Biginagwa, T., 2012. Historical archaeology of the nineteenth-century caravan trade in northeastern Tanzania: a zooarchaeological perspective. PhD dissertation. University of York, UK.CrossRefGoogle Scholar
Binford, L.R., 2001. Constructing Frames of Reference: An Analytical Method for Archaeological Theory Building Using Ethnographic and Environmental Data Sets. University of California Press, Berkeley.Google Scholar
Birks, H.J.B., Birks, H.H., 1980. Principles and methods of pollen analysis. In: Birks, H.J.A., Birks, H.H. (Eds.), Quaternary Palaeoecology. Edward Arnold, London, pp. 156176.Google Scholar
Bjørndalen, J.E., 1992. Tanzania's vanishing rain forests—assessment of nature conservation values, biodiversity and importance for water catchment. Agriculture, Ecosystems & Environment 40, 313334.Google Scholar
Blaauw, M., Christen, J.A., 2011a. Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Analysis 6, 457474.Google Scholar
Blaauw, M., Christen, J.A., 2011b. Bacon Manual. Version 2.2 (accessed September 4, 2020). http://chrono.qub.ac.uk/blaauw/manualBacon_2.2.pdfGoogle Scholar
Blaauw, M., van Geel, B., Kristen, I., Plessen, B., Lyaruu, A., Engstrom, D.R., van der Plicht, J., et al. , 2011. High-resolution 14C dating of a 25,000-year lake-sediment record from equatorial East Africa. Quaternary Science Reviews 30, 30433059.CrossRefGoogle Scholar
Boles, O., Shoemaker, A., Courtney Mustaphi, C.J., Petek, N., Ekblom, A., Lane, P., 2019. Historical ecologies of pastoralist overgrazing in Kenya: long-term perspectives on cause and effect. Human Ecology 47, 419434.CrossRefGoogle Scholar
Bolick, M.R., 1991. A vegetational history of the Mt. Ujamaa lahar, Tanzania. Palynology 15, 193210.CrossRefGoogle Scholar
Bond, W.J., Keeley, J.E., 2005. Fire as a global “herbivore”: the ecology and evolution of flammable ecosystems. Trends in Ecology & Evolution 20, 387394.CrossRefGoogle ScholarPubMed
Bonnefille, R. and Riollet, G., 1980. Pollens des savanes d'Afrique Orientale. CNRS, France.Google Scholar
Börjeson, L., 2007. Boserup backwards? Agricultural intensification as “its own driving force” in the Mbulu highlands, Tanzania. Geografiska Annaler: Series B, Human Geography 89, 249267.CrossRefGoogle Scholar
Boserup, E., 1965. The Conditions of Agricultural Growth: The Economics of Agrarian Change under Population Pressure. Allen and Unwin, London.Google Scholar
Bower, J.R., Nelson, C.M., Waibel, A.F., Wandibba, S., 1977. The University of Massachusetts’ later stone age/pastoral “Neolithic” comparative study in central Kenya: an overview. Azania 12, 119146.CrossRefGoogle Scholar
Bremond, L., Alexandre, A., Peyron, O., Guiot, J., 2005. Grass water stress estimated from phytoliths in West Africa. Journal of Biogeography 32, 311327.CrossRefGoogle Scholar
Bremond, L., Alexandre, A., Wooller, M.J., Hély, C., Williamson, D., Schäfer, P.A., Majule, A., et al. , 2008. Phytolith indices as proxies of grass subfamilies on East African tropical mountains. Global and Planetary Change 61, 209224.CrossRefGoogle Scholar
Bronk Ramsey, C., 2009. Bayesian analysis of radiocarbon dates. Radiocarbon 51, 337360.CrossRefGoogle Scholar
Buckles, L.K., Verschuren, D., Weijers, J.W.H., Cocquyt, C., Blaauw, M., Sinninghe Damsté, J.S., 2016. Interannual and (multi-)decadal variability in the sedimentary BIT index of Lake Challa, East Africa, over the past 2200 years: assessment of the precipitation proxy. Climate of the Past 12, 12431262.CrossRefGoogle Scholar
Bukombe, J., Kija, H., Loishooki, A., Sumay, G., Kihwele, E., 2015b. Existence of alien plant species in Serengeti National Park: a conservation threat. In: Keyyu, J., et al. . (Eds.) Proceedings of the 10th TAWIRI Scientific Conference at Naura Springs Hotel, Arusha, 2–4 December 2015. TAWIRI, Arusha, Tanzania, pp. 183195.Google Scholar
Bukombe, J., Kija, H., Loishooki, A., Sumay, G., Mwita, M., Mwakalebe, G., Kihwele, E., 2015a. The distribution and causes of alien plant species in Serengeti National Park. In: Keyyu, J., et al. . (Eds.) Proceedings of the 10th TAWIRI Scientific Conference at Naura Springs Hotel, Arusha, 2–4 December 2015. TAWIRI, Arusha, Tanzania, pp. 173182.Google Scholar
Burger, J.R., Anderson, R.P., Balk, M.A., Fristoe, T.S., 2019. A constraint-based model of Dynamic Island biogeography: environmental history and species traits predict hysteresis in populations and communities. Frontiers of Biogeography 11, e44383.CrossRefGoogle Scholar
Burgess, N., Butynski, T.M., Cordeiro, N.J., Doggart, N.H., Fjeldså, J., Howell, K.M., Kilahama, F.B., et al. , 2007. The biological importance of the Eastern Arc Mountains of Tanzania and Kenya. Biological Conservation 134, 209231.CrossRefGoogle Scholar
Burgess, N.D., Fjeldså, J., Botterweg, R., 1998. Faunal importance of the Eastern Arc Mountains of Kenya and Tanzania. Journal of East African Natural History 87, 3759.CrossRefGoogle Scholar
Capitani, C., Garedew, W., Mitiku, A., Berecha, G., Hailu, B.T., Heiskanen, J., Hurskainen, P., et al. , 2019. Views from two mountains: exploring climate change impacts on traditional farming communities of eastern Africa highlands through participatory scenarios. Sustainability Science 14, 191203.CrossRefGoogle Scholar
Casanova, M.T., Brock, M.A., 2000. How do depth, duration and frequency of flooding influence the establishment of wetland plant communities? Plant Ecology 147, 237250.CrossRefGoogle Scholar
Cassidy, L., 2007. Mapping the annual area burned in the wetlands of the Okavango panhandle using a hierarchical classification approach. Wetlands Ecology and Management 15, 253268.CrossRefGoogle Scholar
Chami, F.A., 2001. Chicken bones from a Neolithic limestone cave site, Zanzibar: contact between East Africa and Asia. In: Chami, F.A., Pwiti, G., Radimilahy, C. (Eds.), People, Contacts, and the Environment in the African Past, University of Dar es Salaam Press, Dar es Salaam, Tanzania, pp. 8197.Google Scholar
Chan, R.Y., Vuille, M., Hardy, D.R., Bradley, R.S., 2008. Intraseasonal precipitation variability on Kilimanjaro and the East African region and its relationship to the large-scale circulation. Theoretical and Applied Climatology 93, 149165.CrossRefGoogle Scholar
Cherniwchan, J., Moreno-Cruz, J., 2019. Maize and precolonial Africa. Journal of Development Economics 136, 137150.CrossRefGoogle Scholar
Child, G.S., 1965. Some notes on the mammals of Kilimanjaro. Tanganyika Notes and Records 64, 7789.Google Scholar
Christen, J.A., Pérez, E.S., 2010. A new robust statistical model for radiocarbon data. Radiocarbon 51, 10471059.CrossRefGoogle Scholar
Chuhila, M.J., 2016. Coming Down the Mountain: History of Land Use Change in Kilimanjaro, ca. 1920 to 2000s. PhD dissertation, University of Warwick, UK.Google Scholar
Clack, T., 2007. Memory and the Mountain: Environmental Relations of the Wachagga of Kilimanjaro and Implications for Landscape Archaeology. BAR International Series 1679. Oxford.CrossRefGoogle Scholar
Clack, T., 2009. Sheltering experience in underground places: thinking through precolonial Chagga caves on Mount Kilimanjaro. World Archaeology 41, 321344.CrossRefGoogle Scholar
Clark, J.S., 1988. Stratigraphic charcoal analysis on petrographic thin sections: application to fire history in northwestern Minnesota. Quaternary Research 30, 8191.CrossRefGoogle Scholar
Claxton, J.R., Ortiz, P., 1996. Haematological parameters in Brown Swiss and Holstein cattle at high altitude. Tropical Animal Health and Production 28, 112116.CrossRefGoogle ScholarPubMed
Coe, M.J., 1967. The ecology of the alpine zone of Mount Kenya. In: van Oywe, P. (Ed.), Monographiae Biologicae. Vol. 17. Dr. W. Junk Publishers, The Hague, pp. 1136.Google Scholar
Coetzee, J.A., 1967. Pollen analytical studies in East and southern Africa. Palaeoecology of Africa 3, 1146.Google Scholar
Conedera, M., Tinner, W., Neff, C., Meurer, M., Dickens, A.F., Krebs, P., 2009. Reconstructing past fire regimes: methods, applications, and relevance to fire management and conservation. Quaternary Science Reviews 28, 555576.CrossRefGoogle Scholar
