Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2025-01-06T00:30:12.349Z Has data issue: false hasContentIssue false

Structure–functional intimacies of transient receptor potential channels

Published online by Cambridge University Press:  22 December 2009

Ramon Latorre*
Affiliation:
Centro de Interdisciplinario de Neurociencias de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Gran Bretaña, Valparaíso, Chile
Cristián Zaelzer
Affiliation:
Centro de Interdisciplinario de Neurociencias de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Gran Bretaña, Valparaíso, Chile Escuela de Graduados, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
Sebastian Brauchi
Affiliation:
Instituto de Fisiología, Facultad de Medicina, Universidad Austral de Chile, Campus Isla Teja, Valdivia, Chile
*
*Author for correspondence: R. Latorre, Centro de Interdisciplinario de Neurociencias de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Gran Bretaña 1111, Valparaíso 2340000, Chile. Email: [email protected]

Abstract

Although a unifying characteristic common to all transient receptor potential (TRP) channel functions remains elusive, they could be described as tetramers formed by subunits with six transmembrane domains and containing cation-selective pores, which in several cases show high calcium permeability. TRP channels constitute a large superfamily of ion channels, and can be grouped into seven subfamilies based on their amino acid sequence homology: the canonical or classic TRPs, the vanilloid receptor TRPs, the melastatin or long TRPs, ankyrin (whose only member is the transmembrane protein 1 [TRPA1]), TRPN after the nonmechanoreceptor potential C (nonpC), and the more distant cousins, the polycystins and mucolipins. Because of their role as cellular sensors, polymodal activation and gating properties, many TRP channels are activated by a variety of different stimuli and function as signal integrators. Thus, how TRP channels function and how function relates to given structural determinants contained in the channel-forming protein has attracted the attention of biophysicists as well as molecular and cell biologists. The main purpose of this review is to summarize our present knowledge on the structure of channels of the TRP ion channel family. In the absence of crystal structure information for a complete TRP channel, we will describe important protein domains present in TRP channels, structure–function mutagenesis studies, the few crystal structures available for some TRP channel modules, and the recent determination of some TRP channel structures using electron microscopy.

