Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-08T23:18:22.511Z Has data issue: false hasContentIssue false

The study of enzyme mechanisms by a combination of cosolvent, low-temperature and high-pressure techniques

Published online by Cambridge University Press:  17 March 2009

Pierre Douzou
Affiliation:
Institut National de la Sante et de la Recherche Medicale (Institut de Biologie Physico-Chimique, Paris, France)

Extract

It is generally assumed that the mechanism of enzyme-catalysed reactions would be defined if all the intermediates, complexes and conformational states of each enzyme could be characterized, and the rate-constants for their inter-conversion recorded. In spite of the introduction during the last decades of methods for rapid data acquisition, which permit detection of the number and sequence of intermediates and complexes, measurement of rate-constants, identification of the types of catalysis involved, etc., at best a semi-quantitative understanding of the mechanism of enzyme-catalysis is obtained. The definition of the exact chemical nature of intermediates and complexes is missing because techniques establishing the structures are restricted to the study of transient states which are stable for periods that exceed the half-life of most of typical intermediates. In such conditions, while conformational changes are obviously an essential feature of enzyme activity, the conformational basis of such activity cannot be understood at the molecular level, and enzyme catalysis is still termed a ‘miracle’ compared to the rate-enhancements and specificity of ordinary chemical catalysts.

Type
Articles
Copyright
Copyright © Cambridge University Press 1979

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCE

Alber, T., Petsko, G. A. & Tsernoglou, D. (1976). Crystal structure of elastase-substrate complex at –55 ˚C. Nature, Lond. 263, 279300.CrossRefGoogle Scholar
Applewhite, T. H., Martin, R. B. & Niemann, C. (1958). The α-chymotrypsin-catalyzed hydrolysis of methyl hypurate in aqueous solutions at 25 °C and pH 7·9, its inhibition by indole and its dependence upon added non-aqueous solvents. J. Am. Chem. Soc. 80, 14571464.CrossRefGoogle Scholar
Ballesta, J. P. G. & Vasquez, D. (1973). Ribosomal activities dependent on elongation factors T and G. Effects of methanol. Biochemistry, N.Y. 12, 50635068.CrossRefGoogle Scholar
Balny, C., Debey, P. & Douzou, P. (1976). The subzero temperature chromatographic isolation of transient intermediates of a multi-step cycle: preparation of the substrate free oxyferrous cytochrome P450. FEBS Lett. 69, 236240.CrossRefGoogle Scholar
Balny, C. & Hastings, J. W. (1975). Fluorescence and bioluminescence of bacterial luciferase intermediates. Biochemistry, N.Y. 14, 4759–4723.CrossRefGoogle ScholarPubMed
Barnard, M. L. & Laidler, K. J. (1952). Solvents effects in the α-chymotrypsin-hydrocinnamic ester system. J. Am. Chem. Soc. 74, 60996101.CrossRefGoogle Scholar
Brandts, J. F., Oliveira, R. J. & Westort, C. (1970). Thermodynamics of protein denaturation. Effects of pressure on the denaturation of ribonuclease A. Biochemistry, N.Y. 9, 10381047.CrossRefGoogle ScholarPubMed