Correa-Metrio, A., Urrego, D.H., Cabrera, K.R., Bush, M.B., 2011. PaleoMAS-Package Transfer Functions and Statistical Operations for Paleoecology. Version 2.0-1 (accessed September 4, 2020). https://CRAN.R-project.org/package=paleoMAS.Google Scholar
Cotton, A.D., 1930. A visit to Kilimanjaro. Bulletin of Miscellaneous Information (Royal Gardens, Kew) 3, 97121.CrossRefGoogle Scholar
Coughlan, M., Magi, B., Derr, K., 2018. A global analysis of hunter-gatherers, broadcast fire use, and lightning-fire-prone landscapes. Fire 1, 41.CrossRefGoogle Scholar
Courtney Mustaphi, C.J., Capitani, C., Boles, O., Kariuki, R., Newman, R., Munishi, L., Marchant, R., et al, ., 2019. Integrating evidence of land use and land cover change for land management policy formulation along the Kenya-Tanzania borderlands. Anthropocene 28, 100228.CrossRefGoogle Scholar
Courtney Mustaphi, C.J., Gajewski, K., Marchant, R., Rosqvist, G., 2017. A late Holocene pollen record from proglacial Oblong Tarn, Mount Kenya. PLoS ONE 12, e0184925.CrossRefGoogle ScholarPubMed
Courtney Mustaphi, C.J., Githumbi, E.N., Shotter, L.R., Runcina, S.M., Marchant, R., 2016. Subfossil statoblasts of Lophopodella capensis (Sollas, 1908) (Bryozoa: Phylactolaemata: Lophopodidae) in the upper Pleistocene and Holocene sediments of a montane wetland, Eastern Mau Forest, Kenya. African Invertebrates 57, 3952.CrossRefGoogle Scholar
Courtney Mustaphi, C.J., Pisaric, M.F.J., 2014. Holocene climate-fire-vegetation interactions at a subalpine watershed in southeastern British Columbia, Canada. Quaternary Research 81, 228239.CrossRefGoogle Scholar
Coutts, H.H., 1969. Rainfall of the Kilimanjaro area. Weather 24, 6669.CrossRefGoogle Scholar
Coutu, A.N., Lee-Thorp, J., Collins, M.J., Lane, P.J., 2016. Mapping the elephants of the 19th century East African ivory trade with a multi-isotope approach. PLoS ONE 11, e0163606.CrossRefGoogle ScholarPubMed
Crowther, A., Prendergast, M.E., Fuller, D.Q., Boivin, N., 2018. Subsistence mosaics, forager-farmer interactions, and the transition to food production in eastern Africa. Quaternary International 489, 101120.CrossRefGoogle Scholar
Cullen, N.J., Mölg, T., Kaser, G., Hussein, K., Steffen, K., Hardy, D.R., 2006. Kilimanjaro glaciers: recent areal extent from satellite data and new interpretation of observed 20th century retreat rates. Geophysical Research Letters 33, L16502.CrossRefGoogle Scholar
Cuní-Sanchez, A., Omeny, P., Pfeifer, M., Olaka, L., Mamo, M.B., Marchant, R., Burgess, N.D., 2019. Climate change and pastoralists: perceptions and adaptation in montane Kenya. Climate and Development 11, 513524.CrossRefGoogle Scholar
Davidson, N.C., 2014. How much wetland has the world lost? Long-term and recent trends in global wetland area. Marine and Freshwater Research 65(10), 934941.CrossRefGoogle Scholar
Davies, M.I.J., 2015. Economic specialisation, resource variability and the origins of intensive agriculture in eastern Africa. Rural Landscapes: Society, Environment, History 2, 118.Google Scholar
de Bont, C., 2018. The continuous quest for control by African irrigation planners in the face of farmer-led irrigation development: the case of the lower Moshi area, Tanzania (1935–2017). Water Alternatives 11, A11-3-22.Google Scholar
de Bont, C., Komakech, H.C., Veldwisch, G.J., 2019. Neither modern nor traditional: farmer-led irrigation development in Kilimanjaro region, Tanzania. World Development 116, 1527.CrossRefGoogle Scholar
De Langhe, E., 2007. The establishment of traditional plantain cultivation in the African rain forest: a working hypothesis. In: Denham, T., Iriate, J., Vrydaghs, L. (Eds.), Rethinking Agriculture: Archaeological and Ethnoarchaeological Perspectives. Left Coast Press, Walnut Creek, CA, pp. 361370.Google Scholar
de Maret, P., 2013. Archaeologies of the Bantu expansion. In: Mitchell, P., Lane, P.J. (Eds.) The Oxford handbook of African archaeology. Oxford University Press, Oxford, UK. pp. 319328.Google Scholar
Denny, P., Bowker, D.W., Bailey, R.G., 1978. The importance of the littoral epiphyton as food for commercial fish in the recent African man-made lake, Nyumba ya Mungu reservoir, Tanzania. Biological Journal of the Linnean Society 10, 139150.CrossRefGoogle Scholar
Detsch, F., Otte, I., Appelhans, T., Hemp, A., Nauss, T., 2016. Seasonal and long-term vegetation dynamics from 1-km GIMMS-based NDVI time series at Mt. Kilimanjaro, Tanzania. Remote Sensing of Environment 178, 7083.CrossRefGoogle Scholar
Dieleman, J., Van Bocxlaer, B., Manntschke, C., Nyingi, D.W., Adriaens, D., Verschuren, D., 2015. Tracing functional adaptation in African cichlid fishes through morphometric analysis of fossil teeth: exploring the methods. Hydrobiologia 755, 7388.CrossRefGoogle Scholar
Donaldson, J.E., Archibald, S., Govender, N., Pollard, D., Luhdo, Z., Parr, C.L., 2018. Ecological engineering through fire-herbivory feedbacks drives the formation of savanna grazing lawns. Journal of Applied Ecology 55, 225235.CrossRefGoogle Scholar
Downie, C., 1964. Glaciations of Mount Kilimanjaro, northeast Tanganyika. Geological Society of America Bulletin 75, 116.CrossRefGoogle Scholar
Engler, A., 1925. Die Pflanzenwelt Afrikas, Bd. 5 (the Flora of Africa, Vol. 5). Vegetation der Erde: sammlung pflanzengeographischer monographien, Bd. 9 (Collection of Plant Geography Monographs, Vol. 9). Wilhelm Engelmann, Leipzig, Germany, pp. 250–267.Google Scholar
Ensslin, A., Rutten, G., Pommer, U., Zimmermann, R., Hemp, A., Fischer, M., 2015. Effects of elevation and land use on the biomass of trees, shrubs and herbs at Mount Kilimanjaro. Ecosphere 6, 115.CrossRefGoogle Scholar
Erdtman, G., 1960. The acetolysis method: a revised description. Svensk Botanisk Tidskrift 54, 561564.Google Scholar
Fairman, J.G., Nair, U.S., Christopher, S.A., Mölg, T., 2011. Land use change impacts on regional climate over Kilimanjaro. Journal of Geophysical Research: Atmospheres 116, D03110.CrossRefGoogle Scholar
Fernandes, E.C., Oktingati, A., Maghembe, J., 1985. The Chagga homegardens: a multistoried agroforestry cropping system on Mt. Kilimanjaro (northern Tanzania). Agroforestry Systems 2, 7386.CrossRefGoogle Scholar
Fægri, K., Iversen, J., 1989. Textbook of Pollen Analysis. Blackburn Press, New York.Google Scholar
Finch, J., Leng, M.J., Marchant, R., 2009. Late Quaternary vegetation dynamics in a biodiversity hotspot, the Uluguru Mountains of Tanzania. Quaternary Research 72, 111122.CrossRefGoogle Scholar
Finch, J., Marchant, R., 2011. A palaeoecological investigation into the role of fire and human activity in the development of montane grasslands in East Africa. Vegetation History and Archaeobotany 20, 109124.CrossRefGoogle Scholar
Finch, J., Marchant, R., Courtney Mustaphi, C.J., 2017. Ecosystem change in the South Pare Mountain bloc, Eastern Arc Mountains of Tanzania. The Holocene 27, 796810.CrossRefGoogle Scholar
Finch, J., Wooller, M., Marchant, R., 2014. Tracing long-term tropical montane ecosystem change in the Eastern Arc Mountains of Tanzania. Journal of Quaternary Science 29, 269278.CrossRefGoogle Scholar
Fosbrooke, H.A., Sassoon, H., 1965. Archaeological remains on Kilimanjaro. Tanganyika Notes and Records 64, 6264.Google Scholar
Fredlund, G.G., Tieszen, L.T., 1997. Calibrating grass phytolith assemblages in climatic terms: application to late Pleistocene assemblage from Kansas and Nebraska. Palaeogeography, Palaeoclimatology, Palaeoecology 136, 199211.CrossRefGoogle Scholar
Fuller, D.Q., 2003. African crops in prehistory South Asia: a critical review. In: Neumann, K., Butler, A. (Eds.), Food, Fuel and Fields: Progress in African Archaeobotany. Heinrich-Barth Institut, Cologne, pp. 239272.Google Scholar
Fuller, D.Q., Boivin, N., 2009. Crops, cattle and commensals across the Indian Ocean: current and potential archaeobiological evidence. Études Océan Indien 42–43, 1346.CrossRefGoogle Scholar
Gabrielli, P., Hardy, D.R., Kehrwald, N., Davis, M., Cozzi, G., Turetta, C., Barbante, C., et al. , 2014. Deglaciated areas of Kilimanjaro as a source of volcanic trace elements deposited on the ice cap during the late Holocene. Quaternary Science Reviews 93, 110.CrossRefGoogle Scholar
Gardner, R.C., Connolly, K.D., Bamba, A., 2008. African wetlands of international importance: assessment of benefits associated with designations under the Ramsar Convention. Georgetown International Environmental Law Review 21, 257294.Google Scholar
