Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-08T08:46:58.887Z Has data issue: false hasContentIssue false

14C chronology for ice retreat and inception of Champlain Sea in the St. Lawrence Lowlands, Canada

Published online by Cambridge University Press:  20 January 2017

Pierre J.H. Richard*
Affiliation:
Département de géographie, Université de Montréal, C.P. 6128 Centre-ville, Montréal, Canada H3C 3J7
*
*Corresponding author. Fax: +1 514 343 8008.E-mail addresses:[email protected] (P.J.H. Richard)8 [email protected] (S. Occhietti).

Abstract

AMS radiocarbon cross-dating of plant debris and marine shells trapped in a lake basin on Mount St. Hilaire (Québec, Canada) provides a direct assessment of a reservoir effect totaling ca. 1800 14C years during the early stage of Champlain Sea. Pollen-based extrapolation of bottommost ages on terrestrial plant macrofossils in sediments of this lake, and of another lake nearby support an estimate of 11,100 ± 100 14C yr B.P. for marine invasion in the Central St. Lawrence River Lowlands. Results indicate a 400–1000 years younger regional chronology of ice retreat, now congruent with the one inferred from the New England varve chronology. This is a summary of a longer paper to be published in French.

Type
Short Papers
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, T.W., (1988). Late Quaternary pollen stratigraphy of the Ottawa valley-Lake Ontario region and its application in dating the Champlain Sea. Gadd, N.R., The late quaternary development of the champlain sea basin Special Paper-Geological Association of Canada vol. 35, 207224.Google Scholar
Benninghoff, W.S., (1962). Calculation of pollen and spore density in sediments by addition of exotic pollen in known quantities. Pollen et Spores 4, 332333.Google Scholar
Björck, S., Koç, N., Skog, G., (2003). Consistently large marine reservoir ages in the Norwegian Sea during the Last Deglaciation. Quaternary Science Reviews 22, 429435.Google Scholar
Boyle, E.A., (2000). Is ocean thermohaline circulation linked to abrupt stadial/interstadial transition?. Quaternary Science Reviews 19, 255272.Google Scholar
David, P.P., (1972). Pleistocene deposits northeast of Montréal. 24th International Geological Congress, Excursion B-04, Montréal 14 p.Google Scholar
Dean, W.E., (1974). Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition: comparison with other methods. Journal of Sedimentary Petrology 44, 242248.Google Scholar
Dyke, A.S., (2004). An outline of North American deglaciation with emphasis on central and northern Canada. Ehlers, J., Gibbard, P.L., Quaternary glaciations, extent and chronology Part II: North America Elsevier, New York., 373424.Google Scholar
Dyke, A.S., Prest, V.K., (1987). Late Wisconsinan and Holocene history of the Laurentide Ice Sheet. Géographie Physique et Quaternaire 41, 237263.Google Scholar
Dyke, A.S., McNeely, R., Southon, J., Andrews, J.T., Peltier, W.R., Clague, J.J., England, J.H., Gagnon, J.-M., Baldinger, A., (2003a). Preliminary assessment of Canadian marine reservoir ages. Xth Meeting of the Canadian Association for Quaternary Studies, Halifax A23June, Abstracts.Google Scholar
A.S., Dyke, Moore, A., Robertson, L., (2003b). Deglaciation of North America. Geological Survey of Canada, Ottawa, Open File 1574, 2 sheets, 32 maps.Google Scholar
England, J.H., Dyke, A.S., McNeely, R., (2003). Inter-species radiocarbon age comparisons on subfossil mollusca from Arctic Canada. 33rd Annual International Arctic Workshop, Program and Abstracts, Tromsø University, Norway.Google Scholar
Hillaire-Marcel, C., (1981). Paléo-océanographie isotopique des mers post-glaciaires du Québec. Palaeogeography, Palaeoclimatology, Palaeoecology 35, 35119.CrossRefGoogle Scholar
