Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-09T18:12:03.046Z Has data issue: false hasContentIssue false

Structures and mechanisms of DNA restriction and modification enzymes

Published online by Cambridge University Press:  17 March 2009

Paul Modrich
Affiliation:
Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710

Extract

DNA restriction and modification enzymes are responsible for the hostspecific barriers to interstrain and interspecies transfer of genetic information that have been observed in a variety of bacterial cell types. Although the phenomenon of host specificity was initially observed in the early 1950s (Luria & Human, 1952; Bertani & Weigle, 1953), it was nearly a decade later that Arber and his colleagues accurately predicted the molecular basis of the phenomenon. Their experiments with bacteriophage λ demonstrated that a given host-specificity system imparts a specific modification to the viral DNA, and further, that restriction of DNA lacking the appropriate modification is s consquence of nucleolytic hydrolysis upon entry into the host cell (Arber & Dussoix, 1962; Dussoix & Arber, 1962; Arber, Hattman & Dussoix, 1963).

Type
Research Article
Copyright
Copyright © Cambridge University Press 1979

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

VI. References

Aaij, C. & Borst, P. (1972). The gel electrophoresis of DNA. Biochem. biophys. Acta 269, 192200.Google Scholar
Adler, S. P. & Nathans, D. (1973). Conversion of circular to linear SV40 DNA by restriction endonuclease from Escherichia coli B. Biochim. biophys. Acta 299, 177188.CrossRefGoogle Scholar
Arber, W. (1965). The role of methionine in the production of host specificity. J. molec. Biol. 11, 247256.Google Scholar
Arber, W. (1974). DNA modification and restriction. Prog. nucleic Acid Res. & molec. Biol. 14, 137.Google Scholar
Arber, W. & Dussoix, D. (1962). Host controlled modification of bacteriophage λ. J. molec. Biol. 5, 1836.CrossRefGoogle ScholarPubMed
Arber, W., Hattman, S. & Dussoix, D. (1963). On the host-controlled modification of bacteriophage λ. Virology 21, 3035.Google Scholar
Arber, W. & Kühnlein, U. (1967). Mutationeller Verlust B-spezifischer Restriction des Bakteriophagen fd. Pathol. Microbiol. 30, 946952.Google Scholar
Arber, W. & Linn, S. (1969). DNA modification and restriction. A. Rev. Biochem. 38, 467500.Google Scholar
Arber, W. & Smith, J. D. (1966). IXth Int. Congr. Microbiol., Moscow, Abstracts, p. 5.Google Scholar
Bannister, D. & Glover, S. W. (1970). The isolation and properties of non-restricting mutants of two different host specificities associated with drug resistance factors. J. gen. Microbiol. 61, 6371.Google Scholar
Beck, E., Sommer, R., Auerswald, E. A., Kurz, C., Zink, B., Osterburg, G., Schaller, H., Sugimoto, K., Sugisaki, H., Okamoto, T. & Takanami, M. (1978). Nucleotide sequence of bacteriophage fd DNA. Nucl. Acids Res. 5, 44954503.Google Scholar
Berkner, K. L. & Folk, W. R. (1977 a). Polynucleotide kinase exchange reaction: quantitative assay for restriction endonuclease-generated 5′-phosphoryl termini in DNAs. J. biol. Chem. 252, 31763184.CrossRefGoogle Scholar
Berkner, K. L. & Folk, W. R. (1977 b). Eco RI cleavage and methylation of DNAs containing modified pyrimidines in the recognition sequence. J. biol. Chem. 252, 31853193.Google Scholar
Berkner, K. L. & Folk, W. R. (1978). Overmethylation of DNAs by the Eco RI methylase. Nucl. Acids Res. 5, 453–450.CrossRefGoogle Scholar