Geilinger, W., 1936. The retreat of the Kilimanjaro glaciers. Tanganyika Notes and Records 2, 720.Google Scholar
Gelorini, V., Verbeken, A., van Geel, B., Cocquyt, C., Verschuren, D., 2011. Modern non-pollen palynomorphs from East African lake sediments. Review of Palaeobotany and Palynology 164, 143173.CrossRefGoogle Scholar
Gil-Romera, G., Adolf, C., Benito, B.M., Bittner, L., Johansson, M.U., Grady, D.A., Lamb, H.F., et al. , 2019. Long-term fire resilience of the Ericaceous Belt, Bale Mountains, Ethiopia. Biology Letters 15, 20190357.CrossRefGoogle ScholarPubMed
Gillman, C., 1923. An ascent of Kilimanjaro. The Geographical Journal 61, 121.CrossRefGoogle Scholar
Gillson, L., 2004. Evidence of hierarchical patch dynamics in an East African savanna? Landscape Ecology 19, 883894.CrossRefGoogle Scholar
Gillson, L., 2006. A “large infrequent disturbance” in an East African savanna. African Journal of Ecology 44, 458467.CrossRefGoogle Scholar
Githumbi, E.N., 2017. Holocene Environmental and Human Interactions in East Africa. PhD dissertation, University of York, UK.Google Scholar
Githumbi, E.N., Courtney Mustaphi, C.J., Yun, K.J., Muiruri, V., Rucina, S.M., Marchant, R., 2018a. Late Holocene wetland transgression and 500 years of vegetation and fire variability in the semi-arid Amboseli landscape, southern Kenya. Ambio 47, 682696.CrossRefGoogle Scholar
Githumbi, E.N., Kariuki, R., Shoemaker, A., Courtney Mustaphi, C.J., Chuhila, M., Richer, S., Lane, P., et al. , 2018b. Pollen, people and place: paleoenvironmental, archaeological, and ecological perspectives on vegetation change in the Amboseli landscape, Kenya. Frontiers in Earth Science 5, 113.CrossRefGoogle Scholar
Grimm, E.C., 1987. CONISS: a FORTRAN 77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares. Computers & Geosciences 13, 1335.CrossRefGoogle Scholar
Grimshaw, J.M., 1999. The afromontane bamboo, Yushania alpina, on Kilimanjaro. Journal of East African Natural History 88, 7984.CrossRefGoogle Scholar
Grimshaw, J.M, Cordeiro, N.J., Foley, C.A.H., 1995. The mammals of Kilimanjaro. Journal of East African Natural History 84, 105139.CrossRefGoogle Scholar
Håkansson, N.T., 2007. The decentralized landscape: regional wealth and the expansion of production in northern Tanzania before the eve of colonialism. In: Cliggett, L., Pool, C. (Eds.), Economics and the Transformation of Landscape. Alta Mira Press, Walnut Creek, CA, pp. 239265.Google Scholar
Hamilton, A.C., 1982a. Environmental History of East Africa: A Study of the Quaternary. Academic Press, London.Google Scholar
Hamilton, A.C., 1982b. Upper Quaternary pollen diagrams from montane East Africa. In: Hamilton, A.C. (ed.), Environmental History of East Africa: A Study of the Quaternary. Academic Press, London, pp. 111191.Google Scholar
Hastenrath, S., Greischar, L., 1997. Glacier recession on Kilimanjaro, East Africa, 1912–89. Journal of Glaciology 43, 455459.CrossRefGoogle Scholar
Hawthorne, D., Courtney Mustaphi, C.J., Aleman, J.C., Blarquez, O., Colombaroli, D., Daniau, A.-L., Marlon, J.R., et al. , 2017. Global Modern Charcoal Dataset (GMCD): a tool for exploring proxy-fire linkages and spatial patterns of biomass burning. Quaternary International 488, 317.CrossRefGoogle Scholar
Heckmann, M., 2014. Farmers, smelters and caravans: two thousand years of land use and soil erosion in North Pare, NE Tanzania. Catena 113, 187201.CrossRefGoogle Scholar
Heckmann, M., Muiruri, V., Boom, A., Marchant, R., 2014. Human–environment interactions in an agricultural landscape: a 1400-yr sediment and pollen record from North Pare, NE Tanzania. Palaeogeography, Palaeoclimatology, Palaeoecology 406, 4961.CrossRefGoogle Scholar
Hedberg, O., 1951. Vegetation belts of the East African mountains. Svensk Botanisk Tidskrift 45, 141196.Google Scholar
Helm, R., 2000. Conflicting Histories: The Archaeology of the Iron-Working, Farming Communities of the Central and Southern Coast Region of Kenya. PhD dissertation, University of Bristol, UK.Google Scholar
Hély, C., Bremond, L., Alleaume, S., Smith, B., Sykes, M.T., Guiot, J., 2006. Sensitivity of African biomes to changes in the precipitation regime. Global Ecology and Biogeography 15, 258270.Google Scholar
Hemp, A., 2001. Ecology of the pteridophytes on the southern slopes of Mt. Kilimanjaro. Part II: habitat selection. Plant Biology 3, 493523.CrossRefGoogle Scholar
Hemp, A., 2005a. Climate change-driven forest fires marginalize the impact of ice cap wasting on Kilimanjaro. Global Change Biology 11, 10131023.CrossRefGoogle Scholar
Hemp, A., 2006a. Vegetation of Kilimanjaro: hidden endemics and missing bamboo. African Journal of Ecology 44, 305328.CrossRefGoogle Scholar
Hemp, A., 2006b. Continuum or zonation? Altitudinal gradients in the forest vegetation of Mt. Kilimanjaro. Plant Ecology 184, 2742.CrossRefGoogle Scholar
Hemp, A., 2008. Introduced plants on Kilimanjaro: tourism and its impact. Plant Ecology 197, 1729.CrossRefGoogle Scholar
Hemp, A., 2009. Climate change and its impact on the forests of Kilimanjaro. African Journal of Ecology 47, 310.CrossRefGoogle Scholar
Hemp, A., 2005b. The impact of fire on diversity, structure, and composition of Mt. Kilimanjaro's vegetation. In: Spehn, E., Liberman, M., Körner, C. (Eds.), Land Use Changes and Mountain Biodiversity. CRC Press, Boca Raton, FL, pp. 5168.Google Scholar
Hemp, A., 2011. Altitudinal zonation and diversity patterns in the forests of Mount Kilimanjaro, Tanzania. In: Bruijnzeel, L.A., Scatena, F.N., Hamilton, L.S. (Eds.), Tropical Montane Cloud Forests: Science for Conservation and Management. Cambridge University Press, Cambridge, UK, pp. 134141.CrossRefGoogle Scholar
Hemp, A., Beck, E., 2001. Erica excelsa as a fire-tolerating component of Mt. Kilimanjaro's forests. Phytocoenologia 31, 449475.CrossRefGoogle Scholar
Hemp, A., Hemp, C., 2018. Broken bridges: the isolation of Kilimanjaro's ecosystem. Global Change Biology 24, 34993507.CrossRefGoogle ScholarPubMed
Hempson, G., Archibald, S., Bond, W.J., Ellis, R.P., Grant, C.C., Kruger, F.J., Kruger, L.M., et al. , 2015. Ecology of grazing lawns in Africa. Biological Reviews 90, 979994.CrossRefGoogle ScholarPubMed
Hempson, G., Parr, C., Archibald, S., Anderson, T., Courtney Mustaphi, C.J., Dobson, A., Donaldson, J., et al. , 2018. Continent-level drivers of African pyrodiversity. Ecography 42, 889899.CrossRefGoogle Scholar
Hepp, J., Zech, R., Rozanski, K., Tuthorn, M., Glaser, B., Greule, M., Keppler, F., et al. , 2017. Late Quaternary relative humidity changes from Mt. Kilimanjaro, based on a coupled 2H-18O biomarker paleohygrometer approach. Quaternary International 438, 116130.CrossRefGoogle Scholar
Hogg, A.G., Hua, Q., Blackwell, P.G., Buck, C.E., Guilderson, T.P., Heaton, T.J., Niu, M., et al. , 2013. SHCal13 southern hemisphere calibration, 0-50,000 cal yr BP. Radiocarbon 55, 18891903.CrossRefGoogle Scholar
Humphries, D.W., 1959. Preliminary notes on the glaciology of Kilimanjaro. Journal of Glaciology 3, 475479.CrossRefGoogle Scholar
Iles, L., 2020. Exploring the impact of iron production on forest and woodland resources: estimating fuel consumption from slag. STAR: Science & Technology of Archaeological Research, https://doi.org/10.1080/20548923.2020.1718366CrossRefGoogle Scholar
Iles, L., Stump, D., Heckmann, M., Lang, C., Lane, P.J., 2018. Iron production in North Pare, Tanzania: archaeometallurgical and geoarchaeological perspectives on landscape change. African Archaeological Review 35, 507530.CrossRefGoogle Scholar
International Committee for Phytolith Taxonomy, 2019. International code for phytolith nomenclature (ICPN) 2.0. Annals of Botany 124, 189199.CrossRefGoogle Scholar
Jaeger, F., 1909. Forschungen in den Hochregionen des Kilimandscharo (Research in the highland regions of the Kilimanjaro). E.S. Mittler und Sohn, Hamburg.Google Scholar
Jowsey, P.C., 1966. An improved peat sampler. New Phytologist 65, 245248.CrossRefGoogle Scholar
Juggins, S., 2007. C2: Software for Ecological and Palaeoecological Data Analysis and Visualization (accessed September 4, 2020). https://www.staff.ncl.ac.uk/stephen.juggins/software/C2Home.htm.Google Scholar
