Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-23T01:12:29.099Z Has data issue: false hasContentIssue false

Structures of ribonucleoprotein particle modification enzymes

Published online by Cambridge University Press:  26 November 2010

Bo Liang
Affiliation:
Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32312, USA
Hong Li*
Affiliation:
Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32312, USA Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32312, USA
*
*Author for correspondence: H. Li, Institute of Molecular Biophysics, Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32312, USA. Tel.: (850) 644–6785; Email: [email protected]

Abstract

Small nucleolar and Cajal body ribonucleoprotein particles (RNPs) are required for the maturation of ribosomes and spliceosomes. They consist of small nucleolar RNA or Cajal body RNA combined with partner proteins and represent the most complex RNA modification enzymes. Recent advances in structure and function studies have revealed detailed information regarding ribonucleoprotein assembly and substrate binding. These enzymes form intertwined RNA–protein assemblies that facilitate reversible binding of the large ribosomal RNA or small nuclear RNA. These revelations explain the specificity among the components in enzyme assembly and substrate modification. The multiple conformations of individual components and those of complete RNPs suggest a dynamic assembly process and justify the requirement of many assembly factors in vivo.

Type
Review Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aittaleb, M., Rashid, R., Chen, Q., Palmer, J. R., Daniels, C. J. & Li, H. (2003). Structure and function of archaeal box C/D sRNP core proteins. Nature Structure Biology 10, 256263.CrossRefGoogle Scholar
Alian, A., Degiovanni, A., Griner, S. L., Finer-Moore, J. S. & Stroud, R. M. (2009). Crystal structure of an RluF–RNA complex: a base-pair rearrangement is the key to selectivity of RluF for U2604 of the ribosome. Journal of Molecular Biology 388, 785800.CrossRefGoogle ScholarPubMed
Allmang, C., Carbon, P. & Krol, A. (2002). The SBP2 and 15·5 kD/Snu13p proteins share the same RNA binding domain: identification of SBP2 amino acids important to SECIS RNA binding. RNA 8, 13081318.CrossRefGoogle ScholarPubMed
Allmang, C., Kufel, J., Chanfreau, G., Mitchell, P., Petfalski, E. & Tollervey, D. (1999). Functions of the exosome in rRNA, snoRNA and snRNA synthesis. EMBO Journal 18, 53995410.CrossRefGoogle ScholarPubMed
Anantharaman, V., Koonin, E. V. & Aravind, L. (2002). SPOUT: a class of methyltransferases that includes spoU and trmD RNA methylase superfamilies, and novel superfamilies of predicted prokaryotic RNA methylases. Journal of Molecular Microbiology and Biotechnology 4, 7175.Google ScholarPubMed
Atzorn, V., Fragapane, P. & Kiss, T. (2004). U17/snR30 is a ubiquitous snoRNA with two conserved sequence motifs essential for 18S rRNA production. Molecular and Cellular Biology 24, 17691778.CrossRefGoogle ScholarPubMed
Bagni, C. & Lapeyre, B. (1998). Gar1p binds to the small nucleolar RNAs snR10 and snR30 in vitro through a nontypical RNA binding element. Journal of Biological Chemistry 273, 1086810873.CrossRefGoogle Scholar
Baker, D. L., Youssef, O. A., Chastkofsky, M. I., Dy, D. A., Terns, R. M. & Terns, M. P. (2005). RNA-guided RNA modification: functional organization of the archaeal H/ACA RNP. Genes and Development 19, 12381248.CrossRefGoogle ScholarPubMed
Balakin, A. G., Smith, L. & Fournier, M. J. (1996). The RNA world of the nucleolus: two major families of small RNAs defined by different box elements with related functions. Cell 86, 823834.CrossRefGoogle ScholarPubMed
Baudin-Baillieu, A., Fabret, C., Liang, X. H., Piekna-Przybylska, D., Fournier, M. J. & Rousset, J. P. (2009). Nucleotide modifications in three functionally important regions of the Saccharomyces cerevisiae ribosome affect translation accuracy. Nucleic Acids Research 37, 76657677.CrossRefGoogle ScholarPubMed
Beal, P. A., Maydanovych, O. & Pokharel, S. (2007). The chemistry and biology of RNA editing by adenosine deaminases. Nucleic Acids Symposium Series (Oxford) 51, 8384.CrossRefGoogle Scholar
Birney, E., Stamatoyannopoulos, J. A., Dutta, A., Guigo, R., Gingeras, T. R., Margulies, E. H., Weng, Z., Snyder, M., Dermitzakis, E. T., Thurman, R. E., Kuehn, M. S., Taylor, C. M., Neph, S., Koch, C. M., Asthana, S., Malhotra, A., Adzhubei, I., Greenbaum, J. A., Andrews, R. M., Flicek, P., Boyle, P. J., Cao, H., Carter, N. P., Clelland, G. K., Davis, S., Day, N., Dhami, P., Dillon, S. C., Dorschner, M. O., Fiegler, H., Giresi, P. G., Goldy, J., Hawrylycz, M., Haydock, A., Humbert, R., James, K. D., Johnson, B. E., Johnson, E. M., Frum, T. T., Rosenzweig, E. R., Karnani, N., Lee, K., Lefebvre, G. C., Navas, P. A., Neri, F., Parker, S. C., Sabo, P. J., Sandstrom, R., Shafer, A., Vetrie, D., Weaver, M., Wilcox, S., Yu, M., Collins, F. S., Dekker, J., Lieb, J. D., Tullius, T. D., Crawford, G. E., Sunyaev, S., Noble, W. S., Dunham, I., Denoeud, F., Reymond, A., Kapranov, P., Rozowsky, J., Zheng, D., Castelo, R., Frankish, A., Harrow, J., Ghosh, S., Sandelin, A., Hofacker, I. L., Baertsch, R., Keefe, D., Dike, S., Cheng, J., Hirsch, H. A., Sekinger, E. A., Lagarde, J., Abril, J. F., Shahab, A., Flamm, C., Fried, C., Hackermuller, J., Hertel, J., Lindemeyer, M., Missal, K., Tanzer, A., Washietl, S., Korbel, J., Emanuelsson, O., Pedersen, J. S., Holroyd, N., Taylor, R., Swarbreck, D., Matthews, N., Dickson, M. C., Thomas, D. J., Weirauch, M. T., Gilbert, J., Drenkow, J., Bell, I., Zhao, X., Srinivasan, K. G., Sung, W. K., Ooi, H. S., Chiu, K. P., Foissac, S., Alioto, T., Brent, M., Pachter, L., Tress, M. L., Valencia, A., Choo, S. W., Choo, C. Y., Ucla, C., Manzano, C., Wyss, C., Cheung, E., Clark, T. G., Brown, J. B., Ganesh, M., Patel, S., Tammana, H., Chrast, J., Henrichsen, C. N., Kai, C., Kawai, J., Nagalakshmi, U., Wu, J., Lian, Z., Lian, J., Newburger, P., Zhang, X., Bickel, P., Mattick, J. S., Carninci, P., Hayashizaki, Y., Weissman, S., Hubbard, T., Myers, R. M., Rogers, J., Stadler, P. F., Lowe, T. M., Wei, C. L., Ruan, Y., Struhl, K., Gerstein, M., Antonarakis, S. E., Fu, Y., Green, E. D., Karaoz, U., Siepel, A., Taylor, J., Liefer, L. A., Wetterstrand, K. A., Good, P. J., Feingold, E. A., Guyer, M. S., Cooper, G. M., Asimenos, G., Dewey, C. N., Hou, M., Nikolaev, S., Montoya-Burgos, J. I., Loytynoja, A., Whelan, S., Pardi, F., Massingham, T., Huang, H., Zhang, N. R., Holmes, I., Mullikin, J. C., Ureta-Vidal, A., Paten, B., Seringhaus, M., Church, D., Rosenbloom, K., Kent, W. J., Stone, E. A., Batzoglou, S., Goldman, N., Hardison, R. C., Haussler, D., Miller, W., Sidow, A., Trinklein, N. D., Zhang, Z. D., Barrera, L., Stuart, R., King, D. C., Ameur, A., Enroth, S., Bieda, M. C., Kim, J., Bhinge, A. A., Jiang, N., Liu, J., Yao, F., Vega, V. B., Lee, C. W., Ng, P., Shahab, A., Yang, A., Moqtaderi, Z., Zhu, Z., Xu, X., Squazzo, S., Oberley, M. J., Inman, D., Singer, M. A., Richmond, T. A., Munn, K. J., Rada-Iglesias, A., Wallerman, O., Komorowski, J., Fowler, J. C., Couttet, P., Bruce, A. W., Dovey, O. M., Ellis, P. D., Langford, C. F., Nix, D. A., Euskirchen, G., Hartman, S., Urban, A. E., Kraus, P., Van Calcar, S., Heintzman, N., Kim, T. H., Wang, K., Qu, C., Hon, G., Luna, R., Glass, C. K., Rosenfeld, M. G., Aldred, S. F., Cooper, S. J., Halees, A., Lin, J. M., Shulha, H. P., Zhang, X., Xu, M., Haidar, J. N., Yu, Y., Ruan, Y., Iyer, V. R., Green, R. D., Wadelius, C., Farnham, P. J., Ren, B., Harte, R. A., Hinrichs, A. S., Trumbower, H., Clawson, H., Hillman-Jackson, J., Zweig, A. S., Smith, K., Thakkapallayil, A., Barber, G., Kuhn, R. M., Karolchik, D., Armengol, L., Bird, C. P., De Bakker, P. I., Kern, A. D., Lopez-Bigas, N., Martin, J. D., Stranger, B. E., Woodroffe, A., Davydov, E., Dimas, A., Eyras, E., Hallgrimsdottir, I. B., Huppert, J., Zody, M. C., Abecasis, G. R., Estivill, X., Bouffard, G. G., Guan, X., Hansen, N. F., Idol, J. R., Maduro, V. V., Maskeri, B., Mcdowell, J. C., Park, M., Thomas, P. J., Young, A. C., Blakesley, R. W., Muzny, D. M., Sodergren, E., Wheeler, D. A., Worley, K. C., Jiang, H., Weinstock, G. M., Gibbs, R. A., Graves, T., Fulton, R., Mardis, E. R., Wilson, R. K., Clamp, M., Cuff, J., Gnerre, S., Jaffe, D. B., Chang, J. L., Lindblad-Toh, K., Lander, E. S., Koriabine, M., Nefedov, M., Osoegawa, K., Yoshinaga, Y., Zhu, B. & De Jong, P. J. (2007). Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 447, 799816.Google ScholarPubMed
Bleichert, F., Gagnon, K. T., Brown, B. A. II, Maxwell, E. S., Leschziner, A. E., Unger, V. M. & Baserga, S. J. (2009). A dimeric structure for archaeal box C/D small ribonucleoproteins. Science 325, 13841387.CrossRefGoogle ScholarPubMed
Boulon, S., Marmier-Gourrier, N., Pradet-Balade, B., Wurth, L., Verheggen, C., Jady, B. E., Rothe, B., Pescia, C., Robert, M. C., Kiss, T., Bardoni, B., Krol, A., Branlant, C., Allmang, C., Bertrand, E. & Charpentier, B. (2008). The Hsp90 chaperone controls the biogenesis of L7Ae RNPs through conserved machinery. Journal of Cell Biology 180, 579595.CrossRefGoogle ScholarPubMed
Boulon, S., Verheggen, C., Jady, B. E., Girard, C., Pescia, C., Paul, C., Ospina, J. K., Kiss, T., Matera, A. G., Bordonne, R. & Bertrand, E. (2004). PHAX and CRM1 are required sequentially to transport U3 snoRNA to nucleoli. Molecular Cell 16, 777787.CrossRefGoogle ScholarPubMed
Bugl, H., Fauman, E. B., Staker, B. L., Zheng, F., Kushner, S. R., Saper, M. A., Bardwell, J. C. & Jakob, U. (2000). RNA methylation under heat shock control. Molecular Cell 6, 349360.CrossRefGoogle ScholarPubMed
Cahill, N. M., Friend, K., Speckmann, W., Li, Z. H., Terns, R. M., Terns, M. P. & Steitz, J. A. (2002). Site-specific cross-linking analyses reveal an asymmetric protein distribution for a box C/D snoRNP. EMBO Journal 21, 38163828.CrossRefGoogle ScholarPubMed
Chanfreau, G., Rotondo, G., Legrain, P. & Jacquier, A. (1998). Processing of a dicistronic small nucleolar RNA precursor by the RNA endonuclease Rnt1. EMBO Journal 17, 37263737.CrossRefGoogle ScholarPubMed
Chao, J. A. & Williamson, J. R. (2004). Joint X-ray and NMR refinement of the yeast L30e-mRNA complex. Structure 12, 11651176.CrossRefGoogle ScholarPubMed