Bertani, G. & Weigle, J. J. (1953). Host controlled variation in bacterial viruses. J. Bact. 65, 113121.Google Scholar
Bickle, T. A., Brack, C. & Yuan, R. (1978). ATP-induced conformational changes in the restriction endonuclease from Escherichia coli K12. Proc. natn. Acad. Sci. U.S.A. 75, 30993103.Google Scholar
Bigger, C. H., Murray, K. & Murray, N. (1973). Recognition sequence of a restriction enzyme. Nature (New Biol) 244, 710.Google Scholar
Blakesley, R. W., Dodgson, J. B., Nes, I. F. & Wells, R. D. (1977). Duplex regions in single-stranded φχ174 DNA are cleaved by a restriction endonuclease from Haemophilus aegyptius. J. biol. Chem. 252, 73007306.CrossRefGoogle Scholar
Blakesley, R. W. & Wells, R. D. (1975). ‘Single-Stranded’ DNA from φχ174 and M13 is cleaved by certain restriction endonucleases. Nature, Lond. 257, 421422.Google Scholar
Bourgeois, S. & Pfahl, M. (1976). Repressors. Adv. Protein Chem. 30, 199.CrossRefGoogle ScholarPubMed
Boyer, H. W. (1971). DNA restriction and modification mechanisms in bacteria. A. Rev. Microbiol. 25, 153176.Google Scholar
Boyer, H. W., Chow, L. T., Dugaiczyk, A., Hedgpeth, J. & Goodman, H. M. (1973). DNA substrate site for the Eco RII restriction endonuclease and modification methylase. Nature (New Biol.) 244, 4043.Google Scholar
Boyer, H. W. & Roulland-Dusswoix, D. (1969). A complementation analysis of the restriction and modification of DNA in Escherichia coli. J. molec. Biol. 41, 459472.CrossRefGoogle ScholarPubMed
Brack, C., Eberle, H., Bickle, T. A. & Yuan, R. (1976). Mapping of the recognition sites for the restriction endonuclease from Escherichia coli K12 on bacteriophage PM2 DNA. J. molec. Biol. 108, 583593.Google Scholar
Bron, S. & Murray, K. (1975). Restriction and modification in B. subtilis: nucleotide sequence recognised by restriction endonuclease R. Bsu R from strain R. Molec. & Gen. Genet. 143, 2533.Google Scholar
Catterall, J. F. & Welker, N. E. (1977). Isolation and properties of a thermostable restriction endonuclease (Endo R. Bst 1503). J. Bact. 129, 11101120.CrossRefGoogle Scholar
Center, M. S., Studier, F. W. & Richardson, C. C. (1970). The structural gene for a T7 endonuclease essential for phage DNA synthesis. Proc. natn. Acad. Sci. U.S.A. 65, 242248.Google Scholar
Chang, S. & Cohen, S. N. (1977). In vivo site-specific genetic recombination promoted by the Eco RI restriction endonuclease. Proc. natn. Acad. Sci. U.S.A. 74, 48114815.CrossRefGoogle Scholar
Clarke, C. M. & Hartley, B. S. (1979). Purification, properties and specificity of the restriction endonuclease from Bacillus stearothermophilus. Biochem. J. 177, 4962.Google Scholar
Depew, R. E. & Wang, J. C. (1975). Conformational fluctuations in the DNA helix. Proc. natn. Acad. Sci. U.S.A. 72, 42754279.CrossRefGoogle ScholarPubMed
Dickson, R. C., Abelson, J., Barnes, W. M. & Reznikoff, W. S. (1975). Genetic regulation: the Lac control region. Science, N.Y. 187, 2735.CrossRefGoogle ScholarPubMed
Dugaiczyk, A., Hedgpeth, J., Boyer, H. W. & Goodman, H. M. (1974 a). Physical identity of the SV40 deoxyribonucleic acid sequence recognized by the EcoRI restriction endonuclease and modification methylase. Biochemistry, N.Y. 13, 503512.Google Scholar
Dugaiczyk, A., Kimball, M., Linn, S. & Goodman, H. M. (1974 b). Location and nucleotide sequence of the site on SV40 DNA methylated by the Eco B modification methylase. Biochem. biophys. Res. Comm. 61, 11331140.Google Scholar
Dussoix, D. & Arber, W. (1962). Control over acceptance of DNA from infecting phage λ. J. molec. Biol. 5, 3749.Google Scholar
