Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-23T03:00:27.791Z Has data issue: false hasContentIssue false

Van der Waals forces in biological systems

Published online by Cambridge University Press:  17 March 2009

Jacob N. Israelachvili
Affiliation:
Stockholm University, Biophysics Institute, Arrhenius Laboratory, Fack, S-104 05 Stockholm, Sweden

Extract

The theory of van der Waals forces has now developed to a stage where it constitutes a powerful tool in theoretical investigations of many biological systems. In this review we shall consider both the theoretical and conceptual aspects of these forces with the emphasis on the way they may be involved in various biological processes.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1973

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Brenner, S. L. & McQuarrie, D. A. (1973). Force balances in systems of cylindrical polyelectrolytes. Biophys. J. 13, 301–31.CrossRefGoogle ScholarPubMed
Burgess, A. W., Momany, F. A. & Scheraga, H. A. (1973). Conformational analysis of thryotropin releasing factor. Proc. natn. Acad. Sci. U.S.A. 70, 1456–60.CrossRefGoogle Scholar
Casimir, H. B. G. & Polder, D. (1948). The influence of retardation on the London—van der Waals Forces. Phys. Rev. 73, 360–72.CrossRefGoogle Scholar
Craig, R. A. (1973). Forces between parallel dielectric surfaces. J. chem. Phys. 58, 2988–93.CrossRefGoogle Scholar
Davies, B. & Ninham, B. W. (1972). Van der Waals forces in electrolytes. J. chem. Phys. 56, 5797–801.CrossRefGoogle Scholar
Denbigh, K. G. (1940). The polarisabilities of bonds — I. Trans. Faraday Soc. 36, 936–48.CrossRefGoogle Scholar
Dzyaloshinskii, I. E., Lifshitz, E. M. & Pitaevskii, L. P. (1961). The general theory of van der Waals forces. Adv. Phys. 10, 165209.CrossRefGoogle Scholar
Fowkes, F. M. (1968). Calculation of work of adhesion by pair potential summation. J. Colloid Interface Sci. 28, 493505.CrossRefGoogle Scholar
Gingell, D. & Parsegian, V. A. (1972). Computation of van der Waals interactions in aqueous systems using reflectivity data. J. theor. Biol. 36, 4152.CrossRefGoogle Scholar
Gordesky, S. E. & Marinetti, G. V. (1973). The asymmetric arrangement of phospholipids in human erythrocyte membrane. Biochem. biophys. Res. Commun. 50, 1027–31.CrossRefGoogle Scholar
Hamaker, H. C. (1937). The London—van der Waals attraction between spherical particles. Physica's Grav. IV. 1058–72.Google Scholar
Haydon, D. A. & Taylor, J. L. (1968). Contact angles for thin lipid films and the determination of London–van der Waals forces. Nature, Lond. 217, 739–40.CrossRefGoogle Scholar
Hirschfelder, J. O., Curtiss, C. F. & Bird, R. B.Molecular Theory of Gases and Liquids. John Wiley (New York), Chapman and Hall (London).CrossRefGoogle Scholar
Hoare, D. G. (1972). Significance of molecular alignment and orbital steering in mechanisms for enzymatic catalysis. Nature, Lond. 236, 437–40.CrossRefGoogle ScholarPubMed
Imura, H. & Okano, K. (1973). Van der Waals–Lifshitz forces between anisotropic ellipsoidal particles. J. chem. Phys. 58, 2763–76.CrossRefGoogle Scholar
Israelachvili, J. N. (1972). The calculation of van der Waals dispersion forces between macroscopic bodies. Proc. Roy. Soc. Lond. A 331, 3955.Google Scholar
Israelachvili, J. N. (1973 a). Van der Waals forces involving thin rods. J. theor. Biol. 42, 411–7.CrossRefGoogle Scholar
Israelachvili, J. N. (1973 b). Van der Waals-dispersion force contribution to works of adhesion and contact angles on the basis of macroscopic theory. J. chem. Soc., Faraday Trans. II, 69, 1729–38.Google Scholar