Juggins, S., 2017. Package “rioja”: Analysis of Quaternary Science Data. Version 0.9-15 (accessed September 4, 2020). https://cran.r-project.org/web/packages/rioja/rioja.pdf.Google Scholar
Jump, A.S., Carr, M., Ahrends, A., Marchant, R., 2014. Genetic divergence during long-term isolation in highly diverse populations of tropical trees across the Eastern Arc Mountains of Tanzania. Biotropica 46, 565574.CrossRefGoogle Scholar
Kabora, T.K., 2018. Dynamics of Water-Management Systems in Historical East African Agricultural Societies: Modelling the Long-Term Ecosystem and Socioeconomic Interactions in a Historical Agronomy in Engaruka, Tanzania. PhD dissertation, University of York, UK.Google Scholar
Kabora, T.K., Stump, D., Wainwright, J., 2020. How did that get there? Understanding sediment transport and accumulation rates in agricultural landscapes using the ESTTraP agent-based model. Journal of Archaeological Science: Reports 29, 102115.CrossRefGoogle Scholar
Kamau, P.N., Medley, K.E., 2014. Anthropogenic fires and local livelihoods at Chyulu Hills, Kenya. Landscape and Urban Planning 124, 7684.CrossRefGoogle Scholar
Kamukala, G.L., Crafter, S.A. (Eds.), 1993. Wetlands of Tanzania: Proceedings of a Seminar on the Wetlands of Tanzania, Morogoro, Tanzania, 27–29 November, 1991. Vol. 10. International Union for Conservation of Nature, Gland, Switzerland.Google Scholar
Kaplan, J.O., Krumhardt, K.M., 2011. The KK10 Anthropogenic Land Cover Change Scenario for the Preindustrial Holocene. PANGAEA Data Repository (accessed 4 September 2020). https://doi.org/10.1594/PANGAEA.871369.CrossRefGoogle Scholar
Kaplan, J.O., Krumhardt, K.M., Ellis, E.C., Ruddiman, W.F., Lemmen, C., Klein Goldewijk, K., 2011. Holocene carbon emissions as a result of anthropogenic land cover change. The Holocene 21, 775791.CrossRefGoogle Scholar
Kelly, L.T., Bennett, A.F., Clarke, M.F., McCarthy, M.A., 2015. Optimal fire histories for biodiversity conservation. Conservation Biology 29, 473481.CrossRefGoogle ScholarPubMed
Kikoti, I.A., Mligo, C., Kilemo, D.B., 2015. The impact of grazing on plant natural regeneration in northern slopes of Mount Kilimanjaro, Tanzania. Open Journal of Ecology 5, 266.CrossRefGoogle Scholar
Kilungu, H., Leemans, R., Munishi, P.K., Nicholls, S., Amelung, B., 2019. Forty years of climate and land-cover change and its effects on tourism resources in Kilimanjaro National Park. Tourism Planning & Development 16, 235253.CrossRefGoogle Scholar
Kimaro, J.G., Scharsich, V., Kolb, A., Huwe, B., Bogner, C., 2019. Distribution of traditional irrigation canals and their discharge dynamics at the southern slopes of Mount Kilimanjaro. Frontiers in Environmental Science 7, 24.CrossRefGoogle Scholar
Kinyanjui, R.N., 2013. Phytolith Analysis as a Paleoecological Tool for Reconstructing Mid–Late Pleistocene Environments in the Olorgesailie Basin, Kenya. Master's thesis, University of Cape Town, South Africa.Google Scholar
Kinyanjui, R.N., 2018. Phytolith Analysed to Compare Changes in Vegetation Structure of Koobi Fora and Olorgesailie Basins through the Mid-Pleistocene to Holocene periods. PhD dissertation, University of the Witwatersrand, Johannesburg, South Africa.Google Scholar
Kirby, R.E., Lewis, S.J., Sexson, T.N., 1988. Fire in North American Wetland Ecosystems and Fire-Wildlife Relations: An Annotated Bibliography. Biological Report No. FWS-88(1). Fish and Wildlife Service, US Department of the Interior, Washington, DC.Google Scholar
Kirkman, L.K., 1995. Impacts of fire and hydrological regimes on vegetation in depression wetlands of southeastern USA. In: Masters, R.E., Galley, K.E.M. (Eds.), Fire in Wetlands: A Management Perspective. Proceedings of the Tall Timbers Fire Ecology Conference. Vol. 19. Tall Timbers Research Station, Tallahassee, FL, pp. 10–20.Google Scholar
Klein Goldewijk, K., Beusen, A., Janssen, P., 2010. Long-term dynamic modeling of global population and built-up area in a spatially explicit way: HYDE 3.1. The Holocene 20, 565573.CrossRefGoogle Scholar
Klute, F., 1920. Die Ergebnisse der Forschungen am Kilimandscharo, 1912 (Results of Research on Kilimanjaro). D. Reimer, Berlin.Google Scholar
Kolka, R.K., Murdiyarso, D., Kauffman, J.B., Birdsey, R.A., 2016. Tropical wetlands, climate, and land-use change: adaptation and mitigation opportunities. Wetlands Ecology and Management 24(2), 107112.CrossRefGoogle Scholar
Komakech, H.C., de Bont, C. 2018. Differentiated access: Challenges of equitable and sustainable groundwater exploitation in Tanzania. Water Alternatives 11, 623637.Google Scholar
Krapf, J.L., 1858. Reisen in Ost-Afrika: Ausgeführt in den Jahren 1837–55. Zur Beförderung er Ostafrikanischen Erd-und Missionskunde (Travels in East Africa: Carried out in the years 1837-55. To promote East African geography and missionionary studies). Self published in commission by W. Stroh, Stuttgart.Google Scholar
Kusimba, C.M., Kusimba, S.B., 2005. Mosaics and interactions: East Africa 2000 B.P to the present. In: Stahl, A.B. (Ed.), African Archaeology: A Critical Introduction. Blackwell, Oxford, pp. 392419.Google Scholar
Kusimba, C.M., Kusimba, S.B., Wright, D.K., 2005. The development and collapse of precolonial ethnic mosaics in Tsavo, Kenya. Journal of African Archaeology 3, 243265.CrossRefGoogle Scholar
Lane, P., 2004. The “moving frontier” and the transition to food production in Kenya. Azania 39, 243264.CrossRefGoogle Scholar
Lane, P., 2009. Environmental narratives and the history of soil erosion in Kondoa District, Tanzania: an archaeological perspective. International Journal of African Historical Studies 42, 457483.Google Scholar
Lane, P., Ashley, C., Seitsonen, O., Harvey, P., Mire, S., Odede, F., 2007. The transition to farming in eastern Africa: new faunal and dating evidence from Wadh Lang'o and Usenge, Kenya. Antiquity 81, 6281.CrossRefGoogle Scholar
Lane, P., Shoemaker, A., 2017. Interdisciplinary perspectives on pre-colonial sub-saharan African farming and herding communities. In: Spear, T., et al. . (Eds.) Oxford Research Encyclopedia, African History. Oxford University Press, Oxford, pp. 141.Google Scholar
Lang, C., Stump, D., 2017. Geoarchaeological evidence for the construction, irrigation, cultivation, and resilience of 15th–18th century AD terraced landscape at Engaruka, Tanzania. Quaternary Research 88, 382399.CrossRefGoogle Scholar
Lejju, B.J., Robertshaw, P., Taylor, D., 2006. Africa's earliest bananas? Journal of Archaeological Science 33, 102113.CrossRefGoogle Scholar
Lejju, B.J., Taylor, D., Robertshaw, P., 2005. Late-Holocene environmental variability at Munsa archaeological site, Uganda: a multicore, multiproxy approach. The Holocene 15, 10441061.CrossRefGoogle Scholar
Lézine, A.M., 2001. African Pollen Database: Late Quaternary Pollen Flora. CNRS, Paris.Google Scholar
Little, M.G., Lee, C.T.A., 2006. On the formation of an inverted weathering profile on Mount Kilimanjaro, Tanzania: buried paleosol or groundwater weathering? Chemical Geology 235, 205221.CrossRefGoogle Scholar
Loomis, S.E., Russell, J.M., Verschuren, D., Morrill, C., De Cort, G., Damsté, J.S.S., Olago, D., et al. , 2017. The tropical lapse rate steepened during the last glacial maximum. Science Advances 3, e1600815.CrossRefGoogle ScholarPubMed
Los, S.O., Street-Perrott, F.A., Loader, N.J., Froyd, C.A., Cuní-Sanchez, A., Marchant, R.A., 2019. Sensitivity of a tropical montane cloud forest to climate change, present, past and future: Mt. Marsabit, N. Kenya. Quaternary Science Reviews 218, 3448.CrossRefGoogle Scholar
Lundgren, B., Lundgren, L., 1972. Comparison of some soil properties in one forest and two grassland ecosystems on Mount Meru, Tanzania. Geografiska Annaler Series A Physical Geography 54, 227240.CrossRefGoogle Scholar
Madella, M., Alexandre, A., Ball, T., 2005. International code for phytolith nomenclature 1.0. Annals of Botany 96, 253260.CrossRefGoogle ScholarPubMed
Magliocca, N.R., Ellis, E.C., Allington, G.R., De Bremond, A., Dell'Angelo, J., Mertz, O., Messerli, P., et al. , 2018. Closing global knowledge gaps: producing generalized knowledge from case studies of social-ecological systems. Global Environmental Change 50, 114.CrossRefGoogle Scholar