Type
Review Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aggarwal, S. K. & Mackinnon, R. (1996). Contribution of the S4 segment to gating charge in the Shaker K+ channel. Neuron 16, 11691177.CrossRefGoogle ScholarPubMed
Ahern, G. P., Wang, X. & Miyares, R. L. (2006). Polyamines are potent ligands for the capsaicin receptor TRPV1. Journal of Biological Chemistry 281, 89918995.CrossRefGoogle ScholarPubMed
Almers, W. (1978). Gating currents and charge movement in excitable membranes. Review of Physiology, Biochemistry and Pharmacology 82, 96190.CrossRefGoogle ScholarPubMed
Amiri, H., Schultz, G. & Schaefer, M. (2003). FRET-based analysis of TRPC subunit stoichiometry. Cell Calcium 33, 463470.CrossRefGoogle ScholarPubMed
Armstrong, C. (1975). Potassium pores of nerve and muscle membranes. In Membranes A Series of Advances, vol 3. Lipid Bilayers and Biological Membranes: Dynamic Properties (ed. Eisenman, G.) New York: Marcel Dekker.Google Scholar
Babes, A., Zorzon, D. & Reid, G. (2004). Two populations of cold-sensitive neurons in rat dorsal root ganglia and their modulation by nerve growth factor. European Journal of Neuroscience 20, 22762282.Google Scholar
Bandell, M., Story, G. M., Hwang, S. W., Viswanath, V., Eid, S. R., Petrus, M. J., Earley, T. L. & Patapoutian, A. (2004). Noxious cold ion channel TRPA1 is activated by pungent compounds and bradykinin. Neuron 41, 849857.CrossRefGoogle ScholarPubMed
Bandell, M., Dubin, A. E., Petrus, M. J., Orth, A., Mathur, J., Hwang, S. W. & Papapoutian, A. (2006). High throughput random mutagenesis screen reveals TRPM8 residues specifically required for activation by menthol. Nature Neuroscience 9, 493500.CrossRefGoogle ScholarPubMed
Bandell, M., MacPherson, L. J. & Patapoutian, A. (2007). From chills to chilis: mechanisms for thermosensation and chemesthesis via thermoTRPs. Current Opinion in Neurobiology 17, 495497.Google Scholar
Bang, S. & Hwang, S. W. (2009). Polymodal gating sensitivity of TRPA1 and its modes of interactions. Journal of General Physiology 133, 257262.CrossRefGoogle ScholarPubMed
Barnhill, J. C., Stokes, A. J., Koblan-Huberson, M., Shimoda, L. M., Muraguchi, A., Adra, C. N. & Turner, H. (2004). RGA protein associates with a TRPV ion channel during biosynthesis and trafficking. Journal of Cell Biochemistry 91, 808820.Google Scholar
Bautista, D. M., Movahed, P., Hinman, A., Axelsson, H. E., Sterner, O., Hogestatt, E. D., Julius, D., Jordt, S. E. & Zygmunt, P. M. (2005). Pungent products from garlic activate the sensory ion channel TRPA1. Proceedings of the National Academy of Sciences USA 102, 1224812252.Google Scholar
Bautista, D. M., Jordt, S. E., Nikai, T., Tsuruda, P. R., Read, A. J., Poblete, J., Yamoah, E. N., Basbaum, A. I. & Julius, D. (2006). TRPA1 mediates the inflammatory actions of environmental irritants and proalgesic agents. Cell 124, 12691282.Google Scholar
Bezanilla, F. (2000). The voltage sensor in voltage-dependent ion channels. Physiological Reviews 80, 555592.Google Scholar
Binshtok, A. M., Bean, B. P. & Woolf, C. J. (2007). Inhibition of nociceptors by TRPV1-mediated entry of impermeant sodium channel blockers. Nature 449, 607610.Google Scholar
Brauchi, S., Orio, P. & Latorre, R. (2004). Clues to understanding cold sensation: thermodynamics and electrophysiological analysis of the cold receptor TRPM8. Proceedings of the National Academy of Sciences USA 101, 1549415499.Google Scholar
Brauchi, S., Orta, G., Mascayano, C., Salazar, M., Raddatz, N., Urbina, H., Rosenmann, E., Gonzalez-Nilo, F. & Latorre, R. (2007). Dissection of the components for PIP2 activation and thermosensation in TRP channels. Proceedings of the National Academy of Sciences USA 104, 1024610251.Google Scholar
Brauchi, S., Orta, G., Salazar, M. & Latorre, R. (2006). A hot sensing cold receptor. C-terminal domain determines thermosensation in transient receptor potential channel. Journal of Neuroscience 26, 48354840.Google Scholar
Caterina, M. J., Rosen, T. A., Tominaga, M., Brake, A. J. & Julius, D. (1999). A capsaicin receptor homologue with a high threshold for noxious heat. Nature 398, 436441.Google Scholar
Caterina, M. J., Leffler, A., Malmberg, A. B., Martin, W. J., Trafton, J., Petersen-Zeitz, K. R., Koltzenburg, M., Basbaum, A. I. & Julius, D. (2000). Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science 288, 306313.Google Scholar
Caterina, M. J., Schumacher, M. A., Tominaga, M., Rosen, T. A., Levine, J. D. & Julius, D. (1997). The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389, 816824.Google Scholar
Chang, Q., Gyftogianni, E., Van De Graaf, S. F., Hoefs, S., Weidema, F. A., Bindels, R. J. & Hoenderop, J. G. (2004). Molecular determinants in TRPV5 channel assembly. Journal of Biological Chemistry 279, 5430454311.CrossRefGoogle ScholarPubMed
Chen, J., Kim, D., Bianchi, B. R., Cavanaugh, E. J., Faltynek, C. R., Kym, P. R. & Reilly, R. M. (2009). Pore dilation occurs in TRPA1 but not in TRPM8 channels. Molecular Pain 5, 3.CrossRefGoogle ScholarPubMed