Engel, J. D. & von, Hippel P. H. (1978). Effects of methylation on stability of nucleic and conformations: studies at the polymer level. J. biol. Chem. 253, 927934.Google Scholar
Eskin, B. & Linn, S. (1972 a). The deoxyribonucleic acid modification and restriction enzymes of Escherichia coli B. II. Purification, subunit structure, and catalytic properties of the restriction endonuclease. J. biol. Chem. 247, 61836191.Google Scholar
Eskin, B. & Linn, S. (1972 b). The deoxyribonucleic acid modification and restriction enzymes of Escherichia coli B: studies of the restriction adenosine triphosphatase. J. biol. Chem. 247, 61926196.Google Scholar
Forsblum, S., Rigler, R., Ehrenberg, M., Petterson, U. & Philipson, L. (1976). Kinetic studies on the cleavage of adenovirus DNA by restriction endonuclease Eco RI. Nucl. Acids Res. 3, 32553269.CrossRefGoogle Scholar
Franklin, N. C. & Dove, W. F. (1969). Genetic evidence for restriction targets in the DNA of phages λ and φ80. Genet. Res., 14 151157.Google Scholar
Garfin, D. E. & Goodman, H. M. (1974). Nucleotide sequences at the cleavage sites of two restriction endonucleases from Haemophilus parainfluenzae. Biochem. biophys. Res. Comm. 59, 108116.CrossRefGoogle Scholar
Geier, G. E. & Modrich, P. (1979). Recognition sequence of the dam methylase of Escherichia coli K12 and mode of cleavage of Dpn I endonuclease. J. biol. Chem. 254, 14081413.Google Scholar
Gierer, (1966). Model for DNA and protein interactions and the function of the operator. Nature, Lond. 212, 14801481.Google Scholar
Gilbert, W. (1976). Starting and stopping points for RNA polymerase. In RNA Polymerase (ed. Losick, R. and Chamberlin, M.), pp. 193205. Cold Spring Harbor.Google Scholar
Glover, S. W. (1970). Functional analysis of host-specificity mutants in Escherichia coli. Genet. Res. 15, 237250.Google Scholar
Godson, G. N., Barrell, B. G., Staden, R. & Fiddes, J. C. (1978). Nucleotide sequence of bacteriophage G4 DNA. Nature, Lond. 276, 236247.CrossRefGoogle ScholarPubMed
Godson, G. N. & Roberts, R. J. (1976). A catalogue of cleavage of φχ174, S13, G4 and St-1 DNA by 26 different restriction endonucleases. Virology 73, 561567.CrossRefGoogle Scholar
Greene, P. J., Betlach, M. C., Boyer, H. W. & Goodman, H. M. (1974). The Eco RI restriction endonuclease. In Methods in Molecular Biology Series: DNA Replication and Biosynthesis, vol. 7 (ed. Wickner, R. B.), pp. 87111. New York: Marcel Dekker.Google Scholar
Greene, P. J., Boyer, H. W. & Rosenberg, J. M. (1979). Genetic and molecular analysis of the Eco RI restriction and modification system. Fedn. Proc. 38, 293.Google Scholar
Greene, P. J., Poonian, M. S., Nussbaum, A. L., Tobias, L., Garfin, D. E., Boyer, H. W. & Goodman, H. M. (1975). Restriction and modification of a self-complementary octanucleotide containing the Eco RI site. J. molec. Biol. 99, 237261.Google Scholar
Haberman, A., Heywood, J. & Meselson, M. (1972). DNA modification methylase activity of Escherichia coli restriction endonucleases K and P. Proc. natn. Acad. Sci. U.S.A. 69, 31383141.Google Scholar
Hadi, S. M., Bickle, T. A. & Yuan, R. (1975). The role of S-adenosyl-methionine in the cleavage of deoxyribonucleic acid by the restriction endonuclease from Escherichia coli K. J. biol. Chem. 250, 41594164.Google Scholar
Hedgpeth, J., Goodman, H. M. & Boyer, H. W. (1972). DNA nucleotide sequence restricted by the RI endonuclease. Proc. natn. Acad. Sci. U.S.A. 69, 34483452.Google Scholar
Hines, J. L. & Agarwal, K. L. (1979). Purification and characterization of Hpa I and Hpa II. Fedn Proc. 38, 294.Google Scholar