Mahonge, C., 2010. Co-managing Complex Social-Ecological Systems in Tanzania: The Case of Lake Jipe Wetland. PhD dissertation, Wageningen University, Wageningen.CrossRefGoogle Scholar
Marchant, R., Lane, P., 2014. Past perspectives for the future: foundations for sustainable development in East Africa. Journal of Archaeological Science 51, 1221.CrossRefGoogle Scholar
Marchant, R., Mumbi, C., Behera, S., Yamagata, T., 2007. The Indian Ocean Dipole: the unsung driver of climatic variability in East Africa. African Journal of Ecology 45, 416.CrossRefGoogle Scholar
Marchant, R., Richer, S., Capitani, C., Courtney Mustaphi, C.J., Prendergast, M., Stump, D., Boles, O., et al. , 2018. Drivers and trajectories of land cover change in East Africa: human and environmental interactions from 6000 years ago to present. Earth-Science Reviews 178, 322378.CrossRefGoogle Scholar
Mark, B.G., Osmaston, H.A., 2008. Quaternary glaciation in Africa: key chronologies and climatic implications. Journal of Quaternary Science 23, 589608.CrossRefGoogle Scholar
Markgraf, V., 1980. Pollen dispersal in a mountain area. Grana 19, 127146.CrossRefGoogle Scholar
Marlon, J.R., Kelly, R., Daniau, A.-L., Vannière, B., Power, M.J., Bartlein, P., Higuera, P., et al. , 2016. Reconstructions of biomass burning from sediment charcoal records to improve data-model comparisons. Biogeosciences 13, 32253244.CrossRefGoogle Scholar
Maro, P.S., 1988. Agricultural land management under population pressure: the Kilimanjaro experience, Tanzania. African mountains and highlands: problems and perspectives. Mountain Research and Development 8, 273282.Google Scholar
Martin-Jones, C., Lane, C., Van Daele, M., Meeren, T.V.D., Wolff, C., Moorhouse, H., Tomlinson, E., et al. , 2020. History of scoria-cone eruptions on the eastern shoulder of the Kenya–Tanzania Rift revealed in the 250-ka sediment record of Lake Chala near Mount Kilimanjaro. Journal of Quaternary Science 35, 245255.CrossRefGoogle Scholar
Mathew, M.M., Majule, A.E., Sinclair, F., Marchant, R., 2016a. Relationships between on-farm tree stocks and soil organic carbon along an altitudinal gradient, Mount Kilimanjaro, Tanzania. Forests, Trees and Livelihoods 25, 255266.CrossRefGoogle Scholar
Mathew, M.M., Majule, A.E., Sinclair, F., Marchant, R., 2016b. Effect of soil properties on tree distribution across an agricultural landscape on a tropical mountain, Tanzania. Open Journal of Ecology 6, 264.CrossRefGoogle Scholar
Mathooko, J.M., Mavuti, K.M., 1992. Composition and seasonality of benthic invertebrates, and drift in the Naro Moru River, Kenya. Hydrobiologia 232, 4756.CrossRefGoogle Scholar
Mbida, C.M., De Langhe, E., Vrydaghs, L., Doutrelepont, H., Swennen, R.O., Van Neer, W., de Maret, P., 2006. Phytolith evidence for the early presence of domesticated banana (Musa) in Africa. In: Zeder, M.A., Bradley, D.G. (Eds.), Documenting Domestication: New Genetic and Archaeological Paradigms. University of California Press, Berkeley, pp. 6881.Google Scholar
Mbida, C.M., Doutrelepont, H., Vrydaghs, L., Beeckman, H., 2004. Yes, there were bananas in Cameroon more than 2000 years ago. Infomusa 13, 4042.Google Scholar
Mbida, C.M., Doutrelepont, H., Vrydaghs, L., Swennen, R.L., Swennen, R.J., Beeckman, H., De Langhe, E., et al. , 2001. First archaeological evidence of banana cultivation in central Africa during the third millennium before present. Vegetation History and Archaeobotany 10, 16.CrossRefGoogle Scholar
Mbida, C.M., Van Neer, W., Doutrelepont, H., Vrydaghs, L. 2000. Evidence for banana cultivation and animal husbandry during the first millennium BC in the forest of southern Cameroon. Journal of Archaeological Science 27, 151162.CrossRefGoogle Scholar
McGrath, G., 1976. The surveying and mapping of British East Africa 1890–1946. Cartographica: The International Journal for Geographic Information and Geovisualization 13, 1118.CrossRefGoogle Scholar
Meijerink, A.M.J., van Wijngaarden, W., 1997. Contribution to the groundwater hydrology of the Amboseli ecosystem, Kenya. In: Gilbert, J., Mathieu, J., Fournier, F. (Eds.), Groundwater/Surface Water Ecotones: Biological and Hydrological Interactions and Management Options. Cambridge University Press, Cambridge, UK, pp. 111118.CrossRefGoogle Scholar
Mercader, J., Astudillo, F., Barkworth, M., Bennett, T., Esselmont, C., Kinyanjui, R., Grossman, D.L., et al. , 2010. Poaceae and Cyperaceae phytoliths from the woodlands of Niassa Rift, Mozambique. Journal of Archaeological Science 37, 19531967.CrossRefGoogle Scholar
Mercader, J., Bennett, T., Esselmont, C., Simpson, S., Walde, D., 2009. Phytoliths in woody plants from the Miombo woodlands of Mozambique. Annals of Botany 104, 91113.CrossRefGoogle ScholarPubMed
Meyer, H., 1890. Die Besteigung des Kilimanjaro (The ascent of Kilimanjaro). Petermanns Geographische Mitteilungen, Bd. 36. Justus Perthes, Gotha, Germany, pp. 1522.Google Scholar
Meyer, H., 1891. Across East African Glaciers: An Account of the First Ascent of Kilimanjaro. G. Philip & Son, London.Google Scholar
Meyer, H., 1900. Der Kilimandjaro. Dietrich Reimer & Ernst Vohsen, Berlin.CrossRefGoogle Scholar
Ministry of Environment and Mineral Resources, 2012. Kenya Wetlands Atlas. Ministry of Environment and Mineral Resources, Kenya, and United Nations Environment Programme. Progress Press, Mriehel, Malta.Google Scholar
Miracle, M.P., 1965. The introduction and spread of maize in Africa. The Journal of African History 6, 3955.CrossRefGoogle Scholar
Mizuno, K., 1998. Succession processes of alpine vegetation in response to glacial fluctuations of Tyndall Glacier, Mt. Kenya, Kenya. Arctic and Alpine Research 30, 340348.CrossRefGoogle Scholar
Mizuno, K., 2005. Glacial fluctuation and vegetation succession on Tyndall Glacier, Mt Kenya. Mountain Research and Development 25, 6875.CrossRefGoogle Scholar
Mizuno, K., Fujita, T., 2014. Vegetation succession on Mt. Kenya in relation to glacial fluctuation and global warming. Journal of Vegetation Science 25: 559570.CrossRefGoogle Scholar
Moernaut, J., Verschuren, D., Charlet, F., Kristen, I., Fagot, M., De Batist, M., 2010. The seismic-stratigraphic record of lake-level fluctuations in Lake Challa: hydrological stability and change in equatorial East Africa over the last 140kyr. Earth and Planetary Science Letters 290, 214223.CrossRefGoogle Scholar
Mölg, T., Hardy, D.R., 2004. Ablation and associated energy balance of a horizontal glacier surface on Kilimanjaro. Journal of Geophysical Research: Atmospheres 109, 16104.CrossRefGoogle Scholar
Montade, V., Schüler, L., Hemp, A., Bremond, L., Salamanca Duarte, A.M., Behling, H., 2018. Late Quaternary ecotone change between subalpine and montane forest zone on the leeward northern slope of Mt. Kilimanjaro. Journal of Vegetation Science 29, 459468.CrossRefGoogle Scholar
Moreau, R.E., 1944. Kilimanjaro and Mt. Kenya: some comparisons, with special reference to the mammals and birds and with a note on Mt. Meru. Tanganyika Notes and Records 18, 141.Google Scholar
Mote, P.W., Kaser, G., 2007. The shrinking glaciers of Kilimanjaro: can global warming be blamed? American Scientist 95, 318325.CrossRefGoogle Scholar
Mturi, N.A.A., 1986. The pastoral Neolithic of West Kilimanjaro. Azania 21, 5363.CrossRefGoogle Scholar
Mulkey, S.S., Smith, A.P., Young, T.P., 1984. Predation by elephants on Senecio keniodendron (Compositae) in the alpine zone of Mount Kenya. Biotropica 16, 246248.CrossRefGoogle Scholar
Mumbi, C.T., Marchant, R., Hooghiemstra, H., Wooller, M.J., 2008. Late Quaternary vegetation reconstruction from the Eastern Arc Mountains, Tanzania. Quaternary Research 69, 326341.CrossRefGoogle Scholar
Mumbi, C.T., Marchant, R., Lane, P., 2014. Vegetation response to climate change and human impacts in the Usambara Mountains. ISRN Forestry 2014, 240510.CrossRefGoogle Scholar
Munger, E.S., 1952. African coffee on Kilimanjaro: a Chagga Kihamba. Economic Geography 28, 181185.CrossRefGoogle Scholar
Munsterman, D., Kerstholt, S., 1996. Sodium polytungstate: a new non-toxic alternative to bromoform in heavy liquid separation. Review of Palaeobotany and Palynology 91, 417422.CrossRefGoogle Scholar
