Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-19T06:03:51.724Z Has data issue: false hasContentIssue false

210Pb chronology and trace metal geochemistry at Los Tuxtlas, Mexico, as evidenced by a sedimentary record from the Lago Verde crater lake

Published online by Cambridge University Press:  20 January 2017

Ana Carolina Ruiz-Fernández*
Affiliation:
Universidad Nacional Autónoma de México, Calz. J. Montes Camarena s/n., 82000 Mazatlán, Mexico
Claude Hillaire-Marcel
Affiliation:
Centre de Recherche en Géochimie et en Géodynamique (GEOTOP-UQAM-McGill), 201 avenue du Président-Kennedy, Montréal, Qc, Canada H2X 3Y7
Federico Páez-Osuna
Affiliation:
Universidad Nacional Autónoma de México, Calz. J. Montes Camarena s/n., 82000 Mazatlán, Mexico El Colegio de Sinaloa, Rosales 435 Pte, Culiacán, Sin., Mexico
Bassam Ghaleb
Affiliation:
Centre de Recherche en Géochimie et en Géodynamique (GEOTOP-UQAM-McGill), 201 avenue du Président-Kennedy, Montréal, Qc, Canada H2X 3Y7
Margarita Caballero
Affiliation:
Institute of Geophysics, UNAM, Circuito Ciudad Universitaria, 04510 México City, Mexico
*
Corresponding author. Fax: +52 669 9826133. E-mail addresses:[email protected] (A. Carolina Ruiz-Fernández), [email protected] (C. Hillaire-Marcel), [email protected] (F. Páez-Osuna), [email protected] (B. Ghaleb), [email protected] (M. Caballero).

Abstract

Lago Verde is a fresh-water maar found on the lower slopes of San Martin volcano, at the Sierra de Los Tuxtlas, Mexico, currently the northernmost remnant of the tropical rain forest in America. 210Pb and 137Cs analyzed in a sediment core were used to reconstruct the historical fluxes of Ag, Cd, Cu, Pb, Hg and Zn to the site during the last ∼ 150 yr. The 210Pbxs-derived sediment accumulation rates, the magnetic susceptibility, C/N ratios and δ13C data evidenced background conditions at the lake until 1960s, when enhanced erosion related to the clearing of large forested areas at Los Tuxtlas promoted higher accumulation rates of a heavier and more magnetic sedimentary material. Recent sediments from Lago Verde were found enriched by Pb (26-fold natural concentration level [NCLs]) and moderately enriched by Cd>Cu>Zn and Hg (6-, 5-, 4- and 4-fold corresponding NCLs, respectively). The fluxes of Cu, Hg, Pb and Zn have significantly increased since 1940s, with peak ratios of total modern to pre-industrial fluxes of 11, 11, 19 and 49, respectively. The lake occupies a relatively pristine, non-industrialized basin, and therefore the increased metal fluxes might be related to long-distance aeolian transport of trace metals.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