Israelachvili, J. N. & Tabor, D. (1972). The measurement of van der Waals dispersion forces in the range 1·5 to 130 nm. Proc. Roy. Soc. A 331, 1938.Google Scholar
Israelachvili, J. N. & Tabor, D. (1973). Van der Waals forces: Theory and experiment. In Progress in Surface and Membrane Science, vol. 7. pp. 155. New York: Academic Press.Google Scholar
Jehle, H. (1969). Charge fluctuation forces in bioiogical systems. Ann. N. Y, Acad. Sci. 158, 240–55.CrossRefGoogle Scholar
Langbein, D. (1969). Van der Waals attraction between macroscopic bodies. J. Adhes. I, 237–45.CrossRefGoogle Scholar
Langbein, D. (1971). Non-retarded dispersion energy between macroscopic spheres. Physics Chem. Solids 32, 1657–67.CrossRefGoogle Scholar
Langbein, D. (1972 a). Van der Waals attraction between cylinders, rods or fibres. Phys. Kondens. Materie. 15, 6186.Google Scholar
Langbein, D. (1972 b). Van der Waals attraction in multilayer structures. J. Adhes. 3, 213–35.CrossRefGoogle Scholar
Langbein, D. (1973). The macroscopic theory of van der Waals attraction. Solid State Commun. 12, 853–5.CrossRefGoogle Scholar
Lifshitz, E. M. (1956). The theory of molecular attractive forces between solids. Soviet Phys. JETP, 2, 7383.Google Scholar
Linder, B. (1967). Reaction field techniques and their applications to intermolecular forces. In Intermolecular Forces, vol. 12 (ed. Hirschfelder, J. O.). Adv. chem. Phys. pp. 225–82. New York. Wiley & Sons. Intersci. Publ.CrossRefGoogle Scholar
London, F. (1930). Zur Theorie und Systematik der Molekularkräfte. Z. Phys. 63, 245–79.CrossRefGoogle Scholar
London, F. (1937). The general theory of molecular forces. Trans. Faraday Soc. 33, 826.CrossRefGoogle Scholar
Mahanty, J. & Ninham, B. W. (1973 a). Dispersion contributions to surface energy. J. Chem. Phys. 59, 6157–62.CrossRefGoogle Scholar
Mahanty, J. & Ninham, B. W. (1973 b). Dispersion interactions and surface energies of dielectric slabs. (Submitted.)CrossRefGoogle Scholar
Marčelja, S. (1973). Molecular model for phase transition in biological membranes. Nature, Lond. 241, 451–3.CrossRefGoogle ScholarPubMed
Margenau, H. & Kestner, N. R. (1971). Theory of Intermolecular forces, 2nd ed.Pergamon Press, Oxford.Google Scholar
McGuire, R. F., Vanderkooi, G., Momany, F. A., Ingwall, R. T., Crippen, G. M., Lotan, N., Tuttle, R. W., Kashuba, K. L. & Scheraga, H. A. (1971). Determination of intermolecular potentials from crystal data. II: Crystal packing with applications to polyamonio acids. Macromolecules 4, 112–24.CrossRefGoogle Scholar
McLachlan, A. D. (1963 a). Retarded dispersion forces between molecules. Proc. Roy. Soc. Lond. A 271, 387401.Google Scholar
McLachlan, A. D. (1963 b). Retarded dispersion forces in dielectrics at finite temperatures. Proc. Roy. Soc. Lond. A 274, 8090.Google Scholar
McLachlan, A. D. (1964). Van der Waals forces between an atom and a surface. Molec. Phys. 7, 381–8.CrossRefGoogle Scholar
McLachlan, A. D. (1965). Effect of the medium on dispersion forces in liquids. Discuss. Faraday Soc. 40, 239–45.CrossRefGoogle Scholar
Mitchell, D. J., Ninham, B. W. & Richmond, P. (1972). Van der Waals forces between thin anisotropic cylinders. J. theor. Biol. 37, 251–9.CrossRefGoogle Scholar
Mitchell, D. J., Ninham, B. W. & Richmond, P. (1973 a). Van der Waals forces between cylinders: I. Nonretarded forces between thin isotropic rods and finite size corrections. Biophys. J. 13, 359–69.CrossRefGoogle Scholar
Mitchell, D. J., Ninham, B. W. & Richmond, P. (1973 b). Van der Waals forces between cylinders: II. Retarded interaction between thin isotropic rods. Biophys. J. 13, 370–84.CrossRefGoogle Scholar
Mitchell, D. J. & Richmond, P. (1973 a). On the calculation of surface energies. Chem. Phys. Lett. 21, 113–14.CrossRefGoogle Scholar