Charpentier, B., Muller, S. & Branlant, C. (2005). Reconstitution of archaeal H/ACA small ribonucleoprotein complexes active in pseudouridylation. Nucleic Acids Research 33, 31333144.CrossRefGoogle ScholarPubMed
Cheng, X. & Roberts, R. J. (2001). AdoMet-dependent methylation, DNA methyltransferases and base flipping. Nucleic Acids Research 29, 37843795.CrossRefGoogle ScholarPubMed
Clouet d'Orval, B., Bortolin, M. L., Gaspin, C. & Bachellerie, J. P. (2001). Box C/D RNA guides for the ribose methylation of archaeal tRNAs. The tRNATrp intron guides the formation of two ribose-methylated nucleosides in the mature tRNATrp. Nucleic Acids Research 29, 45184529.CrossRefGoogle Scholar
Collins, K. (2006). The biogenesis and regulation of telomerase holoenzymes. Nature Reviews Molecular Cell Biology 7, 484494.CrossRefGoogle ScholarPubMed
Darzacq, X., Kittur, N., Roy, S., Shav-Tal, Y., Singer, R. H. & Meier, U. T. (2006). Stepwise RNP assembly at the site of H/ACA RNA transcription in human cells. Journal of Cell Biology 173, 207218.CrossRefGoogle ScholarPubMed
Dennis, P. P. & Omer, A. (2005). Small non-coding RNAs in archaea. Current Opinion in Microbiology 8, 685694.CrossRefGoogle ScholarPubMed
Dragon, F., Gallagher, J. E., Compagnone-Post, P. A., Mitchell, B. M., Porwancher, K. A., Wehner, K. A., Wormsley, S., Settlage, R. E., Shabanowitz, J., Osheim, Y., Beyer, A. L., Hunt, D. F. & Baserga, S. J. (2002). A large nucleolar U3 ribonucleoprotein required for 18S ribosomal RNA biogenesis. Nature 417, 967970.CrossRefGoogle ScholarPubMed
Duan, J., Li, L., Lu, J., Wang, W. & Ye, K. (2009). Structural mechanism of substrate RNA recruitment in H/ACA RNA-guided pseudouridine synthase. Molecular Cell 34, 427439.CrossRefGoogle ScholarPubMed
Durant, P. C. & Davis, D. R. (1999). Stabilization of the anticodon stem-loop of tRNALys,3 by an A+-C base- pair and by pseudouridine. Journal of Molecular Biology 285, 115131.CrossRefGoogle Scholar
Eliceiri, G. L. (2006). The vertebrate E1/U17 small nucleolar ribonucleoprotein particle. Journal of Cellular Biochemistry 98, 486495.CrossRefGoogle ScholarPubMed
Fatica, A. & Tollervey, D. (2002). Making ribosomes. Current Opinion in Cell Biology 14, 313318.CrossRefGoogle ScholarPubMed
Foster, P. G., Huang, L., Santi, D. V. & Stroud, R. M. (2000). The structural basis for tRNA recognition and pseudouridine formation by pseudouridine synthase I. Nature Structural Biology 7, 2327.Google ScholarPubMed
Gagnon, K. T., Zhang, X., Agris, P. F. & Maxwell, E. S. (2006). Assembly of the archaeal box C/D sRNP can occur via alternative pathways and requires temperature-facilitated sRNA remodeling. Journal of Molecular Biology 362, 10251042.CrossRefGoogle Scholar
Gautier, T., Berges, T., Tollervey, D. & Hurt, E. (1997). Nucleolar KKE/D repeat proteins Nop56p and Nop58p interact with Nop1p and are required for ribosome biogenesis. Molecular Cell Biology 17, 70887098.CrossRefGoogle ScholarPubMed
Gerbi, S. A. (1995). Small nucleolar RNA. Biochemistry and Cell Biology 73, 845858.CrossRefGoogle ScholarPubMed
Girard, J. P., Lehtonen, H., Caizergues-Ferrer, M., Amalric, F., Tollervey, D. & Lapeyre, B. (1992). GAR1 is an essential small nucleolar RNP protein required for pre-rRNA processing in yeast. EMBO Journal 11, 673682.CrossRefGoogle ScholarPubMed
Godin, K. S., Walbott, H., Leulliot, N., van Tilbeurgh, H. & Varani, G. (2009). The Box H/ACA snoRNP assembly factor Shq1p is a chaperone protein homologous to Hsp90 cochaperones that binds to the Cbf5p enzyme. Journal of Molecular Biology 390, 231244.CrossRefGoogle Scholar
Goody, T. A., Melcher, S. E., Norman, D. G. & Lilley, D. M. (2004). The kink-turn motif in RNA is dimorphic, and metal ion-dependent. RNA 10, 254264.CrossRefGoogle ScholarPubMed
Grandi, P., Rybin, V., Bassler, J., Petfalski, E., Strauss, D., Marzioch, M., Schafer, T., Kuster, B., Tschochner, H., Tollervey, D., Gavin, A. C. & Hurt, E. (2002). 90S pre-ribosomes include the 35S pre-rRNA, the U3 snoRNP, and 40S subunit processing factors but predominantly lack 60S synthesis factors. Molecular Cell 10, 105115.CrossRefGoogle ScholarPubMed
Grozdanov, P. N., Roy, S., Kittur, N. & Meier, U. T. (2009). SHQ1 is required prior to NAF1 for assembly of H/ACA small nucleolar and telomerase RNPs. RNA 15, 11881197.CrossRefGoogle ScholarPubMed
Gu, X., Liu, Y. & Santi, D. V. (1999). The mechanism of pseudouridine synthase I as deduced from its interaction with 5-fluorouracil-tRNA. Proceedings of the National Academy of Sciences of the United States of America 96, 1427014275.CrossRefGoogle ScholarPubMed
Gurha, P., Joardar, A., Chaurasia, P. & Gupta, R. (2007). Differential roles of archaeal box H/ACA proteins in guide RNA-dependent and independent pseudouridine formation. RNA Biology 4, 101109.CrossRefGoogle Scholar
Hage, A. E. & Tollervey, D. (2004). A surfeit of factors: why is ribosome assembly so much more complicated in eukaryotes than bacteria? RNA Biology 1, 1015.CrossRefGoogle ScholarPubMed