Bray, R. C., Lowe, D. J., Blandin-Capeillére, C. & Fielden, E. M. (1973). Trapping of short-lived intermediates in enzymic reactions by rapid freezing: combination of electron paramagnetic resonance with pulse radiolysis. Biochem. Soc. Trans. I, 10671072.CrossRefGoogle Scholar
Brody, E. N. & Leautey, J. (1973). Transcription in vitro using mixtures of ethylene glycol and water. Eur. J. Biochem. 36, 347361.CrossRefGoogle ScholarPubMed
Cann, J. R. (1970). Interacting Macromolecules. New York: Academic Press.Google Scholar
Castaneda-Agullo, M. & Del, Castillo L. M. (1959). The influence of the medium dielectric strength upon trypsin kinetics. J. gen. Physiol. 42, 617634.CrossRefGoogle ScholarPubMed
Celma, M. L., Monroe, R. E. & Vasquez, D. (1970). Substrate and antibiotic binding sites at the peptidyl transferase centre of E. coli ribosomes. FEBS Lett. 6, 273277.CrossRefGoogle ScholarPubMed
Chance, B., Graham, N. & Legallais, V. (1975a). Low temperature trapping method for cytochrome oxidase oxygen intermediates. Analyt. Biochem, 67, 552579.CrossRefGoogle ScholarPubMed
Chance, B., Saronio, C. & Leigh, J. S. (1975 b). Functional intermediates in reaction of cytochrome oxidase with oxygen. Proc. natn. Acad. Sci. U.S.A. 72, 16351640.CrossRefGoogle ScholarPubMed
Chance, B., Saronio, C. & Leigh, J. S. (1975c). Functional intermediates in the reaction of membrane-bound cytochrome oxidase with oxygen. J. biol. Chem. 250, 92269237.CrossRefGoogle ScholarPubMed
Cléent, G. E. & Bender, M. L. (1963). The effect of aprotic dipolar organic solvents on the kinetics of α-chymotrypsin-catalysed hydrolyses. Biochemistry, N.Y. 2, 836843.CrossRefGoogle Scholar
Cohn, E. J. & Edsall, J. T. (1965). In Proteins, Amino-acids and Peptides, 2nd ed.New York: Hafner.Google Scholar
Cox, R. P. (1977). Cryoenzymology: the use of fluid solvent mixtures at subzero temperatures for the study of biochemical reactions. Biochem. Soc. Trans. 6, 689697.CrossRefGoogle Scholar
Crepin, M., Cukier-Kahn, R. & Gros, F. (1975). Effect of a low-molecular- weight DNA-binding protein, H1 factor, on the in vitro transcription of the lactose operon in Escherichia coli. Proc. natn. Acad. Sci. U.S.A. 72, 333337.CrossRefGoogle ScholarPubMed
Debey, P., Balny, C. & Douzou, P. (1976). The subzero temperature chromatographic isolation of transient intermediates of a multi-step cycle: purification of the substrate-bound oxy-ferrous cytochrome P450. FEBS Lett. 69, 231235.CrossRefGoogle ScholarPubMed
Debey, P., Douzou, P. & Gunsalus, I. C. (1979). Testing cosolvent cryoenzymology on multi-enzyme systems. Mol. & Cell. Biochem. 26, 3345.CrossRefGoogle ScholarPubMed
Douzou, P.Enzymology at zubzero temperatures. Mol. & Cell. Biochem. I, 1527.Google Scholar
Douzou, P. (1974). The use of subzero temperatures in biochemistry: slow reactions. Method biochem. Anal. 22, 401512.CrossRefGoogle ScholarPubMed
Douzou, P. (1977 a). Enzymology at subzero temperatures. Adv. Enzymol. 45, 157272.Google ScholarPubMed
Douzou, P. (1977 b). Cryobiochemistry: an Introduction. London: Academic Press,Google Scholar
Douzou, P. & Balny, C. (1978). Protein fractionation at subzero temperatures. Adv. Protein Chem. 32, 77189.CrossRefGoogle ScholarPubMed
Douzou, P., Hui, Bon Hoa G., Maurel, P. & Travers, F. (1976). Physical chemical data for mixed solvents used in low temperature biochemistry. In Handbook of Biochemistry and Molecular Biology (ed. Fasman, G. D.) 3rd ed., vol. I, pp. 520539. Cleveland: CRC Press.Google Scholar