Mwakikagile, G., 2006. Tanzania under Mwalimu Nyerere: Reflections on an African Statesman. New Africa Press, Dar es Salaam.Google Scholar
Nelson, D.M., Verschuren, D., Urban, M.A., Hu, F.S., 2012. Long-term variability and rainfall control of savanna fire regimes in equatorial East Africa. Global Change Biology 18, 31603170.CrossRefGoogle ScholarPubMed
Neumann, K., Fahmy, A.G., Müller-Scheeßel, N., Schmidt, M., 2017. Taxonomic, ecological and palaeoecological significance of leaf phytoliths in West African grasses. Quaternary International 434, 1532.CrossRefGoogle Scholar
Neumann, K., Fahmy, A., Lespez, L., Balloche, A., Huysecom, E., 2009. The early Holocene palaeoenvironment of Ounjougou (Mali): phytoliths in multiproxy context. Palaeogeography, Palaeoclimatology, Palaeoecology 276, 87106.CrossRefGoogle Scholar
Neumann, K., Hildebrand, E.A., 2009. Early farmers in Africa: the state of the art. Ethnobotany Research and Applications 7, 353362.CrossRefGoogle Scholar
Newmark, W.D. (Ed.), 1991. The Conservation of Mount Kilimanjaro. International Union for Conservation of Nature, Gland, Switzerland.Google Scholar
Newmark, W.D., 1996. Insularization of Tanzanian parks and the local extinction of large mammals. Conservation Biology 10, 15491556.CrossRefGoogle Scholar
Ngana, J.O., 2002. Diminishing water resources and increasing water demands: strategies for sustainable water resources management, the case of Pangani River basin in Tanzania. In: Ngana, J.O. (Ed.), Water Resources Management: The Case of Pangani River Basin. Issues and Approaches. Dar es Salaam University Press, Dar es Salaam, Tanzania, pp. 90100.Google Scholar
Nicholson, S.E., 2000. The nature of rainfall variability over Africa on time scales of decades to millennia. Global and Planetary Change 26, 137158.CrossRefGoogle Scholar
Nielsen, D.L., Podnar, K., Watts, R.J., Wilson, A.L., 2013. Empirical evidence linking increased hydrologic stability with decreased biotic diversity within wetlands. Hydrobiologia 708, 8196.CrossRefGoogle Scholar
Nonnotte, P., Guillou, H., Le Gall, B., Benoit, M., Cotten, J., Scaillet, S., 2008. New K–Ar age determinations of Kilimanjaro volcano in the North Tanzanian diverging rift, East Africa. Journal of Volcanology and Geothermal Research 173, 99112.CrossRefGoogle Scholar
Öberg, H., Andersen, T.J., Westerberg, L.O., Risberg, J., Holmgren, K., 2012. A diatom record of recent environmental change in Lake Duluti, northern Tanzania. Journal of Paleolimnology 48, 401416.CrossRefGoogle Scholar
Öberg, H., Norström, E., Ryner, M.M., Holmgren, K., Westerberg, L.O., Risberg, J., Eddudóttir, S.D., et al. , 2013. Environmental variability in northern Tanzania from AD 1000 to 1800, as inferred from diatoms and pollen in Lake Duluti. Palaeogeography, Palaeoclimatology, Palaeoecology 374, 230241.CrossRefGoogle Scholar
Öberg, H., Risberg, J., Stabell, B., 2009. Morphology, valve ultrastructure and stratigraphical variability of Discostella taxa in a tropical crater lake, northern Tanzania. Diatom Research 24, 341356.CrossRefGoogle Scholar
Odner, K., 1971. A preliminary report of an archaeological survey on the slopes of Kilimanjaro. Azania 6, 131149.CrossRefGoogle Scholar
Oettli, P., Camberlin, P., 2005. Influence of topography on monthly rainfall distribution over East Africa. Climate Research 28, 199212.CrossRefGoogle Scholar
Olago, D.O., Street-Perrott, F.A., Perrott, R.A., Ivanovich, M., Harkness, D.D., 1999. Late Quaternary glacial-interglacial cycle of climatic and environmental change on Mount Kenya, Kenya. Journal of African Earth Sciences 29, 593618.CrossRefGoogle Scholar
Opiyo, B., Gebregiorgis, D., Cheruiyot, V.C., Deocampo, D.M., Kiage, L.M., 2019. Late Quaternary paleoenvironmental changes in tropical eastern Africa revealed by multi–proxy records from the Cherangani Hills, Kenya. Quaternary Science Reviews 222, 105907.CrossRefGoogle Scholar
Osmaston, H., 1989. Glaciers, glaciations and equilibrium line attitudes on Kilimanjaro. In: Mahaney, W.C. (Ed.), Quaternary and Environmental Research on East African Mountains, Balkema, Rotterdam, Netherlands, pp. 730.Google Scholar
Ossendorf, G., Groos, A.R., Bromm, T., Tekelemariam, M.G., Glaser, B., Lesur, J., Schmidt, J., et al. , 2019. Middle Stone Age foragers resided in high elevations of the glaciated Bale Mountains, Ethiopia. Science 365, 583587.CrossRefGoogle ScholarPubMed
Park, S.H., Lee, M.J., Jung, H.S., 2012. Analysis on the snow cover variations at Mt. Kilimanjaro using Landsat satellite images. Korean Journal of Remote Sensing 28, 409420.CrossRefGoogle Scholar
Parr, C.L., Andersen, A.N., 2006. Patch mosaic burning for biodiversity conservation: a critique of the pyrodiversity paradigm. Conservation Biology 20, 16101619.CrossRefGoogle ScholarPubMed
Pauling, R.C., Speidel, S.E., Thomas, M.G., Holt, T.N., Enns, R.M., 2018. Evaluation of moderate to high elevation effects on pulmonary arterial pressure measures in Angus cattle. Journal of Animal Science 96, 35993605.CrossRefGoogle Scholar
Perrott, R.A., 1982. A high altitude pollen diagram from Mount Kenya: its implications for the history of glaciation. Palaeoecology of Africa and the Surrounding Islands 14, 7783.Google Scholar
Pickford, M., 1986. Sedimentation and fossil preservation in the Nyanza Rift system, Kenya. In: Frostick, L.E., Renaut, R.W., Reid, I., Tiercelin, J.J. (Eds.), Sedimentation in the African Rifts. Geological Society Special Publications 25. Blackwell, Oxford, pp. 345362.Google Scholar
Piperno, D.R., 1988. Phytolith Analysis: An Archaeological and Geological Perspective. Academic Press, San Diego, CA.Google Scholar
Piperno, D.R., 2006. Phytoliths: A Comprehensive Guide for Archaeologists and Paleoecologists. Altamira Press, Oxford.Google Scholar
Piperno, D.R., 2002. Phytoliths. In: Smol, J.P., Birks, H.J.B., Last, W.M. (Eds.), Tracking Environmental Change Using Lake Sediments. Developments in Paleoenvironmental Research 3. Springer, Dordrecht, Netherlands, pp. 235–251.Google Scholar
Pisaric, M.F., 2002. Long-distance transport of terrestrial plant material by convection resulting from forest fires. Journal of Paleolimnology 28, 349354.CrossRefGoogle Scholar
Platts, P.J., Burgess, N.D., Gereau, R.E., Lovett, J.C., Marshall, A.R., McClean, C.J., Pellikka, P.K., et al. , 2011. Delimiting tropical mountain ecoregions for conservation. Environmental Conservation 38, 312324.CrossRefGoogle Scholar
Posnansky, M., 1967. Excavations at Lanet, Kenya, 1957. Azania 2, 89114.CrossRefGoogle Scholar
Prendergast, M.E., 2008. Forager variability and transitions to food production in secondary settings: Kansyore and Pastoral Neolithic economies in East Africa. PhD dissertation. Harvard University, USA.CrossRefGoogle Scholar
Rapp, G. Jr., Mulholland, S.C. (Eds.), 1992. Phytolith Systematics. Advances in Archaeological and Museum Science 1. Springer, Boston, MA.CrossRefGoogle Scholar
R Development Core Team, 2017. R: A Language and Environment for Statistical Computing. R version 3.4.0 (accessed April 21, 2017). http://www.r-project.org.Google Scholar
Retief, E., van Wyk, A.E., 2001. The genus Ehretia (Boraginaceae: Ehretioideae) in southern Africa. Bothalia 31, 923.CrossRefGoogle Scholar
Richardson, J.L., 1964. Plankton and fossil plankton studies in certain East African lakes. Internationale Vereinigung für theoretische und angewandte Limnologie: Verhandlungen 15, 993999.Google Scholar
Rodhe, H., Virji, H., 1976. Trends and periodicities in East African rainfall data. Monthly Weather Review 104, 307315.2.0.CO;2>CrossRefGoogle Scholar
Røhr, P.C., Killingtveit, Å., 2003. Rainfall distribution on the slopes of Mt Kilimanjaro. Hydrological Sciences Journal 48, 6577.CrossRefGoogle Scholar
Rosqvist, G., 1990. Quaternary glaciations in Africa. Quaternary Science Reviews 9, 281297.CrossRefGoogle Scholar
Rossouw, L., 2009. The Application of Fossil Grass-Phytolith Analysis in the Reconstruction of Cainozoic Environments in the South African Interior. PhD dissertation, University of the Free State, Bloemfontein, South Africa.Google Scholar