Hamma, T. & Ferre-D'amare, A. R. (2004). Structure of protein L7Ae bound to a K-turn derived from an archaeal box H/ACA sRNA at 1.8 A resolution. Structure (Cambridge) 12, 893903.CrossRefGoogle Scholar
Hamma, T. & Ferre-D'amare, A. R. (2006). Pseudouridine synthases. Chemistry and Biology 13, 11251135.CrossRefGoogle ScholarPubMed
Hamma, T., Reichow, S. L., Varani, G. & Ferre-D'amare, A. R. (2005). The Cbf5-Nop10 complex is a molecular bracket that organizes box H/ACA RNPs. Nature Structural and Molecular Biology 12, 11011107.CrossRefGoogle ScholarPubMed
Hannon, G. J., Rivas, F. V., Murchison, E. P. & Steitz, J. A. (2006). The expanding universe of noncoding RNAs. Cold Spring Harbor Symposia on Quantitative Biology 71, 551564.CrossRefGoogle ScholarPubMed
Heiss, N. S., Knight, S. W., Vulliamy, T. J., Klauck, S. M., Wiemann, S., Mason, P. J., Poustka, A. & Dokal, I. (1998). X-linked dyskeratosis congenita is caused by mutations in a highly conserved gene with putative nucleolar functions. Nature Genetics 19, 3238.CrossRefGoogle Scholar
Henras, A., Henry, Y., Bousquet-Antonelli, C., Noaillac-Depeyre, J., Gelugne, J. P. & Caizergues-Ferrer, M. (1998). Nhp2p and Nop10p are essential for the function of H/ACA snoRNPs. EMBO Journal 17, 70787090.CrossRefGoogle ScholarPubMed
Hirose, T., Ideue, T., Nagai, M., Hagiwara, M., Shu, M. D. & Steitz, J. A. (2006). A spliceosomal intron binding protein, IBP160, links position-dependent assembly of intron-encoded box C/D snoRNP to pre-mRNA splicing. Molecular Cell 23, 673684.CrossRefGoogle Scholar
Hirose, T., Shu, M. D. & Steitz, J. A. (2003). Splicing-dependent and -independent modes of assembly for intron-encoded box C/D snoRNPs in mammalian cells. Molecular Cell 12, 113123.CrossRefGoogle Scholar
Hirose, T. & Steitz, J. A. (2001). Position within the host intron is critical for efficient processing of box C/D snoRNAs in mammalian cells. Proceedings of the National Academy of Sciences of the United States of America 98, 1291412919.CrossRefGoogle Scholar
Hoang, C., Chen, J., Vizthum, C. A., Kandel, J. M., Hamilton, C. S., Mueller, E. G. & Ferre-D'amare, A. R. (2006). Crystal structure of pseudouridine synthase RluA: indirect sequence readout through protein-induced RNA structure. Molecular Cell 24, 535545.CrossRefGoogle ScholarPubMed
Hoang, C. & Ferre-D'amare, A. R. (2001). Cocrystal structure of a tRNA Psi55 pseudouridine synthase: nucleotide flipping by an RNA-modifying enzyme. Cell 107, 929939.CrossRefGoogle ScholarPubMed
Hoang, C., Hamilton, C. S., Mueller, E. G. & Ferre-D'amare, A. R. (2005). Precursor complex structure of pseudouridine synthase TruB suggests coupling of active site perturbations to an RNA-sequestering peripheral protein domain. Protein Science 14, 22012206.CrossRefGoogle Scholar
Huang, L., Pookanjanatavip, M., Gu, X. & Santi, D. V. (1998). A conserved aspartate of tRNA pseudouridine synthase is essential for activity and a probable nucleophilic catalyst. Biochemistry 37, 344351.CrossRefGoogle Scholar
Hur, S. & Stroud, R. M. (2007). How U38, 39, and 40 of many tRNAs become the targets for pseudouridylation by TruA. Molecular Cell 26, 189203.CrossRefGoogle ScholarPubMed
Jady, B. E., Bertrand, E. & Kiss, T. (2004). Human telomerase RNA and box H/ACA scaRNAs share a common Cajal body-specific localization signal. Journal of Cell Biology 164, 647652.CrossRefGoogle Scholar
Jin, H., Loria, J. P. & Moore, P. B. (2007). Solution structure of an rRNA substrate bound to the pseudouridylation pocket of a Box H/ACA snoRNA. Molecular Cell 26, 205215.CrossRefGoogle Scholar
Joardar, A., Gurha, P., Skariah, G. & Gupta, R. (2008). Box C/D RNA-guided 2′-O-methylations and the intron of tRNATrp are not essential for the viability of Haloferax volcanii. Journal of Bacteriol 190, 73087313.CrossRefGoogle Scholar
Kass, S., Tyc, K., Steitz, J. A. & Sollner-Webb, B. (1990). The U3 small nucleolar ribonucleoprotein functions in the first step of preribosomal RNA processing. Cell 60, 897908.CrossRefGoogle ScholarPubMed
Kawai, G., Yamamoto, Y., Kamimura, T., Masegi, T., Sekine, M., Hata, T., Iimori, T., Watanabe, T., Miyazawa, T. & Yokoyama, S. (1992). Conformational rigidity of specific pyrimidine residues in tRNA arises from posttranscriptional modifications that enhance steric interaction between the base and the 2′-hydroxyl group. Biochemistry 31, 10401046.CrossRefGoogle Scholar
King, T. H., Decatur, W. A., Bertrand, E., Maxwell, E. S. & Fournier, M. J. (2001). A well-connected and conserved nucleoplasmic helicase is required for production of box C/D and H/ACA snoRNAs and localization of snoRNP proteins. Molecular and Cellular Biology 21, 77317746.CrossRefGoogle Scholar
Kiss-Laszlo, Z., Henry, Y., Bachellerie, J. P., Caizergues-Ferrer, M. & Kiss, T. (1996). Site-specific ribose methylation of preribosomal RNA: a novel function for small nucleolar RNAs. Cell 85, 10771088.CrossRefGoogle ScholarPubMed
Kiss, T. (2002). Small nucleolar RNAs: an abundant group of noncoding RNAs with diverse cellular functions. Cell 109, 145148.CrossRefGoogle ScholarPubMed
Kiss, T. (2006). SnoRNP biogenesis meets Pre-mRNA splicing. Molecular Cell 23, 775776.CrossRefGoogle ScholarPubMed