1 Fax: +514 987 3635.
2 Fax: +52 667 7161050.
3 Fax: +52 55 5550 2486.

References

Appleby, P.G. Chronostratigraphic techniques in recent sediments. Last, W.M., and Smol, J.P. Tracking Environmental Change using Lake Sediments. Vol. 1 Basin Analysis, Coring and Chronological Techniques. (2001). Kluwer Academic Publishers, 133.Google Scholar
Appleby, P.G., and Oldfield, F. Application of lead-210 to sedimentation studies. Ivanovich, M., and Harmon, R.S. Uranium-Series Disequilibrium. Applications to Earth, Marine and Environmental Sciences. 2nd ed. (1992). Clarendon Press, Oxford. 731783.Google Scholar
Bender, M.M., Baerreis, D.A., and Steventon, R.L. Further light on carbon isotopes and hopewell agriculture. America Antiqua 46, 2 (1981). 346353.CrossRefGoogle Scholar
Buckles, D., Erenstein, O., (1996). Intensifying maize-based cropping systems in the Sierra de Santa Marta, Veracruz. CIMMYT-NRG Paper 96-07. Mexico., 55 pp.Google Scholar
Caballero, M., Vázquez, G., Lozano, S., Rodríguez, A., Ortega, B., and Ruiz-Fernández, A.C. Present limnological conditions and recent (ca. 340 yr) palaeolimnology of a tropical lake in the Sierra de Los Tuxtlas, Eastern Mexico. Journal of Paleolimnology 35, (2006). 8397.CrossRefGoogle Scholar
Coates-Estrada, R., and Estrada, A. Fruiting and frugivores at a strangler fig in the tropical rain forest of Los Tuxtlas, Mexico. Journal of Tropical Ecology 2, (1986). 349357.CrossRefGoogle Scholar
Cochran, J.K., Hirschberg, D.J., Wang, J., and Dere, C. Atmospheric deposition of metals to coastal waters (Long Island Sound, New York, U.S.A.): evidence from saltmarsh deposits. Estuarine Coastal and Shelf Science 46, (1998). 503522.CrossRefGoogle Scholar
Davies, S.J., Metcalfe, S.E., MacKenzie, A.B., Newton, A.J., Endfield, G.H., and Farmer, J.G. Environmental changes in the Zirahuén basin, Michoacán, México, during the last 1000 years. Journal of Paleolimnology 31, (2004). 77 CrossRefGoogle Scholar
Delaune, R.D., Patrick, W.H., and Buresh, R.J. Sedimentation rates determined by 137Cs dating in a rapidly accreting salt marsh. Nature 275, (1978). 532533.CrossRefGoogle Scholar
Dirzo, R., and García, M. Rates of deforestation in Los Tuxtlas, a neotropical area in Southeast Mexico. Conservation Biology 6, 1 (1992). 8490.CrossRefGoogle Scholar
Dirzo, R., González-Soriano, E., and Vogt, R. Introducción general. González-Soriano, E., Dirzo, R., and Vogt, R. Historia Natural de Los Tuxtlas. (1997). Universidad Nacional Autónoma de México, México. 37.Google Scholar
Fernex, F., Zárate-del Valle, P., Ramírez-Sánchez, H., Michaud, F., Parron, C., Dalmasso, J., Barci-Funel, G., and Guzmán-Arroyo, M. Sedimentation rates in lake Chapala (western Mexico): possible active tectonic control. Chemical Geology 177, (2001). 213228.CrossRefGoogle Scholar
Flynn, W.W. Determination of low levels of polonium-210 in environmental materials. Analytica Chimica Acta 43, (1968). 221227.CrossRefGoogle ScholarPubMed
García, E. Modificaciones al sistema de clasificación climática de Koopen. (1981). Instituto de Geografía, UNAM, México, DF.Google Scholar
Glasby, G.P., and Szefer, P. Marine pollution in Gdansk Bay, Puck Bay and the Vistula Lagoon, Poland: an overview. The Science of Total Environment 212, 1 (1998). 4957.CrossRefGoogle Scholar
GVP, (2004). Global Volcanism Program, Smithsonian National Museum of Natural History. http://www.volcano.si.edu. August 26, 2004.Google Scholar
Heyvaert, A.C., Reuter, J.E., Slotton, D.G., and Goldman, C.R. Paleolimnological reconstruction of historical atmospheric lead and mercury deposition at Lake Tahoe, California–Nevada. Environmental Science and Technology 34, (2000). 35883597.CrossRefGoogle Scholar
Ho, E.S., and Meyers, P.A. Variability of early diagenesis in lake sediments: evidence from the sedimentary record in an isolated tarn. Chemical Geology 112, (1994). 309324.CrossRefGoogle Scholar
Krishnaswami, S., and Lal, D. Radionuclide limnochronology. Lerman, A. Lakes Chemistry, Geology, and Physics. (1978). Springer-Verlag, New York. 153177.Google Scholar