Hinkle, D. C. & Chamberlin, M. J. (1972). Studies of the binding of Escherichia coli RNA polymerase to DNA: role of sigma subunit in site selection. J. molec. Biol. 70, 157185.Google Scholar
Horiuchi, K., Vovis, G. F., Enea, V. & Zinder, N. D. (1975). Cleavage map of bacteriophage fl: location of the Escherichia coli B-specific modification sites. J. molec. Biol. 95, 147165.Google Scholar
Horiuchi, K., Vovis, G. F. & Zinder, N. D. (1974). Effect of deoxyribonucleic acid chain length on the adenosine triphosphatase activity of Escherichia coli restriction endonuclease B. J. biol. Chem. 249, 543552.Google Scholar
Horiuchi, K. & Zinder, N. D. (1972). Cleavage of bacteriophage fl DNA by the restriction enzyme of Escherichia coli B. Proc. natn. Acad. Sci. U.S.A. 69, 32203224.Google Scholar
Horiuchi, K. & Zinder, N. D. (1975). Site-specific cleavage of single-stranded DNA by a Haemophilus restriction endonuclease. Proc. natn. Acad. Sci. U.S.A. 72, 25552558.Google Scholar
Hsu, M. & Berg, P. (1978). Altering the specificity of restriction endonuclease: effect of replacing Mg++ with Mn++. Biochemistry, N.Y. 17, 131138.Google Scholar
Hubacek, J. & Glover, S. W. (1970). Complementation analysis of temperature-sensitive host specificity mutations in Escherichia coli. J. molec. Biol. 50, 111127.Google Scholar
Jovin, T. M. (1976). Recognition mechanisms of DNA-specific enzymes. A. Rev. Biochem. 45, 889920.Google Scholar
Kan, N. C., Lautenberger, J. A., Edgell, M. H. & Hutchison III, C. A. (1979). The nucleotide sequence recognized by the Escherichia coli K12 restriction and modification enzymes. J. molec. Biol. 131 (in the Press).Google Scholar
Kaplan, D. A. & Nierlich, D. P. (1975). Cleavage of nonglucosylated bacteriophage T4 deoxyribonucleic acid by restriction endonuclease Eco RI. J. biol. Chem. 250, 23952397.Google Scholar
Karu, A. E., MacKay, V., Goldmark, P. J. & Linn, S. (1973). The recBC deoxyribonuclease of Escherichia coli K12. J. biol. Chem. 248, 48744884.Google Scholar
Kelly, T. J. & Smith, H. O. (1970). A restriction enzyme from Haemophilus influenzae. II. Base sequence of the recognition site. J. molec. Biol., 51, 393409.Google Scholar
Kimball, M. & Linn, S. (1976). The release of oligonucleotides by the Escherichia coli B restriction endonuclease. Biochem. biophys. Res. Comm. 68, 585591.CrossRefGoogle ScholarPubMed
Kiss, A., Sain, B., Csordas-Toth, E. & Venetianer, P. (1977). A new sequence-specific endonuclease (Bsp) from Bacillus sphaericus. Gene 1, 323329.Google Scholar
Kleid, D., Humayun, Z., Jeffrey, A. & Ptashue, M. (1976). Novel properties of a restriction endonuclease isolated from Haemophilus parahaemolyticus. Proc. natn. Acad. Sci. U.S.A. 73, 293297.Google Scholar
Klein, A. & Sauerbier, W. (1965). Role of methylation in host controlled modification of Phage TI. Biochem. biophys. Res. Comm. 18, 440445.CrossRefGoogle Scholar
Koncz, C., Kiss, A. & Venetianer, P. (1978). Biochemical characterization of the restriction-modification system of Bacillus sphaericus. Eur. J. Biochem. 89, 523529.CrossRefGoogle ScholarPubMed
Kühnlein, U. & Arber, W. (1972). The role of nucleotide methylation in in vitro B-specific modification. J. molec. Biol. 63, 919.Google Scholar
Lark, C. & Arber, W. (1970). Breakdown of cellular DNA upon growth in ethionine of strains with r+15, r+P1 or r+N3 restriction phenotypes. J. molec. Biol. 52, 337348.Google Scholar