Kiss, T., Fayet-Lebaron, E. & Jady, B. E. (2010). Box H/ACA small ribonucleoproteins. Molecular Cell 37, 597606.CrossRefGoogle ScholarPubMed
Kiss, T., Fayet, E., Jady, B. E., Richard, P. & Weber, M. (2006). Biogenesis and intranuclear trafficking of human box C/D and H/ACA RNPs. Cold Spring Harbor Symposia on Quantitative Biology 71, 407417.CrossRefGoogle Scholar
Kiss, T. & Filipowicz, W. (1993). Small nucleolar RNAs encoded by introns of the human cell cycle regulatory gene RCC1. EMBO Journal 12, 29132920.CrossRefGoogle ScholarPubMed
Kittur, N., Darzacq, X., Roy, S., Singer, R. H. & Meier, U. T. (2006). Dynamic association and localization of human H/ACA RNP proteins. RNA 12, 20572062.CrossRefGoogle ScholarPubMed
Koonin, E. V. (1996). Pseudouridine synthases: four families of enzymes containing a putative uridine-binding motif also conserved in dUTPases and dCTP deaminases. Nucleic Acids Research 24, 24112415.CrossRefGoogle ScholarPubMed
Krogan, N. J., Peng, W. T., Cagney, G., Robinson, M. D., Haw, R., Zhong, G., Guo, X., Zhang, X., Canadien, V., Richards, D. P., Beattie, B. K., Lalev, A., Zhang, W., Davierwala, A. P., Mnaimneh, S., Starostine, A., Tikuisis, A. P., Grigull, J., Datta, N., Bray, J. E., Hughes, T. R., Emili, A. & Greenblatt, J. F. (2004). High-definition macromolecular composition of yeast RNA-processing complexes. Molecular Cell 13, 225239.CrossRefGoogle ScholarPubMed
Lafontaine, D. L. J., Bousquet-Antonelli, A., Henry, Y., Michèle Caizergues, F. & Tollervey, D. (1998). The box H+ACA snoRNAs carry Cbf5p, the putative rRNA pseudouridine synthase. Genes and Development 12, 527537.CrossRefGoogle ScholarPubMed
Lafontaine, D. L. & Tollervey, D. (1999). Nop58p is a common component of the box C+D snoRNPs that is required for snoRNA stability. RNA 5, 455467.CrossRefGoogle Scholar
Lafontaine, D. L. & Tollervey, D. (2000). Synthesis and assembly of the box C+D small nucleolar RNPs. Molecular and Cellular Biology 20, 26502659.CrossRefGoogle ScholarPubMed
Leader, D. J., Clark, G. P., Watters, J., Beven, A. F., Shaw, P. J. & Brown, J. W. (1999). Splicing-independent processing of plant box C/D and box H/ACA small nucleolar RNAs. Plant Molecular Biology 39, 10911100.CrossRefGoogle Scholar
Leulliot, N., Godin, K. S., Hoareau-Aveilla, C., Quevillon-Cheruel, S., Varani, G., Henry, Y. & Van Tilbeurgh, H. (2007). The Box H/ACA RNP assembly factor Naf1p contains a domain homologous to Gar1p mediating its interaction with Cbf5p. Journal of Molecular Biology 371, 13381353.CrossRefGoogle Scholar
Li, L. & Ye, K. (2006). Crystal structure of an H/ACA box ribonucleoprotein particle. Nature 443, 302307.CrossRefGoogle Scholar
Liang, B., Kahen, E. J., Calvin, K., Zhou, J., Blanco, M. & Li, H. (2008). Long-distance placement of substrate RNA by H/ACA proteins. RNA 14, 20862094.CrossRefGoogle ScholarPubMed
Liang, B., Xue, S., Terns, R. M., Terns, M. P. & Li, H. (2007a). Substrate RNA positioning in the archaeal H/ACA ribonucleoprotein complex. Nature Structural and Molecular Biology 14, 11891195.CrossRefGoogle ScholarPubMed
Liang, B., Zhou, J., Kahen, E., Terns, R. M., Terns, M. P. & Li, H. (2009a). Structure of a functional ribonucleoprotein pseudouridine synthase bound to a substrate RNA. Nature Structural and Molecular Biology 16, 740746.CrossRefGoogle ScholarPubMed
Liang, W. Q. & Fournier, M. J. (1995). U14 base-pairs with 18S rRNA: a novel snoRNA interaction required for rRNA processing. Genes and Development 9, 24332443.CrossRefGoogle ScholarPubMed
Liang, X. H., Liu, Q. & Fournier, M. J. (2007b). rRNA modifications in an intersubunit bridge of the ribosome strongly affect both ribosome biogenesis and activity. Molecular Cell 28, 965977.CrossRefGoogle Scholar
Liang, X. H., Liu, Q. & Fournier, M. J. (2009b). Loss of rRNA modifications in the decoding center of the ribosome impairs translation and strongly delays pre-rRNA processing. RNA 15, 17161728.CrossRefGoogle ScholarPubMed
Liu, B., Liang, X. H., Piekna-Przybylska, D., Liu, Q. & Fournier, M. J. (2008). Mis-targeted methylation in rRNA can severely impair ribosome synthesis and activity. RNA Biology 5, 249254.CrossRefGoogle ScholarPubMed
Manival, X., Charron, C., Fourmann, J. B., Godard, F., Charpentier, B. & Branlant, C. (2006). Crystal structure determination and site-directed mutagenesis of the Pyrococcus abyssi aCBF5–aNOP10 complex reveal crucial roles of the C-terminal domains of both proteins in H/ACA sRNP activity. Nucleic Acids Research 34, 826839.CrossRefGoogle Scholar
Marrone, A. & Mason, P. J. (2003). Dyskeratosis congenita. Cellular and Molecular Life Sciences 60, 507517.CrossRefGoogle ScholarPubMed
Marrone, A., Walne, A. & Dokal, I. (2005). Dyskeratosis congenita: telomerase, telomeres and anticipation. Current Opinion in Genetics and Development 15, 249257.CrossRefGoogle ScholarPubMed
Martin, J. L. & Mcmillan, F. M. (2002). SAM (dependent) I AM: the S-adenosylmethionine-dependent methyltransferase fold. Current Opinion in Structural Biology 12, 783793.CrossRefGoogle ScholarPubMed