Ross, R., 1953. The algae of the East African great lakes. Internationale Vereinigung für theoretische und angewandte Limnologie: Verhandlungen 12, 320326.Google Scholar
Rucina, S., 2011. Kenya Ecosystem Dynamics: Perspectives from High and Low Altitude Ecosystems. PhD dissertation, University of York, UK.Google Scholar
Rucina, S.M., Muiruri, V.M., Downton, L., Marchant, R., 2010. Late Holocene savanna dynamics in the Amboseli Basin, Kenya. The Holocene 20, 667677.CrossRefGoogle Scholar
Rucina, S.M., Muiruri, V.M., Kinyanjui, R.N., McGuiness, K., Marchant, R., 2009. Late Quaternary vegetation and fire dynamics on Mount Kenya. Palaeogeography, Palaeoclimatology, Palaeoecology 283, 114.CrossRefGoogle Scholar
Said, M., Komakech, H.C., Munishi, L.K., Muzuka, A.N.N., 2019. Evidence of climate change impacts on water, food and energy resources around Kilimanjaro, Tanzania. Regional Environmental Change 19, 25212534.CrossRefGoogle Scholar
Saintilan, N., Rogers, K., 2015. Woody plant encroachment of grasslands: a comparison of terrestrial and wetland settings. New Phytologist 205, 10621070.CrossRefGoogle ScholarPubMed
Saji, N.H., Goswami, B.N., Vinayachandran, P.N., Yamagata, T., 1999. A dipole mode in the tropical Indian Ocean. Nature 401, 360363.CrossRefGoogle ScholarPubMed
Salt, G., 1954. A contribution to the ecology of upper Kilimanjaro. Journal of Ecology 42, 375423.CrossRefGoogle Scholar
Schlüter, T., 1997. Geology of East Africa. Gebrüder Borntraeger, Berlin.Google Scholar
Schmidt, P.R., 1989. Early Exploitation and Settlement in the Usambara Mountains. In: Hamilton, A.C., Bensted-Smith, R., (Eds.) Forest Conservation in the East Usambara Mountains, Tanzania. International Union for Conservation of Nature, Gland, Switzerland, pp. 7578.Google Scholar
Schüler, L., 2012. Studies on Late Quaternary Environmental Dynamics (Vegetation, Biodiversity, Climate, Soils, Fire and Human Impact) on Mt. Kilimanjaro, Comparing the Dry Northern with the Wet Southern Slopes. PhD dissertation, Georg-August-Universität Göttingen, Germany.Google Scholar
Schüler, L., Hemp, A., 2016. Atlas of pollen and spores and their parent taxa of Mt Kilimanjaro and tropical East Africa. Quaternary International 425, 301386.CrossRefGoogle Scholar
Schüler, L., Hemp, A., Behling, H., 2014a. Pollen-based temperature and precipitation inferences for the montane forest of Mt. Kilimanjaro during the last glacial and the Holocene. Climate of the Past Discussions 10, 195234.CrossRefGoogle Scholar
Schüler, L., Hemp, A., Behling, H., 2014b. Relationship between vegetation and modern pollen-rain along an elevational gradient on Kilimanjaro, Tanzania. The Holocene 24, 702713.CrossRefGoogle Scholar
Schüler, L., Hemp, A., Zech, W., Behling, H., 2012. Vegetation, climate and fire-dynamics in East Africa inferred from the Maundi crater pollen record from Mt Kilimanjaro during the last glacial–interglacial cycle. Quaternary Science Reviews 39, 113.CrossRefGoogle Scholar
Scott, A.C., 2010. Charcoal recognition, taphonomy and uses in palaeoenvironmental analysis. Palaeogeography, Palaeoclimatology, Palaeoecology 291, 1139.CrossRefGoogle Scholar
Sébastien, L., 2010. The Chagga people and environmental changes on Mount Kilimanjaro: lessons to learn. Climate and Development 2, 364377.CrossRefGoogle Scholar
Seki, H.A., Shirima, D.D., Courtney Mustaphi, C.J., Marchant, R., Munishi, P.K.T., 2018. The impact of land use and land cover change on biodiversity within and adjacent to Kibasira Swamp in Kilombero Valley, Tanzania. African Journal of Ecology 53, 518527.CrossRefGoogle Scholar
Shanahan, T.M., Zreda, M., 2000. Chronology of Quaternary glaciations in East Africa. Earth and Planetary Science Letters 177, 2342.CrossRefGoogle Scholar
Shipton, C., Crowther, A., Prendergast, M., Kourampas, N., Horton, M.C., Douka, K., Schwenninger, J.-L., et al. , 2016. Reinvestigation of Kuumbi cave, Zanzibar, reveals stone age coastal habitation, early Holocene abandonment, and Iron Age reoccupation. Azania 51, 197233.CrossRefGoogle Scholar
Shoemaker, A., 2018. Pastoral pasts in the Amboseli landscape: An archaeological exploration of the Amboseli ecosystem from the later Holocene to the colonial period. PhD dissertation. Uppsala University.CrossRefGoogle Scholar
Silayo, D.S., 2016. Historical path of forestry and the role of ‘Ujamaa’ ideology to today's policy of community forest management in Tanzania. PhD Dissertation, Sokoine University of Agriculture.Google Scholar
Sinclair, P., 2007. What is the archaeological evidence for external trading contacts on the East African coast in the first millennium BC? In: Starkey, J., Starkey, P., Wilkinson, T. (Eds.), Natural Resources and Cultural Connections of the Red Sea. Archaeopress, Oxford, pp. 18.Google Scholar
Sinninghe Damsté, J.S., Ossebaar, J., Schouten, S., Verschuren, D., 2012. Distribution of 30 tetraether lipids in the 25 kyr sedimentary record of Lake Challa: extracting reliable TEX86 and MBT/CBT palaeotemperatures from an equatorial African lake. Quaternary Science Reviews 50, 4354.CrossRefGoogle Scholar
Sinninghe Damsté, J.S., Verschuren, D., Ossebaar, J., Blokker, J., van Houten, R., van der Meer, M.T., Plessen, B., et al. , 2011. A 25,000-year record of climate-induced changes in lowland vegetation of eastern equatorial Africa revealed by the stable carbon-isotopic composition of fossil plant leaf waxes. Earth and Planetary Science Letters 302, 236246.CrossRefGoogle Scholar
Sjoestedt, Y., 1910. Wissenschaftliche Ergebnisse der schwedischen zoologischen Expedition nach dem Kilimandjaro, dem Meru und den umgebenden Massaisteppen (Scientific results of the Swedish Zoological Expedition to Kilimanjaro, Meru and the surrounding Masai steppes). 3 vols. Tryckt hos P. Palmquists aktiebolag, Stockholm.Google Scholar
Solomon, A.M., Silkworth, A.B., 1986. Spatial patterns of atmospheric pollen transport in a montane region. Quaternary Research 25, 150162.CrossRefGoogle Scholar
Soper, R., 1967. Kwale: an early iron age site in south-eastern Kenya. Azania 2, 117.CrossRefGoogle Scholar
Soper, R., 1976. Archaeological sites in the Chyulu Hills, Kenya. Azania 11, 83116.CrossRefGoogle Scholar
Spence, J.R., 1989. Plant succession on glacial deposits of Mount Kenya, East Africa. In: Mahaney, W.C. (Ed.), Quaternary and Environmental Research on East African Mountains. Balkema, Rotterdam, Netherlands, pp. 279290.Google Scholar
Stahl, K.M., 1964. History of the Chagga People of Kilimanjaro. Mouton, The Hague.Google Scholar
Stévart, T., Dauby, G., Lowry, P.P., Blach-Overgaard, A., Droissart, V., Harris, D.J., Mackinder, B.A., et al. , 2019. A third of the tropical African flora is potentially threatened with extinction. Science Advances 5, eaax9444.CrossRefGoogle ScholarPubMed
Stuiver, M., Polach, H.A., 1977. Discussion reporting of 14C data. Radiocarbon 19, 355363.CrossRefGoogle Scholar
Stump, D., 2006. The development and expansion of the field and irrigation system at Engaruka, Tanzania. Azania 41, 6994.CrossRefGoogle Scholar
Stump, D., Tagseth, M., 2009. The history of precolonial and early colonial agriculture on Kilimanjaro: a review. In: Clack, T. (Ed.), Culture, History and Identity: Landscapes of Inhabitation in the Mount Kilimanjaro Area, Tanzania. BAR International Series 1966. Archaeopress, Oxford, pp. 107124.Google Scholar
Sunseri, T., 2003. Reinterpreting a colonial rebellion: forestry and social control in German East Africa, 1874–1915. Environmental History 8, 430451.CrossRefGoogle Scholar
Sutton, J.E.G., 2004. Engaruka: the success and abandonment of an integrated irrigation system in an arid part of the Rift Valley, c. 15th to 17th centuries. In: Widgren, M., Sutton, J.E.G. (Eds.), Islands of Intensive Agriculture in Eastern Africa. James Currey, Oxford, pp. 114132.Google Scholar
Swynnerton, R.J.M., 1949. Some problems of the Chagga on Kilimanjaro. East African Agricultural Journal 15, 117132.CrossRefGoogle Scholar
Tagseth, M., 2008. Oral history and the development of indigenous irrigation: methods and examples from Kilimanjaro, Tanzania. Norwegian Journal of Geography 62, 922.Google Scholar
Tagseth, M., 2010. Studies of the Waterscape of Kilimanjaro, Tanzania: Water Management in Hill Furrow Irrigation. PhD dissertation, Norwegian University of Science and Technology, Trondheim, Norway.Google Scholar