Lautenberger, J. A., Edgell, M. H., Hutchison, III C. A. & Godson, G. N. (1979). The DNA sequence on bacteriophage G4 recognized by the Escherichia coli B restriction enzyme. J. molec. Biol. 131 (in the Press).Google Scholar
Lautenberger, J. A., Kan, N. C., Lackey, D., Linn, S., Edgell, M. H. & Hutchison, III C. A. (1978). Recognition site of Escherichia coli B restriction enzyme on φχsBI and simian virus 40 DNAs: an interrupted sequence. Proc. natn. Acad. Sci. U.S.A. 75, 22712275.Google Scholar
Lautenberger, J. A. & Linn, S. (1972). The deoxyribonucleic acid modification and restriction enzymes of Escherichia coli B. I. Purification, subunit structure, and catalytic properties of the modification methylase. J. biol. Chem. 247, 61766182.CrossRefGoogle Scholar
Lehman, I. R. & Pratt, E. A. (1960). On the structure of glucosylated hydroxymethylcytosine nucleotides of coliphages T2, T4, and T6. J. biol. Chem. 235, 32543259.CrossRefGoogle ScholarPubMed
Levy, W. P. & Welker, N. E. (1978). Purification and properties of a modification methylase from Bacillus stearothermophilus. Fedn Proc. 37, 1414.Google Scholar
Lin, S.-Y. & Riggs, A. D. (1972). Lac operator analogues: bromedeoxyuridine substitution in the Lac operator affects the rate of dissociation of the Lac repressor. Proc. natn. Acad. Sci. U.S.A. 69, 25742576.Google Scholar
Linn, S. & Arber, W. (1968). In vitro restriction of phage fd replicative form. Proc. natn. Acad. Sci. U.S.A. 59, 13001306.Google Scholar
Linn, S., Lautenberger, J. A., Eskin, B. & Lackey, D. (1974). Host-controlled restriction and modification enzymes of Escherichia coli B. Fedn Proc. 33, 11281134.Google Scholar
Luria, S. E. & Human, M. L. (1952). A non-hereditary, host-induced variation of bacterial viruses. J. Bacteriol. 64, 557569.CrossRefGoogle Scholar
Lyons, L. B. & Zinder, N. D. (1972). The genetic map of the filamentous bacteriophage fl. Virology 49, 4560.Google Scholar
Mann, M. B., Rao, R. N. & Smith, H. O. (1978). Cloning of restriction and modification genes in E. coli: the Hha II system from Haemophilus haemolyticus. Gene 3, 97112.CrossRefGoogle Scholar
Mann, M. B. & Smith, H. O. (1977). Specificity of Hpa II and Hae III DNA methylases. Nucl. Acids Res. 4, 42114221.Google Scholar
Mann, M. B. & Smith, H. O. (1979 a). The Hha II restriction-modification system. Fedn Proc. 38, 293.Google Scholar
Mann, M. B. & Smith, H. O. (1979 b). Specificity of DNA methylases from Haemophilus sp. In Transmethylation (ed. Usdin, E., Borchardt, R. and Kreveling, C.), pp. 483492. New York: Elsevier-North Holland.Google Scholar
Maxam, A. M. & Gilbert, W. (1977). A new method for sequencing DNA. Proc. natn. Acad. Sci. U.S.A. 74, 566–564.Google Scholar
McConnell, D. J., Searcy, D. G. & Sutcliffe, J. G. (1978). A restriction enzyme Tha I from the thermophilic mycoplasma Thermoplasma acidophilum. Nucl. Acids Res. 5, 17291739.Google Scholar
Meselson, M. & Yuan, R. (1968). DNA restriction enzyme from E. coli. Nature, Lond. 217, 11101114.Google Scholar
Meselson, M., Yuan, R. & Heywood, J. (1972). Restriction and modification of DNA. A. Rev. Biochem. 41, 447466.Google Scholar
Middleton, J. H., Edgell, M. H. & Hutchison, III C. A. (1972). Specific fragments of φχ174 deoxyribonucleic acid produced by a restriction enzyme from Haemophilus aegyptius, endonuclease Z. J. Virol. 10, 4250.Google Scholar
Modrich, P. & Rubin, R. A. (1977). Role of the 2-amino group of deoxyguanosine in sequence recognition by Eco RI restriction and modification enzymes. J. biol. Chem. 252, 72737278.CrossRefGoogle Scholar