Matera, A. G., Terns, R. M. & Terns, M. P. (2007). Non-coding RNAs: lessons from the small nuclear and small nucleolar RNAs. Nature Reviews 8, 209220.CrossRefGoogle ScholarPubMed
Maxwell, E. S. & Fournier, M. J. (1995). The small nucleolar RNAs. Annual Review of Biochemistry 64, 897934.CrossRefGoogle ScholarPubMed
McCleverty, C. J., Hornsby, M., Spraggon, G. & Kreusch, A. (2007). Crystal structure of human Pus10, a novel pseudouridine synthase. Journal of Molecular Biology 373, 12431254.CrossRefGoogle ScholarPubMed
Meier, U. T. (2005). The many facets of H/ACA ribonucleoproteins. Chromosoma 114, 114.CrossRefGoogle ScholarPubMed
Mitchell, J. R., Cheng, J. & Collins, K. (1999a). A box H/ACA small nucleolar RNA-like domain at the human telomerase RNA 3′ end. Molecular and Cellular Biology 19, 567576.CrossRefGoogle Scholar
Mitchell, J. R., Wood, E. & Collins, K. (1999b). A telomerase component is defective in the human disease dyskeratosis congenita. Nature 402, 551555.CrossRefGoogle ScholarPubMed
Mochizuki, Y., He, J., Kulkarni, S., Bessler, M. & Mason, P. J. (2004). Mouse dyskerin mutations affect accumulation of telomerase RNA and small nucleolar RNA, telomerase activity, and ribosomal RNA processing. Proceedings of the National Academy of Sciences of the United States of America 101, 1075610761.CrossRefGoogle ScholarPubMed
Moore, T., Zhang, Y., Fenley, M. O. & Li, H. (2004). Molecular basis of box C/D RNA–protein interactions; cocrystal structure of archaeal L7Ae and a box C/D RNA. Structure (Cambridge) 12, 807818.CrossRefGoogle Scholar
Mosbacher, T. G., Bechthold, A. & Schulz, G. E. (2003). Crystal structure of the avilamycin resistance-conferring methyltransferase AviRa from Streptomyces viridochromogenes. Journal of Molecular Biology 329, 147157.CrossRefGoogle ScholarPubMed
Muller, S., Fourmann, J. B., Loegler, C., Charpentier, B. & Branlant, C. (2007). Identification of determinants in the protein partners aCBF5 and aNOP10 necessary for the tRNA:{Psi}55-synthase and RNA-guided RNA:{Psi}-synthase activities. Nucleic Acids Research 35, 56105624.CrossRefGoogle Scholar
Newby, M. I. & Greenbaum, N. L. (2002). Investigation of Overhauser effects between pseudouridine and water protons in RNA helices. Proceedings of the National Academy of Sciences of the United States of America 99, 1269712702.CrossRefGoogle ScholarPubMed
Newman, D. R., Kuhn, J. F., Shanab, G. M. & Maxwell, E. S. (2000). Box C/D snoRNA-associated proteins: two pairs of evolutionarily ancient proteins and possible links to replication and transcription. RNA 6, 861879.CrossRefGoogle Scholar
Newton, K., Petfalski, E., Tollervey, D. & Caceres, J. F. (2003). Fibrillarin is essential for early development and required for accumulation of an intron-encoded small nucleolar RNA in the mouse. Molecular and Cellular Biology 23, 85198527.CrossRefGoogle ScholarPubMed
Nureki, O., Shirouzu, M., Hashimoto, K., Ishitani, R., Terada, T., Tamakoshi, M., Oshima, T., Chijimatsu, M., Takio, K., Vassylyev, D. G., Shibata, T., Inoue, Y., Kuramitsu, S. & Yokoyama, S. (2002). An enzyme with a deep trefoil knot for the active-site architecture. Acta Crystallographica D: Biological Crystallography 58, 11291137.CrossRefGoogle ScholarPubMed
Omer, A. D., Lowe, T. M., Russell, A. G., Ebhardt, H., Eddy, S. R. & Dennis, P. P. (2000). Homologs of small nucleolar RNAs in archaea. Science 288, 517522.CrossRefGoogle ScholarPubMed
Omer, A. D., Ziesche, S., Decatur, W. A., Fournier, M. J. & Dennis, P. P. (2003). RNA-modifying machines in archaea. Molecular Microbiology 48, 617629.CrossRefGoogle ScholarPubMed
Omer, A. D., Ziesche, S., Ebhardt, H. & Dennis, P. P. (2002). In vitro reconstitution and activity of a C/D box methylation guide ribonucleoprotein complex. Proceedings of the National Academy of Sciences of the United States of America 99, 52895294.CrossRefGoogle Scholar
Oruganti, S., Zhang, Y. & Li, H. (2005). Structural comparison of yeast snoRNP and spliceosomal protein Snu13p with its homologs. Biochemical and Biophysical Research Communications 333, 550554.CrossRefGoogle ScholarPubMed
Oruganti, S., Zhang, Y., Li, H., Robinson, H., Terns, M. P., Terns, R. M., Yang, W. & Li, H. (2007). Alternative conformations of the archaeal Nop56/58-fibrillarin complex imply flexibility in box C/D RNPs. Journal of Molecular Biology 371, 11411150.CrossRefGoogle ScholarPubMed
Pan, H., Agarwalla, S., Moustakas, D. T., Finer-Moore, J. & Stroud, R. M. (2003). Structure of tRNA pseudouridine synthase TruB and its RNA complex: RNA recognition through a combination of rigid docking and induced fit. Proceedings of the National Academy Sciences of the United States of America 100, 1264812653.CrossRefGoogle ScholarPubMed
Peculis, B. A. & Steitz, J. A. (1993). Disruption of U8 nucleolar snRNA inhibits 5.8S and 28S rRNA processing in the Xenopus oocyte. Cell 73, 12331245.CrossRefGoogle ScholarPubMed
Perez-Arellano, I., Gallego, J. & Cervera, J. (2007). The PUA domain – a structural and functional overview. FEBS Journal 274, 49724984.CrossRefGoogle Scholar
