Gram-negative bacteria such as Escherichia coli (E. coli) and Salmonella typhimurium (S. typhimurium) have two layers of membranes in the cellular envelope – the cytoplasmic membrane and the outer membrane (Fig. I). Between these membranes is a periplasmic space in which there is a peptidoglycan layer that provides the cells with mechanical rigidity. In this periplasmic space, there are also a variety of hydrolases and binding proteins. The composition of the outer membrane is somewhat unusual. This membrane bilayer is asymmetric, having an inner (periplasmic) leaflet composed of phospholipids and an outer (extracellular) leaflet formed by lipopolysaccharide (LPS). Unlike phospholipids having two acyl chains, LPS has six or seven saturated fatty acid chains (see reviews, Lugtenberg & Van Alphen, 1983; Nikaido & Vaara, 1985; Nakae, 1986). The head groups of LPS have a strong affinity for divalent cations such as Ca2+, and given a sufficient concentration of these ions the outer membrane can form quite a formidable permeability barrier through this head group/salt bridge network (Nikaido & Vaara, 1985). The function of the outer membrane is to serve as a protective envelope against hostile environments such as those in the intestinal tract of animals where harmful and toxic substances - for example, bile salts and various enzymes - are often found. The outer membrane itself would be impermeable to most hydrophilic solutes were it not for the presence of membrane channels. The presence of a large number of pore-forming proteins provides both specific and nonspecific diffusion pathways across the outer membrane for solutes such as nutrients and waste products to diffuse into or out of the cell.