Douzou, P., Hui, Bon Hoa G. & Petsko, G. A. (1975). Protein-crystallography at subzero temperatures: lysozyme-substrate complexes in cooled mixed solvents. J. molec. Biol. 96, 367380.CrossRefGoogle ScholarPubMed
Dreyfu, M., Vandenbunder, B. & Buc, H. (1978). Stabilisation of a phosphorylase b active conformation by hydrophobic solvents. FEBS Lett. 95, 185189.CrossRefGoogle Scholar
Fink, A. L. (1973). The α-chymotrypsin-catalyzed hydrolysis of N-acetyl-Ltryptophan p-nitrophenyl ester in dimethyl sulfoxide at subzero temperatures. Biochemistry, N.Y. 12, 17361742.CrossRefGoogle Scholar
Fink, A. L. (1974 a). Effect of dimethyl sulfoxide on the interaction of proflavine with α-chymotrypsin. Biochemistry, N. Y. 13, 277280.CrossRefGoogle ScholarPubMed
Fink, A. L. (1974 b). The trypsin-catalyzed hydrolysis of Nα-benzyloxycarbonyl-L-lysine p-nitrophenyl ester in dimethylsulfoxide at subzero temperatures. J. biol. Chem. 249, 50275032.CrossRefGoogle Scholar
Fink, A. L. & Ahme, A. I. (1976). Formation of stable crystalline enzyme- substrate intermediate at subzero temperatures. Nature, Lond. 263, 294297.CrossRefGoogle Scholar
Frauenfelder, H., Petsko, G. A. & Tsernoglou, D. (1979). Temperature- dependent X-ray diffraction as a probe of protein structural dynamics. Nature, Lond. 280, 558563.CrossRefGoogle ScholarPubMed
Ghisla, S., Hastings, I. W., Favaudon, V. & Lhoste, J. H. (1978). Structure of the oxygen adduct intermediate in the bacterial luciferase reaction: 13C nuclear magnetic resonance determination. Proc. natn. Acad. Sci. U.S.A. 75, 58605863.CrossRefGoogle ScholarPubMed
Graves, D. J. & Wang, J. H. (1972). α-Glucan phosphorylases-chemical and physical basis of catalysis and regulation. In The Enzymes, vol. 7, 435482. New York, London: Academic Press.Google Scholar
Hastings, J. W. & Balny, C. (1975). The oxygenated bacterial luciferaseflavin intermediate. Reaction products via the light and dark pathways. J. biol. Chem. 250, 72887293.CrossRefGoogle ScholarPubMed
Hastings, J. W., Balny, C., Le, Peuch C. & Douzou, P. (1973). Spectral properties of an oxygenated luciferase-flavin intermediate isolated by low-temperature chromatography. Proc. natn. Acad. Sci. U.S.A. 70, 34683472.CrossRefGoogle ScholarPubMed
Hastings, J. W., Gibson, Q. H., Friedland, J. & Spudich, J. (1966). Molecular mechanisms in bacterial bioluminescence: on energy storage intermediates and the role of aldehyde in the reaction. In Bioluminescence in Progress (ed. Johnson, F. H. and Haneda, Y.), pp. 151186. Princeton University Press.Google Scholar
Hastings, J. W. & Nealson, K. H. (1977). Bacterial bioluminescence. A. Rev. Microbiol. 31, 549582.CrossRefGoogle ScholarPubMed
Hochachka, P. W. & Somero, G. N. (1973). Strategies of Biomedical Adaptation. Philadelphia: W. B. Saunders.Google Scholar
Hui, Bon Hoa G., Begard, E., Grunberg-Manago, M. (Manuscript in preparation.)Google Scholar
Infante, A. A. & Baierlein, R. (1971). Pressure-induced dissociation of sedimenting ribosomes: effect on sedimentation pattern. Proc. natn. Acad. Sci. U.S.A. 68, 17801785.CrossRefGoogle Scholar