Perez-Fernandez, J., Roman, A., de Las Rivas, J., Bustelo, X. R. & Dosil, M. (2007). The 90S preribosome is a multimodular structure that is assembled through a hierarchical mechanism. Molecular and Cellular Biology 27, 54145429.CrossRefGoogle ScholarPubMed
Phannachet, K., Elias, Y. & Huang, R. H. (2005). Dissecting the roles of a strictly conserved tyrosine in substrate recognition and catalysis by pseudouridine 55 synthase. Biochemistry 44, 1548815494.CrossRefGoogle ScholarPubMed
Piekna-Przybylska, D., Przybylski, P., Baudin-Baillieu, A., Rousset, J. P. & Fournier, M. J. (2008). Ribosome performance is enhanced by a rich cluster of pseudouridines in the A-site finger region of the large subunit. Journal of Biological Chemistry 283, 2602626036.CrossRefGoogle ScholarPubMed
Qu, L. H., Henras, A., Lu, Y. J., Zhou, H., Zhou, W. X., Zhu, Y. Q., Zhao, J., Henry, Y., Caizergues-Ferrer, M. & Bachellerie, J. P. (1999). Seven novel methylation guide small nucleolar RNAs are processed from a common polycistronic transcript by Rat1p and RNase III in yeast. Molecular and Cellular Biology 19, 11441158.CrossRefGoogle ScholarPubMed
Rashid, R., Aittaleb, M., Chen, Q., Spiegel, K., Demeler, B. & Li, H. (2003). Functional requirement for symmetric assembly of archaeal box C/D small ribonucleoprotein particles. Journal of Molecular Biology 333, 295306.CrossRefGoogle ScholarPubMed
Rashid, R., Liang, B., Baker, D. L., Youssef, O. A., He, Y., Phipps, K., Terns, R. M., Terns, M. P. & Li, H. (2006). Crystal structure of a Cbf5-Nop10-Gar1 complex and implications in RNA-guided pseudouridylation and dyskeratosis congenita. Molecular Cell 21, 249260.CrossRefGoogle ScholarPubMed
Reddy, R., Li, W. Y., Henning, D., Choi, Y. C., Nohga, K. & Busch, H. (1981). Characterization and subcellular localization of 7–8 S RNAs of Novikoff hepatoma. Journal of Biological Chemistry 256, 84528457.CrossRefGoogle ScholarPubMed
Richard, P., Kiss, A. M., Darzacq, X. & Kiss, T. (2006). Cotranscriptional recognition of human intronic box H/ACA snoRNAs occurs in a splicing-independent manner. Molecular and Cellular Biology 26, 25402549.CrossRefGoogle Scholar
Rozhdestvensky, T. S., Tang, T. H., Tchirkova, I. V., Brosius, J., Bachellerie, J. P. & Huttenhofer, A. (2003). Binding of L7Ae protein to the K-turn of archaeal snoRNAs: a shared RNA binding motif for C/D and H/ACA box snoRNAs in archaea. Nucleic Acids Research 31, 869877.CrossRefGoogle Scholar
Santi, D. V. (2000). Mechanistic studies of RNA modifying enzymes. RNA pseudouridine synthase and m5cytosine methyl transferase. Nucleic Acids Symposium Series 44, 147148.CrossRefGoogle Scholar
Schattner, P., Barberan-Soler, S. & Lowe, T. M. (2006). A computational screen for mammalian pseudouridylation guide H/ACA RNAs. Rna 12, 1525.CrossRefGoogle ScholarPubMed
Schubert, H. L., Blumenthal, R. M. & Cheng, X. (2003). Many paths to methyltransfer: a chronicle of convergence. Trends in Biochemical Sciences 28, 329335.CrossRefGoogle ScholarPubMed
Singh, M., Gonzales, F. A., Cascio, D., Heckmann, N., Chanfreau, G. & Feigon, J. (2009). Structure and functional studies of the CS domain of the essential H/ACA ribonucleoparticle assembly protein SHQ1. Journal of Biological Chemistry 284, 19061916.CrossRefGoogle Scholar
Singh, S. K., Gurha, P. & Gupta, R. (2008). Dynamic guide–target interactions contribute to sequential 2′-O-methylation by a unique archaeal dual guide box C/D sRNP. RNA 14, 14111423.CrossRefGoogle Scholar
Spedaliere, C. J., Ginter, J. M., Johnston, M. V. & Mueller, E. G. (2004). The pseudouridine synthases: revisiting a mechanism that seemed settled. Journal of the American Chemical Society 126, 1275812759.CrossRefGoogle ScholarPubMed
Suryadi, J., Tran, E. J., Maxwell, E. S. & Brown, B. A. II (2005). The Crystal Structure of the Methanocaldococcus jannaschii multifunctional L7Ae RNA-binding protein reveals an induced-fit interaction with the Box C/D RNAs(,). Biochemistry 44, 96579672.CrossRefGoogle ScholarPubMed
Tang, T. H., Bachellerie, J. P., Rozhdestvensky, T., Bortolin, M. L., Huber, H., Drungowski, M., Elge, T., Brosius, J. & Huttenhofer, A. (2002). Identification of 86 candidates for small non-messenger RNAs from the archaeon Archaeoglobus fulgidus. Proceedings of the National Academy of Sciences of the United States of America 99, 75367541.CrossRefGoogle ScholarPubMed
Tollervey, D. & Kiss, T. (1997). Function and synthesis of small nucleolar RNAs. Current Opinion in Cell Biology 9, 337342.CrossRefGoogle ScholarPubMed
Tran, E., Zhang, X., Lackey, L. & Maxwell, E. S. (2005). Conserved spacing between the box C/D and ‘C′/’D′ RNPs of the archaeal box C/D sRNP complex is required for efficient 2′-O-methylation of target RNAs. RNA 11, 285293.CrossRefGoogle Scholar
Tran, E. J., Zhang, X. & Maxwell, E. S. (2003). Efficient RNA 2′-O-methylation requires juxtaposed and symmetrically assembled archaeal box C/D and ‘C′/’′ RNPs. EMBO Journal 22, 39303940.CrossRefGoogle Scholar
Tyc, K. & Steitz, J. A. (1989). U3, U8 and U13 comprise a new class of mammalian snRNPs localized in the cell nucleolus. EMBO Journal 8, 31133119.CrossRefGoogle ScholarPubMed