Hutchinson, I., James, T.S., Reimer, P.J., Bornhold, B.D., Clague, J.J., (2004). Marine and limnic radiocarbon reservoir corrections for studies of late- and postglacial environments in Georgia Basin and Puget Lowland, British Columbia, Canada and Washington, USA. Quaternary Research 61, 193203.Google Scholar
King, G.A., (1985). A standard method for evaluating radiocarbon dates of local deglaciation: application to the deglaciation history of southern Labrador and adjacent Québec. Géographie Physique et Quaternaire 39, 163182.CrossRefGoogle Scholar
Lasalle, P., (1966). Late Quaternary vegetation and glacial history in the St. Lawrence lowlands, Canada. Leidse Geologiske Mededelingen 38, 91128.Google Scholar
Levesque, A.J., Mayle, F.E., Walker, I.R., Cwynar, L.C., (1993). A previously unrecognized late-glacial cold event in eastern North America. Nature 361, 623626.CrossRefGoogle Scholar
Occhietti, S., Chartier, M., Hillaire-Marcel, C., Cournoyer, M., Cumbaa, S.L., Harington, C.R., (2001a). Paléoenvironnements de la Mer de Champlain dans la région de Québec, entre 11 300 et 9750 BP: le site de Saint-Nicolas. Géographie Physique et Quaternaire 55, 2346.Google Scholar
Occhietti, S., Parent, M., Shilts, W.W., Dionne, J.-C., Govare, É., Harmand, D., (2001b). Late Wisconsinan glacial dynamics, deglaciation and marine invasion in southern Québec. Weddle, T.K., Retelle, M.J., Deglacial history and relative sea-level changes, Northern New England and adjacent Canada, Boulder, Colorado Special Paper-Geological Society of America 351, 245272.Google Scholar
Occhietti, S., Govare, É., Klassen, R., Parent, M., Vincent, J.-S., (2004). Late Wisconsinan–Early Holocene deglaciation of Québec-Labrador. Ehlers, J., Gibbard, P.L., Quaternary glaciations, Extent and chronology Part II: North America Elsevier, New York., 243273.Google Scholar
Occhietti, S., P.J.H., Richard in press. Effet réservoir sur les âges 14C de la Mer de Champlain " la transition Pléistocène–Holocène: révision de la chronologie de la déglaciation au Québec méridional.Géographie Physique et Quaternaire.Google Scholar
Parent, M., Occhietti, S., (1988). Late Wisconsinan deglaciation and Champlain Sea invasion in the St. Lawrence valley, Québec. Géographie Physique et Quaternaire 42, 215246.Google Scholar
Parent, M., Occhietti, S., (1999). Late Wisconsinan deglaciation and glacial lake development in the Appalachian uplands and piedmont of southeastern Québec. Géographie Physique et Quaternaire 53, 117135.Google Scholar
Ridge, J.C., Besonen, M.R., Brochu, M., Brown, S., Callahan, J.W., Cook, G.J., Nicholson, R.S., Toll, N.J., (1999). Varve, paleomagnetic, and 14C chronologies for late Pleistocene events in New Hampshire and Vermont. Géographie Physique et Quaternaire 53, 79106.CrossRefGoogle Scholar
Ridge, J.C., Canwell, B.A., Kelly, M.A., Kelley, S.Z., (2001). Atmospheric 14C chronology for late Wisconsinan deglaciation and sea-level change in eastern New England using varve and paleomagnetic records. Special Paper-Geological Society of America 351, 171189.Google Scholar
Rodrigues, C.G., (1988). Late Quaternary invertebrate faunal associations and chronology of the western Champlain Sea basin. Gadd, N.R., The Late Quaternary development of the Champlain Sea basin Special Paper-Geological Association of Canada (Ottawa) 35, 155176.Google Scholar
Rodrigues, C.G., (1992). Successions of invertebrate microfossils and the late Quaternary deglaciation of the central St. Lawrence Lowland, Canada and United States. Quaternary Science Reviews 11, 503534.Google Scholar
Sutherland, D.G., (1986). A review of Scottish marine shell radiocarbon dates, their standardization and interpretation. Scottish Journal of Geology 22, 145164.CrossRefGoogle Scholar
Wastegård, S., Schoning, K., (1997). Calcareous fossils and radiocarbon dating during the saline phase of the Yoldia Sea stage. Geologiska Föreningens Förhandlingen 119, 245248.Google Scholar