Johnson, F. S. & Eyring, H. (1970). High Pressure Effects on Cellular Processes (ed. Zimmerman, A. M.). New York: Academic Press.Google Scholar
Johnson, F. S., Eyring, J. & Polissar, M. F. (1954). Introduction. In Kinetic Bases of Molecular Biology. New York: J. Wiley.Google Scholar
Kauzmann, W. (1959). Some factors in the interpretation of protein denaturation. Adv. Protein Chem. 14, 163.CrossRefGoogle ScholarPubMed
Kergeles, G., Rhodes, L. & Bethune, J. L. (1967). Sedimentation behavior of chemically reacting system. Proc. natn. Acad. Sci. U.S.A. 58, 4551.CrossRefGoogle Scholar
Laidler, K. J. (1950). The influence of pressure on the rates of biological reactions. Archs Biochem. Biophys. 30, 226236.Google Scholar
Laidler, K. J. & Ethier, M. C. (1953). Molecular kinetics of muscle adenosince triphosphatase. II. Solvent and structural effects. Archs Biochem. Biophys. 44, 338345.CrossRefGoogle ScholarPubMed
Lange, R., Hui, Bon Hoa G., Debey, P. & Gunsalus, I. C. (1977). Ionization dependence of camphor binding and spin conversion of the complex between cytochrome P450 and camphor. Kinetic and static studies at subzero temperatures. Eur. J. Biochem. 77, 479485.CrossRefGoogle Scholar
Larroque, C., Maurel, P., Balny, C. & Douzou, P. (1976). Practical potentiometric determinations of proton activity in hydro-organic solvents at subzero temperatures. Analyt. Biochem. 73, 919.CrossRefGoogle ScholarPubMed
Low, P. S. & Somero, G. N. (1975 a). Protein hydration changes during catalysis: A new mechanism of enzymic rate-enhancement and ion activation inhibition of catalysis. Proc. natn. Acad. Sci. U.S.A. 72, 33053309.CrossRefGoogle ScholarPubMed
Low, P. S. & Somero, G. N. (1975 b). Activation volumes in enzymic catalysis: Their sources and modification by low-molecular-weight solutes. Proc. natn. Acad. Sci. U.S.A. 72, 30143018.CrossRefGoogle ScholarPubMed
Marres-Guia, M. & Figueiredo, A. F. S. (1972). Trypsin-organic solvent interaction. The simultaneous operation of competitive inhibition and dielectric effect. Biochemistry, N.Y. II, 20912098.CrossRefGoogle Scholar
Massey, V., Müller, F., Feldberg, R., Schuman, M., Sullivant, P. A., Howell, L. G., Mayhem, S. G., Matthews, R. G. & Foust, G. P. (1969). The reactivity of flavoproteins with sulfite. Possible relevance to the problem of oxygen reactivity. J. biol. Chem. 244, 39994006.CrossRefGoogle Scholar
Maurel, P. (1978). Relevance of dielectric constant and solvent hydrophobicity to the organic solvent effect in enzymology. J. biol. Chem. 253, 16771683.CrossRefGoogle Scholar
Maurel, P. & Douzou, P. (1975). Solvent-temperature perturbations of ionizable groups as a tool for the investigation of the active site of enzymes. J. biol. Chem. 250, 26782680.CrossRefGoogle ScholarPubMed
Maurel, P., Hui, Bon Hoa G. & Douzou, P. (1975). The pH dependence of the tryptic hydrolysis of benzoyl-L-arginine ethyl ester in cooled mixed solvents. J. biol. Chem. 250, 13761382.CrossRefGoogle Scholar
Millero, F. J. (1969). The partial molal volume of ions in various solvents. J. Phys. Chem. 73, 24172420.CrossRefGoogle Scholar
Monroe, R. E., Cerna, J. & Marcker, K. (1968). Ribosome-catalyzed peptidyl transfer: substrate specificity at the P-site. Proc. natn. Acad. Sci. U.S.A. 61, 10421049.CrossRefGoogle Scholar