Tycowski, K. T., Shu, M. D., Kukoyi, A. & Steitz, J. A. (2009). A conserved WD40 protein binds the Cajal body localization signal of scaRNP particles. Molecular Cell 34, 4757.CrossRefGoogle ScholarPubMed
Venteicher, A. S., Abreu, E. B., Meng, Z., Mccann, K. E., Terns, R. M., Veenstra, T. D., Terns, M. P. & Artandi, S. E. (2009). A human telomerase holoenzyme protein required for Cajal body localization and telomere synthesis. Science 323, 644648.CrossRefGoogle ScholarPubMed
Venteicher, A. S., Meng, Z., Mason, P. J., Veenstra, T. D. & Artandi, S. E. (2008). Identification of ATPases pontin and reptin as telomerase components essential for holoenzyme assembly. Cell 132, 945957.CrossRefGoogle ScholarPubMed
Vidovic, I., Nottrott, S., Hartmuth, K., Luhrmann, R. & Ficner, R. (2000). Crystal structure of the spliceosomal 15·5 kD protein bound to a U4 snRNA fragment. Molecular Cell 6, 13311342.CrossRefGoogle Scholar
Vulliamy, T., Beswick, R., Kirwan, M., Marrone, A., Digweed, M., Walne, A. & Dokal, I. (2008). Mutations in the telomerase component NHP2 cause the premature ageing syndrome dyskeratosis congenita. Proceedings of the National Academy of Sciences of the United States of America 105, 80738078.CrossRefGoogle ScholarPubMed
Walne, A. J. & Dokal, I. (2008). Dyskeratosis congenita: a historical perspective. Mechanisms of Ageing and Development 129, 4859.CrossRefGoogle ScholarPubMed
Wang, C. & Meier, U. T. (2004). Architecture and assembly of mammalian H/ACA small nucleolar and telomerase ribonucleoproteins. EMBO Journal 23, 18571867.CrossRefGoogle ScholarPubMed
Watkins, N. J., Gottschalk, A., Neubauer, G., Kastner, B., Fabrizio, P., Mann, M. & Luhrmann, R. (1998). Cbf5p, a potential pseudouridine synthase, and Nhp2p, a putative RNA-binding protein, are present together with Gar1p in all H BOX/ACA-motif snoRNPs and constitute a common bipartite structure. RNA 4, 15491568.CrossRefGoogle Scholar
Watkins, N. J., Segault, V., Charpentier, B., Nottrott, S., Fabrizio, P., Bachi, A., Wilm, M., Rosbash, M., Branlant, C. & Luhrmann, R. (2000). A common core RNP structure shared between the small nucleolar box C/D RNPs and the spliceosomal U4 snRNP. Cell 103, 457466.CrossRefGoogle Scholar
Weinstein, L. B. & Steitz, J. A. (1999). Guided tours: from precursor snoRNA to functional snoRNP. Current Opinion in Cell Biology 11, 378384.CrossRefGoogle ScholarPubMed
Wu, H. & Feigon, J. (2007). H/ACA small nucleolar RNA pseudouridylation pockets bind substrate RNA to form three-way junctions that position the target U for modification. Proceedings of the National Academy of Sciences of the United States of America 104, 66556660.CrossRefGoogle ScholarPubMed
Wu, P., Brockenbrough, J. S., Metcalfe, A. C., Chen, S. & Aris, J. P. (1998). Nop5p is a small nucleolar ribonucleoprotein component required for pre-18S rRNA processing in yeast. Journal of Biological Chemistry 273, 1645316463.CrossRefGoogle Scholar
Xue, S., Wang, R., Yang, F., Terns, R. M., Terns, M. P., Zhang, X., Maxwell, E. S. & Li, H. (2010). Structural basis for substrate placement by an archaeal box C/D ribonucleoprotein particle. Molecular Cell 39, 939949.CrossRefGoogle Scholar
Yang, C., Mcpheeters, D. S. & Yu, Y. T. (2005a). Psi35 in the branch site recognition region of U2 small nuclear RNA is important for pre-mRNA splicing in Saccharomyces cerevisiae. Journal of Biological Chemistry 280, 66556662.CrossRefGoogle ScholarPubMed
Yang, P. K., Hoareau, C., Froment, C., Monsarrat, B., Henry, Y. & Chanfreau, G. (2005b). Cotranscriptional recruitment of the pseudouridylsynthetase Cbf5p and of the RNA binding protein Naf1p during H/ACA snoRNP assembly. Molecular and Cellular Biology 25, 32953304.CrossRefGoogle ScholarPubMed
Yang, P. K., Rotondo, G., Porras, T., Legrain, P. & Chanfreau, G. (2002). The Shq1p.Naf1p complex is required for box H/ACA small nucleolar ribonucleoprotein particle biogenesis. Journal of Biological Chemistry 277, 4523545242.CrossRefGoogle Scholar
Ye, K., Jia, R., Lin, J., Ju, M., Peng, J., Xu, A. & Zhang, L. (2009). Structural organization of box C/D RNA-guided RNA methyltransferase. Proceedings of the National Academy of Sciences of the United States of America 106, 1380813813.CrossRefGoogle Scholar
Yu, Y. T., Shu, M. D. & Steitz, J. A. (1998). Modifications of U2 snRNA are required for snRNP assembly and pre-mRNA splicing. EMBO Journal 17, 57835795.CrossRefGoogle ScholarPubMed
Zhao, X. & Yu, Y. T. (2004). Pseudouridines in and near the branch site recognition region of U2 snRNA are required for snRNP biogenesis and pre-mRNA splicing in Xenopus oocytes. RNA 10, 681690.CrossRefGoogle ScholarPubMed
Zhou, J., Liang, B. & Li, H. (2010a). Functional and structural impact of target uridine substitutions on H/ACA ribonucleoprotein particle pseudouridine synthase. Biochemistry 49, 62766281.CrossRefGoogle Scholar
Zhou, J., Chao, L. V., Liang, B., Chen, M., Yang, W. & Li, H. (2010b). Glycosidic bond conformation preference plays a pivotal role in catalysis of RNA pseudouridylation: a combined simulation and structural study. Journal of Molecular Biology 401, 690695.CrossRefGoogle Scholar