Modrich, P. & Rubin, R. (1979). Studies on Eco RI DNA restriction and modification enzymes. Fedn Proc. 38, 293.Google Scholar
Modrich, P. & Zabel, D. (1976). Eco RI endonuclease: physical and catalytic properties of the homogeneous enzyme. J. biol. Chem. 251, 58665874.Google Scholar
Murray, N. E., Batten, P. L. & Murray, K. (1973 a). Restriction of bacteriophage λ by Escherichia coli K. J. molec. Biol. 81, 395407.Google Scholar
Murray, N. E., Manduca, de Ritis P. & Foster, L. (1973 b). DNA targets for the Escherichia coli K restriction system analyzed genetically in recombinants between phages Phi80 and lambda. Molec. & Gen. Genet. 120, 261281.Google Scholar
Murray, N. E. & Murray, K. (1974). Manipulation of restriction targets in phage λ to form receptor chromosomes for DNA fragments. Nature, Lond. 251, 476481.Google Scholar
Nathans, D. & Smith, H. O. (1975). Restriction endonucleases in the analysis and restructuring of DNA molecules. A. Rev. Biochem. 44, 273293.Google Scholar
Old, R., Murray, K. & Roizes, G. (1975). Recognition sequence of restriction endonuclease III from Haemophilus influenzae. J. molec. Biol. 92, 331339.Google Scholar
Polisky, B., Greene, P., Garfin, D. E., McCarthy, B. J., Goodman, H. M. & Boyer, H. W. (1975). Specificity of substrate recognition by the Eco RI restriction endonuclease. Proc. natn. Acad. Sci. U.S.A. 72, 33103314.Google Scholar
Ptashne, M., Backman, M., Humayun, M. Z., Jeffrey, A., Maurer, R., Meyer, B. & Sauer, R. T. (1976). Autoregulation and function of a repressor in phage λ. Science, N.Y. 194, 156161.Google Scholar
Rambach, A. & Tiollais, (1974). Bacteriophage λ having Eco RI sites only in the nonessential region of the genome. Proc. natn. Acad. Sci. U.S.A. 71, 39273930.Google Scholar
Ravetch, J. V., Horiuchi, K. & Zinder, N. D. (1978). Nucleotide sequence of the recognition site for the restriction-modification enzyme of Escherichia coli B. Proc. natn. Acad. Sci. U.S.A. 75, 22662270.Google Scholar
Reddy, V. B., Thimmappaya, B., Dhar, R., Subramanian, K. N., Zain, B. S., Pan, J., Ghosh, P. K., Celma, M. L. & Weissman, S. M. (1978). The genome of Simian virus 40. Science, N. Y. 200, 494502.Google Scholar
Reiser, J., Bentley, C. M. & Yuan, R. (1976). A simplified assay for endonuclease and ligase activities. Anal. Biochem. 75, 555562.Google Scholar
Richter, P. H. & Eigen, M. (1974). Diffusion controlled reaction rates in spheroidal geometry; application to repressor–operator association and membrane bound enzymes. Biophys. Chem. 2, 255263.CrossRefGoogle ScholarPubMed
Riggs, A. D., Bourgeois, S. & Cohn, M. (1970 a). The lac repressor–operator interaction. III. Kinetic studies. J. molec. Biol. 53, 401417.Google Scholar
Riggs, A. D., Suzuki, H. & Bourgeois, S. (1970 b). Lac repressor–operator interaction. I. Equilibrium studies. J. molec. Biol. 48, 6783.Google Scholar
Roberts, R. J. (1976). Restriction endonucleases. CRC Crit. Rev. Biochem. 4, 123164.Google Scholar
Roberts, R. J., Myers, P. A., Morrison, A. & Murray, K. (1976). A specific endonuclease from Haemophilus haemolyticus. J. molec. Biol. 103, 199208.Google Scholar
Roberts, R. J., Wilson, G. A. & Young, F. E. (1977). Recognition sequence of specific endonuclease Bam HI from Bacillus amyloliquefaciens H. Nature, Lond. 265, 8284.Google Scholar
Rosamond, J., Endlich, B., Telander, K. M. & Linn, S. (1978). Mechanisms of action of the Type I restriction endonuclease Eco B, and the recBC DNase from Escherichia coli. Cold Spring Harb. Symp. quant. Biol. 44 (in the Press).Google Scholar