Mitchell, D. J. & Richmond, P. (1973 b). The force between two charged dielectric half spaces immersed in an electrolyte. (Submitted.)CrossRefGoogle Scholar
Moelwyn-Hughes, E. A. (1961). Physical Chemistry, 2nd ed.Pergamon Press, Oxford.Google Scholar
Morris, J. M. (1973). The use of atom–atom potentials in the calculation of intermolecular forces between large molecules. Aust. J. Chem. 26, 649–53.CrossRefGoogle Scholar
Ninham, B. W. & Parsegian, V. A. (1970 a). Van der Waals forces: Special characteristics in lipid-water systems and a general method of calculation based on the Lifshitz theory. Biophys. J. 10, 646–63.CrossRefGoogle Scholar
Ninham, B. W. & Parsegian, V. A. (1970 b). Van der Waals forces across triple layer films. J. chem. Phys. 52, 4578–87.CrossRefGoogle Scholar
Ninham, B. W. & Richmond, P. (1973). Multimolecular adsorption on cell surfaces under the influence of van der Waals forces. J. chem. Soc. Faraday Trans. II, 69, 658–64.CrossRefGoogle Scholar
Niu, G., Go, N. & Scheraga, H. A. (1973). Calculation of the conformation of the Pentapeptide Cyclo (Glycyl-Glycyl-Glycyl-Prolyl-Prolyl). III. Treatment of a flexible molecule. Macromolecules, 6, 9199.CrossRefGoogle Scholar
Padday, J. F. & Uffindell, N. D. (1968). The calculation of cohesive and adhesive energies from intermolecular forces at a surface. J. Chem. Phys. 72, 1407–13.CrossRefGoogle Scholar
Parsegian, V. A. (1969). Energy of an ion crossing a low dielectric membrane: solutions to four relevant electrostatic problems. Nature, Lond. 221, 844–6.CrossRefGoogle Scholar
Parsegian, V. A. (1972). Non-retarded van der Waals interaction between anisotropic long thin rods at all angles. J. chem. Phys. 56, 4393–6.CrossRefGoogle Scholar
Parsegian, V. A. (1973). Long-range physical forces in the biological milieu. A. Rev. Biophys. Bioeng. 2, 221–55.CrossRefGoogle ScholarPubMed
Parsegian, V. A. & Gingell, D. (1972 a). On the electrostatic interaction across a salt solution between two bodies bearing unequal charges. Biophys. J. 12, 11921204.CrossRefGoogle ScholarPubMed
Parsegian, V. A. & Gingell, D. (1972 b). Some features of physical forces between biological cell membranes. J. Adhes. 4, 283306.CrossRefGoogle Scholar
Parsegian, V. A. & Ninham, B. W. (1970). Temperature-dependent van der Waals forces. Biophys. J. 10, 664–74.CrossRefGoogle ScholarPubMed
Parsegian, V. A. & Ninham, B. W. (1971). Towards the correct calculation of van der Waals interactions between lyophobic colloids in an aqueous medium. J. Colloid Interface Sci. 37, 332341.CrossRefGoogle Scholar
Parsegian, V. A. & Ninham, B. W. (1973). Van der Waals forces in many-layered structures. J. theor. Biol. 38, 101109.CrossRefGoogle Scholar
Richmond, P., Ninham, B. W. & Ottewill, R. H. (1973). A theoretical study of hydrocarbon adsorption on water surfaces using Lifshitz theory. J. Colloid Interface Sci. 45, 6980.CrossRefGoogle Scholar
Richmond, P. & Sarkies, K. W. (1973). The interaction of adsorbed molecules. J. Phys. C: (GB), 6, 401–10.CrossRefGoogle Scholar
Scheraga, H. A. (1971). Theoretical and experimental studies of conformations of polypeptides. Chem. Rev. 71, 195217.CrossRefGoogle ScholarPubMed
Tredgold, R. H. (1973). A possible mechanism for the negative resistance characteristic of axon membranes. Nature NB. (Lond.) 242, 209–10.Google ScholarPubMed
Van Der Merwe, A. J. (1966). Dispersion energies of interaction between asymmetric molecules. Z. Phys. 196, 212–21.CrossRefGoogle Scholar
Zwanzig, R. (1963). Two assumptions in the theory of attractive forces between long saturated chains. J. chem. Phys. 39, 2251–8.CrossRefGoogle Scholar