Tagseth, M., 2006. The “mfongo” irrigation systems on the slopes of Mt. Kilimanjaro, Tanzania. In: Tvedt, T., Coopey, R., Jakobsson, E., Østigaard, T. (Eds.), A History of Water. Vol. 1, Water Control and River Biographies. Tauris, London pp. 488506.Google Scholar
Thompson, L.G., Brecher, H.H., Mosley-Thompson, E., Hardy, D.R., Mark, B.G., 2009. Glacier loss on Kilimanjaro continues unabated. Proceedings of the National Academy of Sciences 106, 1977019775.CrossRefGoogle ScholarPubMed
Thompson, L.G., Mosley-Thompson, E., Davis, M.E., Henderson, K.A., Brecher, H.H., Zagorodnov, V.S., Mashiotta, T.A., et al. ., 2002. Kilimanjaro ice core records: evidence of Holocene climate change in tropical Africa. Science 298, 5593.CrossRefGoogle ScholarPubMed
Thornton-Barnett, S., 2018. Persevering with Great Abandon: An Archaeobotanical Investigation of Resilience and Sustainability in Eastern African Irrigated Terrace Agriculture. PhD dissertation, University of York, UK.Google Scholar
Tieszen, L.L., Senyimba, M.M., Imbamba, S.K., Troughton, J.H., 1979. The distribution of C3 and C4 grasses and carbon isotope discrimination along an altitudinal and moisture gradient in Kenya. Oecologia 37, 337350.CrossRefGoogle ScholarPubMed
Tinner, W., Hofstetter, S., Zeugin, F., Conedera, M., Wohlgemuth, T., Zimmermann, L., Zweifel, R., 2006. Long-distance transport of macroscopic charcoal by an intensive crown fire in the Swiss Alps-implications for fire history reconstruction. The Holocene 16, 287292.CrossRefGoogle Scholar
Trauernicht, C., Brook, B.W., Murphy, B.P., Williamson, G.J., Bowman, D.M., 2015. Local and global pyrogeographic evidence that indigenous fire management creates pyrodiversity. Ecology and Evolution 5, 19081918.CrossRefGoogle ScholarPubMed
Twiss, P.C., 1992. Predicted world distribution of C3 and C4 grass phytoliths. In: Rapp, G. Jr., Mulholland, S.C. (Eds.), Phytolith Systematics. Springer, Boston, MA, pp. 113128.CrossRefGoogle Scholar
Twiss, P.C., Suess, E., Smith, R.M., 1969. Morphological classification of grass phytoliths 1. Soil Science Society of America Journal 33, 109115.CrossRefGoogle Scholar
Uhlig, K., 1904. Vom Kilimandscharo zum Meru. Vorläufige Mitteilungen über eine Forschungsreise (From Kilimanjaro to Meru. Preliminary report on a research expedition). DIE ERDE: Zeitschrift der Gesellschaft fur Erdkunde zu Berlin 9, 627650.Google Scholar
Umer, M., Lamb, H.F., Bonnefille, R., Lézine, A.M., Tiercelin, J.J., Gibert, E., Cazet, J.P., et al. , 2007. Late Pleistocene and Holocene vegetation history of the Bale Mountains, Ethiopia. Quaternary Science Reviews 26, 22292246.CrossRefGoogle Scholar
United Nations Conference on Trade and Development, 2002. Investment Policy Review: The United Republic of Tanzania. UNCTAD/ITE/IPC/Misc. 9. United Nations, Geneva, Switzerland.Google Scholar
Urrego, D., Bush, M.B., Silman, M., Correa-Metrio, A., Ledru, M., Mayle, F., Valencia, B., 2009. Millennial-scale ecological changes in tropical South America since the last glacial maximum. In: Vimieux, F., Sylvestre, F., Khodri, M. (Eds.), Past Climate Variability from the Last Glacial Maximum to the Holocene in South America and Surrounding Regions. Springer, Paris, pp. 283300.CrossRefGoogle Scholar
Urrego, D.H., Silman, M.R., Correa-Metrio, A., Bush, M.B., 2011. Pollen-vegetation relationships along steep climatic gradients in western Amazonia. Journal of Vegetation Science 22, 795806.CrossRefGoogle Scholar
Vachula, R.S., Richter, N., 2018. Informing sedimentary charcoal-based fire reconstructions with a kinematic transport model. The Holocene 28, 173178.Google Scholar
Van Bree, L.G.J., Rijpstra, W.I.C., Cocquyt, C., Al-Dhabi, N.A., Verschuren, D., Sinninghe Damsté, J., de Leeuw, J.W., 2014. Origin and palaeoenvironmental significance of C25 and C27 n-alk-1-enes in a 25,000-year lake-sedimentary record from equatorial East Africa. Geochimica et Cosmochimica Acta 145, 89102.Google Scholar
van Geel, B., Gelorini, V., Lyaruu, A., Aptroot, A., Rucina, S., Marchant, R., Damsté, J.S.S., Verschuren, D., 2011. Diversity and ecology of tropical African fungal spores from a 25,000-year palaeoenvironmental record in southeastern Kenya. Review of Palaeobotany and Palynology 164, 174190.CrossRefGoogle Scholar
van Zinderen Bakker, E.M., 1962. A late-glacial and post-glacial climatic correlation between East Africa and Europe. Nature 194, 201.Google Scholar
van Zinderen Bakker, E.M., 1964. A pollen diagram from equatorial Africa, Cherangani, Kenya. Geologie en Mijnbouw 43, 123128.Google Scholar
Vehrs, H.-P., Heller, G. R., 2017. Fauna, fire, and farming: landscape formation over the past 200 years in pastoral East Pokot, Kenya. Human Ecology 45, 613625.CrossRefGoogle Scholar
Verschuren, D., Damsté, J.S.S., Moernaut, J., Kristen, I., Blaauw, M., Fagot, M., Haug, G.H., et al. , 2009. Half-precessional dynamics of monsoon rainfall near the East African equator. Nature 462, 637.CrossRefGoogle ScholarPubMed
Villanueva, L., Besseling, M., Rodrigo-Gámiz, M., Rampen, S.W., Verschuren, D., Damsté, J.S.S., 2014. Potential biological sources of long chain alkyl diols in a lacustrine system. Organic Geochemistry 68, 2730.CrossRefGoogle Scholar
Vincens, A., Lézine, A.M., Buchet, G., Lewden, D., Le Thomas, A., 2007. African pollen database inventory of tree and shrub pollen types. Review of Palaeobotany and Palynology 145, 135141.CrossRefGoogle Scholar
Walshaw, S.C., 2015. Swahili Trade, Urbanization, and Food Production: Botanical Perspectives from Pemba Island, Tanzania. Archaeopress, Oxford.CrossRefGoogle Scholar
Walz, J.R., 2010. Route to a Regional Past: An Archaeology of the Lower Pangani (Ruvu) Basin, Tanzania. 500–1900 C.E. PhD dissertation, University of Florida, Gainesville.Google Scholar
Whitlock, C., Larsen, C., 2001. Charcoal as a fire proxy. In: Smol, J.P., Birks, H.J.B., Last, W.M. (Eds.), Tracking Environmental Change Using Lake Sediments. Vol. 3, Terrestrial, Algal, and Siliceous Indicators. Kluwer Academic, Dordrecht, Netherlands, pp. 7597.Google Scholar
Widgren, M., 2004. Towards a historical geography of intensive farming in eastern Africa. In: Widgren, M., Sutton, J.E.G. (Eds.), Islands of Intensive Agriculture in Eastern Africa. James Currey, Oxford, pp. 118.Google Scholar
Willis, K.J., Bailey, R.M., Bhagwat, S.A., Birks, H.J.B., 2010. Biodiversity baselines, thresholds and resilience: testing predictions and assumptions using palaeoecological data. Trends in Ecology & Evolution 25, 583591.CrossRefGoogle ScholarPubMed
Wimmelbücker, L., 2002. Kilimanjaro: A Regional History. Vol. 1, Production and Living Conditions: C. 1800–1920. LIT Verlag, Münster, Germany.Google Scholar
Wood, P.J., 1965a. A note on forestry on Kilimanjaro. Tanganyika Notes and Records 64, 111114.Google Scholar
Wood, P.J., 1965b. The forest glades of west Kilimanjaro. Tanganyika Notes and Records 64, 108111.Google Scholar
Young, T.P., Peacock, M.M., 1992. Giant senecios and alpine vegetation of Mount Kenya. Journal of Ecology 80, 141148.Google Scholar
Zech, M., 2006. Evidence for late Pleistocene climate changes from buried soils on the southern slopes of Mt. Kilimanjaro, Tanzania. Palaeogeography, Palaeoclimatology, Palaeoecology 242, 303312.CrossRefGoogle Scholar
Zech, M., Leiber, K., Zech, W., Poetsch, T., Hemp, A., 2011. Late Quaternary soil genesis and vegetation history on the northern slopes of Mt. Kilimanjaro, East Africa. Quaternary International 243, 327336.Google Scholar
Supplementary material: File

Courtney Mustaphi et al. supplementary material

Courtney Mustaphi et al. supplementary material 1

Download Courtney Mustaphi et al. supplementary material(File)
File 701 Bytes
Supplementary material: File

Courtney Mustaphi et al. supplementary material

Courtney Mustaphi et al. supplementary material 2

Download Courtney Mustaphi et al. supplementary material(File)
File 3.7 KB
Supplementary material: File

Courtney Mustaphi et al. supplementary material

Courtney Mustaphi et al. supplementary material 3

Download Courtney Mustaphi et al. supplementary material(File)
File 206.7 KB