Rosamond, J., Endlich, B. & Linn, S. (1979). Electron microscopic studies of the mechanism of action of the restriction endonuclease of Escherichia coli B. J. molec. Biol. 129, 619635.Google Scholar
Rosenberg, J. M., Dickerson, R. E., Greene, P. J. & Boyer, H. W. (1978). Preliminary X-ray diffraction enzlysis of crystalline Eco RI endonuclease. J. molec. Biol. 122, 241245.Google Scholar
Roulland-Dussoix, D. & Boyer, H. (1969). The Escherichia coli B restriction endonuclease. Biochim. biophys. Acta 195, 219229.Google Scholar
Roulland-Dussoix, D., Yoshimori, R., Greene, P., Betlach, M., Goodman, H. M. & Boyer, H. (1974). R factor-controlled restriction and modification of deoxyribonucleic acid. In American Society for Microbiology, Conference on Bacterial Plasmids, Microbiology1974, pp. 187198. ASM Press.Google Scholar
Roy, P. H. & Smith, H. O. (1973 a). DNA methylases of Haemophilus influenzae Rd. I. Purification and properties. J. molec. Biol. 81, 427444.Google Scholar
Roy, P. H. & Smith, H. O. (1973 b). DNA methylases of Haemophilus influenzae Rd. II. Partial recognition site base sequences. J. molec. Biol. 81, 445459.CrossRefGoogle ScholarPubMed
Ruben, G., Spielman, P., Tu, C. D., Jay, E., Siegel, B. & Wu, R. (1977). Relaxed circular SV40 DNA as cleavage intermediate of two restriction endonucleases. Nucl. Acids Res. 4, 18031813.Google Scholar
Rubin, R. A. & Modrich, P. (1977). Eco RI methylase: physical and catalytic properties of the homogeneous enzyme. J. biol. Chem. 252, 72657272.Google Scholar
Rubin, R. A. & Modrich, P. (1978). Substrate dependence of the mechanism of Eco RI endonuclease. Nucl. Acids Res. 5, 29912997.Google Scholar
Rubin, R. A. & Modrich, P. (1979). In Methods in Enzymology, Nucleic Acids and Protein Synthesis, Part H (ed. Grossman, L. and Moldave, K.), New York: Academic Press. (In the Press.)Google Scholar
Saucier, J. M. & Wang, J. C. (1973). Selective retention of double-stranded circular deoxyribonucleic acid by membrane filtration. Biochemistry, N.Y. 12, 27552758.Google Scholar
Sanger, F., Air, G. M., Barrell, B. G., Brown, N. L., Coulson, A. R., Fiddes, J. C., Hutchison, III C. A., Slocombe, P. M. & Smith, M. (1977). Nucleotide sequence of φχ174 DNA. Nature, Lond. 265, 687695.Google Scholar
Sanger, F. & Coulson, A. R. (1975). A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase. J. molec. Biol. 94, 441448.Google Scholar
Sanger, F., Coulson, A. R., Friedmann, T., Air, G. M., Barrell, B. G., Brown, N. L., Fiddes, J. C., Hutchison, III C. A., Slocombe, P. M. & Smith, M. (1978). The nucleotide sequence of bacteriophage φχ174. J. molec. Biol. 125, 225246.Google Scholar
Sclair, M., Edgell, M. H. & Hutchison, III C. A. (1973). Mapping of new Escherichia coli K and 15 restriction sites on specific fragments of bacteriophage φχ174 DNA. J. Virol. 11, 278385.Google Scholar
Sharp, P. A., Sugden, B. & Sambrook, J. (1973). Detection of two restriction endonuclease activities in Haemophilus parainfluenzae using analytical agarose–ethidium bromide electrophoresis. Biochemistry, N. Y. 12, 30553063.CrossRefGoogle ScholarPubMed
Smith, J., Arber, W. & Kühnlein, U. (1972). The role of nucleotide methylation in in vivo B-specific modification. J. molec. Biol. 63, 18.Google Scholar
Smith, L. A. & Chirikjian, J. G. (1979). Purification and characterization of the sequence-specific endonuclease Bam HI. J. biol. Chem. 254, 10031006.Google Scholar
Smith, H. O. & Wilcox, K. W. (1970). A restriction enzyme from Haemophilus influenzae. I. Purification and general properties. J. molec. Biol. 51, 379391.Google Scholar