Mustaf, T., Moon, T. W. & Hochachka, P. W. (1971). Effects of pressure and temperature on the catalytic and regulatory properties of muscle pyruvate kinase from an off-shore benthic fish. Am. Zool. 11, 451466.CrossRefGoogle Scholar
Nakanishi, S., Adhya, S., Gottesman, M. & Pastan, I. (1974). Activation of transcription at specific promotors by glycerol. J. biol. Chem. 249, 40504056.CrossRefGoogle Scholar
Nichols, P. & Chance, B. (1973). Cytochrome c oxidase. In Molecular Mechanisms of Oxygen Activation (ed. Hayaishi, O.), pp. 479534. Academic Press.Google Scholar
Pederson, T. C., Austin, R. H. & Gunsalus, I. C. (1977). Redox and ligands dynamics in P450 cam -putdoxin complexes. Proc. 3rd Int. Symp. Microsomes and Drug Oxidation, pp. 275283. New York: Pergamon.CrossRefGoogle Scholar
Perutz, M. F., Sanders, J. K. M., Chenery, D. H., Noble, R. W., Pennelly, R. R., Fung, L. W.-m., Ho, C., Giannini, I., Pörsche, D. & Winkler, H. (1978). Interactions between the quaternary structure of the globin and the spin state of the heme in ferric mixed spin derivatives of haemoglobin. Biochemistry, N.Y. 17, 36403662.CrossRefGoogle Scholar
Petsko, G. A. (1975). Protein crystallography at subzero temperatures: cryoprotective mother liquors for protein crystals. J. molec. Biol. 96, 381392.CrossRefGoogle ScholarPubMed
Picken, L. (1963). The Organization of Cell and Other Organisms. Oxford: Clarendon Press.Google Scholar
Sligar, S. G. & Gunsalus, I. C. (1976). A thermodynamic model of regulation: modulation of redox equilibria in camphor monoxygenase. Proc. natn. Acad. Sci. U.S.A. 73, 10781082.CrossRefGoogle ScholarPubMed
Stearn, A. E. & Eyring, H. (1941). Pressure and rate processes. Chem. Rev. 29, 509523.CrossRefGoogle Scholar
Stockell, A. & Smith, E. L. (1957). Kinetics of papain action. I. hydrolysis of benzoyl-L-argininamide. J. biol. Chem. 227, 126.CrossRefGoogle Scholar
Tanford, C. (1962). Contribution of hydrophobic interactions to the stability of the globular conformation of proteins. J. Am. chem. Soc. 84, 42404247.CrossRefGoogle Scholar
Tompkins, R. K. (1970). Sequential translation of trinucleotide codons for peptide bond formation, translocation, and termination. Proc. natn. Acad. Sci. U.S.A. 66, 11641169.CrossRefGoogle ScholarPubMed
Tompkins, R. K., Scolnick, E. M. & Caskey, C. T. (1970). Peptide chain termination. VII. The ribosomal and release factor requirements for peptide release. Proc. natn. Acad. Sci. U.S.A. 65, 702708.CrossRefGoogle ScholarPubMed
Travers, F. & Douzou, P. (1974). Dielectric constant of mixed solvents used for a low temperature biochemistry. Biochemie 56, 509514.CrossRefGoogle ScholarPubMed
Vandenbunder, B., Dreyfus, M. & Buc, H. (1978). Conformational changes on local events at the AMP site of glycogen phosphorylase b: A fluorescence temperature-jump relaxation study. Biochemistry, N.Y. 17, 41534160.CrossRefGoogle Scholar
Ward, G. K. & Millero, F. J. (1974). Molal volume of aqueous boric acid- sodium chloride solutions. J. Solution Chem. 3, 431444.CrossRefGoogle Scholar
Wirth, H. E. (1948). The partial molal volume of acetic acid in sodium acetate and in sodium chloride solutions. J. Am. chem. Soc. 70, 462465.CrossRefGoogle Scholar
Zipp, A. & Kauzmann, W. (1973). Pressure denaturation of metmyoglobin. Biochemistry, N.Y. 12, 42174228.CrossRefGoogle ScholarPubMed