Loring, D.H., and Rantala, R.T.T. Geochemical analyses of marine sediments and suspended particulate matter. Fisheries and Marine Services. Technical Report (1992). 700 Google Scholar
Lozano-García, M.S., and Ortega-Guerrero, B. Palynological and magnetic susceptibility records of Lake Chalco, central Mexico. Palaeo 109, (1994). 177191.CrossRefGoogle Scholar
Nelson, S.A., and González-Caver, E. Geology and K–Ar dating of the tuxtla volcanic field, Veracruz, Mexico. Bulletin Volcanologique 55, (1992). 8596.CrossRefGoogle Scholar
Ortega, B., Caballero, M., Lozano-García, S., Vilaclara, G., and Rodríguez, A. Rock Magnetic and Geochemical Proxies for Iron Mineral Diagenesis in a Tropical Lake: Lago Verde, Los Tuxtlas, East-Central Mexico. Earth and Planetary Science Letters 250, 3–4 (2006). 444458.CrossRefGoogle Scholar
Punning, J.-M., and Tõugu, K. C/N ratio and fossil pigments of some Estonian lakes: an evidence of human impact and Holocene environmental change. Environmental Monitoring and Assessement 64, (2000). 549567.CrossRefGoogle Scholar
Reyes Hernández, H., Aguilar Robledo, M., Aguirre Rivera, J.R., and Trejo Vázquez, I. Cambios en la cubierta vegetal y uso del suelo en el área del proyecto Pujal-Coy, San Luis Potosí, México, 1973–2000. Boletín del Instituto Geografia UNAM 5, (2006). 2642.Google Scholar
Ruiz-Fernández, A.C., Páez-Osuna, F., Urrutia-Fucugauchi, J., Preda, M., and Rehault, I. Historical trace metal fluxes in the Mexico City Metropolitan Zone as evidenced by a sedimentary record from the Espejo de los Lirios lake. Journal of Environmental Monitoring 6, 5 (2004). 473480.CrossRefGoogle ScholarPubMed
Ruiz-Fernández, A.C., Páez-Osuna, F., Urrutia-Fucugauchi, J., and Preda, M. 210Pb geochronology of sediment accumulation rates in Mexico City Metropolitan Zone as recorded at Espejo de los Lirios lake sediments. Catena 61, 1 (2005). 3148.CrossRefGoogle Scholar
Santley, R.S., Nelson, S.A., Reinhardt, B.K., Pool, C.A., Arnold, P.J. III When day turned to night. Volcanism and the archaelogical record from the Tuxtla mountains, Southern Veracruz, Mexico. Bawden, G., Reycraft, R.M. Environmental Disaster and the Archaeology of Human Response. Anthropology Papers 7, (2000). Maxmell Museum of Anthropology, Albuquerque. 143162.Google Scholar
Soto-Jiménez, M.F., Hibdon, S.A., Rankin, C.W., Aggarawl, J., Ruiz-Fernández, A.C., Páez-Osuna, F., and Flegal, A.R. Chronicling a century of lead pollution in Mexico: stable lead isotopic composition analyses of dated sediment cores. Environmental Science Technology 40, (2006). 764770.CrossRefGoogle ScholarPubMed
Stigter, J.B., Haan, H.P.M., Guicherit, R., Dekkers, C.P.A., and Daane, M.L. Determination of cadmium, zinc, copper, chromium and arsenic in crude oil cargoes. Environmental Pollution 107, (2000). 451464.CrossRefGoogle ScholarPubMed
Taylor, S.R. Abundance of chemical elements in the continental crust; a new table. Geochimica et Cosmochimica Acta 28, 8 (1964). 12731285.CrossRefGoogle Scholar
Tessier, A., Rapin, F., and Carignan, R. Trace metals in oxic lake sediments: possible adsorption onto iron oxyhydroxides. Geochimica et Cosmochimica Acta 49, (1985). 183194.CrossRefGoogle Scholar
Tyson, R.V. Sedimentary Organic Matter: Organic Facies and Palynofacies. (1995). Chapman and Hall, London.Google Scholar
Vázquez, G., Favila, M.E., Madrigal, R., Montes del Olmo, C., Baltanás, A., and Bravo, M.A. Limnology of crater lakes in Los Tuxtlas, México. Hydrobiologia 523, (2004). 5970.CrossRefGoogle Scholar
Walker, B.H., and Steffen, W.L. The nature of global change B.H. Walker and W.L. Steffen. Walker, B.H., Steffen, W.L., Canadell, J., and Ingram, J.S.I. The Terrestrial Biosphere and Global Change: Implications for Natural and Nanaged Ecosystems. (1999). Cambridge University Press, Cambridge, UK. IGBP Book Series No. 4 Google Scholar
Zimmerman, A.R., and Canuel, E.A. A geochemical record of eutrophication anoxia in Chesapeake Bay sediments: anthropogenic influence on organic matter composition. Marine Chemistry 69, (2000). 117173.CrossRefGoogle Scholar