Sobell, H. M. (1972). Molecular mechanism for genetic recombination. Proc. natn. Acad. Sci. U.S.A. 69, 24832487.CrossRefGoogle ScholarPubMed
Sommer, R. & Schaller, H. (1979). Molec. & gen. genetics (in the Press).Google Scholar
Stahl, S. J. & Chamberlin, M. J. (1976). Groups on the outside of the DNA helix affect promoter utilization by T7 RNA polymerase. In RNA Polymerase (ed. Losick, R. and Chamberlin, M.), pp. 429440. Cold Spring Harbor, N.Y.Google Scholar
Sutcliffe, J. G. (1978). pBR322 restriction map derived from the DNA sequence: accurate DNA size markers up to 4361 nucleotide pairs long. Nucl. Acids Res., 5, 27212728.CrossRefGoogle ScholarPubMed
Thomas, M., Cameron, J. R. & Davis, R. W. (1974). Viable molecular hybrids of bacteriophage lambda and eukaryotic DNA. Proc. natn. Acad. Sci. U.S.A. 71, 45794583.Google Scholar
Thomas, M. & Davis, R. W. (1975). Studies on the cleavage of bacteriophage lambda DNA with Eco RI restriction endonuclease. J. molec. Biol. 91, 315328.Google Scholar
van, Ormondt H., Lautenberger, J. A., Linn, S. & de, Waard A. (1973). Methylated oligonucleotides derived from bacteriophage fd RF-DNA modified in vitro by E. coli B modification methylase. FEBS Lett. 33, 177180.Google Scholar
von, Hippel P. H. & McGhee, J. D. (1972). DNA protein interactions. A. Rev. Biochem. 41, 231300.Google Scholar
Vovis, G. F., Horiuchi, K., Hartman, N. & Zinder, N. D. (1973). Restriction endonuclease B and fl heteroduplex DNA. Nature (New Biol.) 246, 1316.Google Scholar
Vovis, G. F., Horiuchi, K. & Zinder, N. D. (1974). Kinetics of methylation by a restriction endonuclease from Escherichia coli B. Proc. natn. Acad. Sci. U.S.A. 71, 38103813.Google Scholar
Vovis, G. F. & Zinder, N. D. (1975). Methylation of fl DNA by a restriction endonuclease from Escherichia coli B. J. molec. Biol. 95, 557568.Google Scholar
Wang, J. C. (1979). Helical repeat of DNA in solution. Proc. natn. Acad. Sci. U.S.A. 76, 200203.Google Scholar
Weiss, B., Live, T. R. & Richardson, C. C. (1968). End group labeling and analysis of deoxyribonucleic acid containing single strand breaks. J. biol. Chem. 243, 45304542.Google Scholar
Wilson, G. A. & Young, F. E. (1975). Isolation of a sequence-specific endonuclease (Bam I) from Bacillus amyloliquefaciens. J. molec. Biol. 97, 123125.Google Scholar
Wood, W. B. (1966). Host specificity of DNA produced by Escherichia coli: bacterial mutations affecting the restriction and modification of DNA. J. molec. Biol. 16, 118133.Google Scholar
Woodbury, C. P., Downey, R. L. & von, Hippel P. H. (1978). Eco RI methylase: on its substrate specificity and use in radioactive labeling of DNA. Fedn Proc. 37, 1415.Google Scholar
Woodbury, C. P. & Hagenbuchle, O. (1979). Reduced sequence-specificity of Eco RI endonuclease. Fedn Proc. 38, 780.Google Scholar
Wright, M., Buttin, G. & Hurwitz, J. (1971). The isolation and characterization from Escherichia coli of an adenosine triphosphate-dependent deoxyribonuclease directed by recB, C genes. J. biol. Chem. 246, 65436555.Google Scholar
Yuan, R., Bickle, T. A., Ebbers, W. & Brack, C. (1975). Multiple steps in DNA recognition by restriction endonuclease from E. coli K. Nature, Lond. 256, 556560.Google Scholar
Yuan, R., Heywood, J. & Meselson, M. (1972). ATP hydrolysis by restriction endonuclease from E. coli K. Nature (New Biol.) 240, 4243.Google Scholar
Yuan, R. & Meselson, M. (1970). A specific complex between a restriction endonuclease and its DNA substrate. Proc. natn. Acad. Sci. U.S.A. 65, 357362.Google Scholar