Chen, J., Zhang, X. F., Kort, M. E., Huth, J. R., Sun, C., Miesbauer, L. J., Cassar, S. C., Neelands, T., Scott, V. E., Moreland, R. B., Reilly, R. M., Hajduk, P. J., Kym, P. R., Hutchins, C. W. & Faltynek, C. R. (2008). Molecular determinants of species-specific activation or blockade of TRPA1 channels. Journal of Neuroscience 28, 50635071.Google Scholar
Cheng, W., Yang, F., Takanishi, C. L. & Zheng, J. (2007). Thermosensitive TRPV channel subunits coassemble into heteromeric channels with intermediate conductance and gating properties. Journal of General Physiology 129, 191207.Google Scholar
Chuang, H-H., Neuhausser, W. M. & Julius, D. (2004). The super-cooling agent icilin reveals a mechanism of coincidence detection by a temperature-sensitive trp channel. Neuron 43, 859869.Google Scholar
Chubanov, V., Waldegger, S., Mederos, Y.Schnitzler, M., Vitzthum, H., Sassen, M. C., Seyberth, H. W., Konrad, M. & Gudermann, T. (2004). Disruption of TRPM6/TRPM7 complex formation by a mutation in the TRPM6 gene causes hypomagnesemia with secondary hypocalcemia. Proceedings of the National Academy of Sciences USA 101, 28942899.CrossRefGoogle ScholarPubMed
Chung, M. K., Guler, A. D. & Caterina, M. J. (2005). Biphasic currents evoked by chemical or thermal activation of the heat-gated ion channel, TRPV3. Journal of Biological Chemistry 280, 1592815941.CrossRefGoogle ScholarPubMed
Chung, M. K., Guler, A. D. & Caterina, M. J. (2008). TRPV1 shows dynamic ionic selectivity during agonist stimulation. Nature Neuroscience 11, 555564.CrossRefGoogle ScholarPubMed
Chung, M. K., Lee, H., Mizuno, A., Suzuki, M. & Caterina, M. J. (2004). TRPV3 and TRPV4 mediate warmth-evoked currents in primary mouse keratinocytes. Journal of Biological Chemistry 279, 2156921575.CrossRefGoogle ScholarPubMed
Clapham, D. E. (2003). TRP channels as cellular sensors. Nature 426, 517524.Google Scholar
Clapham, D. E., Montell, C., Schultz, G. & Julius, D. (2005). International Union of Pharmacology. XLIII. Compendium of voltage-gated ion channels: transient receptor potential channels. Pharmacological Reviews 55, 591596.CrossRefGoogle Scholar
Colburn, R. W., Lubin, M. L., Stone, D. J., Wang, Y., Lawrence, D., D'andrea, M. R., Brandt, M. R., Liu, Y., Flores, C. M. & Qin, N. (2007). Attenuated cold sensitivity in TRPM8 null mice. Cell 54, 379386.Google Scholar
Cole, K. S. & Moore, J. W. (1960). Potassium ion current in the squid giant axon: dynamic characteristics. Biophysical Journal 1, 114.CrossRefGoogle Scholar
Corey, D. P. (2006). What is the hair cell transduction channel? Journal of Physiology 576.1, 2328.Google Scholar
Corey, D. P., Garcia-Añoveros, J., Holt, J. R., Kwan, K. Y., Lin, S.-Y., Vollrath, M. A., Amalfitano, A., Cheung, E. L.-M., Derfler, B. H., Duggan, A., Géléoc, G. S., Gray, P. A., Hoffman, M. P., Rehm, H. L., Tamasauskas, D. & Duan-Sun Zhang, D.-S. (2004). TRPA1 is a candidate for the mechanosensitive transduction channel of vertebrate hair cells. Nature 432, 723730.CrossRefGoogle ScholarPubMed
Cosens, D. J. & Manning, A. (1969). Abnormal electroretinogram from a Drosophila mutant. Nature 224, 285287.Google Scholar
Crick, F. H. (1952). Is alpha-keratin a coiled-coil? Nature 170, 882883.Google Scholar
Davis, J. B., Gray, J., Gunthorpe, M. J., Hatcher, J. P., Davey, P.T, Overend, P., Harries, M. H., Latcham, J., Clapham, C., Atkinson, K., Hughes, S. A., Rance, K., Grau, E., Harper, A. J., Pugh, P. L., Rogers, D. C., Sharon Bingham, S., Randall, A. & Steven, A., Sheardown, S. A. (2000). Vanilloid receptor-1 is essential for inflammatory thermal hyperalgesia. Nature 405, 183187.Google Scholar
Dhaka, A., Murray, A. N., Mathur, J., Earley, T. J., Petrus, M. J. & Patapoutian, A. (2007). TRPM8 is required for cold sensation in mice. Neuron 54, 371378.Google Scholar
Dhaka, A., Viswanath, V. & Patapoutian, A. (2006). TRP ion channels and temperature sensation, Annual Review of Neuroscience 29, 135161.Google Scholar
Doerner, J. F., Gisselmann, G., Hatt, H. & Wetzel, C. H. (2007). Transient receptor potential channel A1 is directly gated by calcium ions. Journal of Biological Chemistry 282, 1318013189.CrossRefGoogle ScholarPubMed
Doyle, D. A., Morais Cabral, J., Pfuetzner, A., Kuo, A., Gulbis, J. M., Steven, L., Cohen, S. L., Chait, B. T. & MacKinnon, R. (1998). The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280, 6977.CrossRefGoogle ScholarPubMed
Egan, T. M., Samways, D. S. & Li, Z. (2006). Biophysics of P2X receptors. Pflugers Archives 452, 501512.CrossRefGoogle ScholarPubMed
Erler, I., Hirnet, D., Wissenbach, U., Flockerzi, V. & Niemeyer, B. A. (2004). Ca2+-selective transient receptor potential V channel architecture and function require a specific ankyrin repeat. Journal of Biological Chemistry 279, 3445634463.Google Scholar
Erler, I., Al-Ansary, D. M. M., Wissenbach, U., Wagner, T. F. J., Flockerzi, V. & Niemeyer, B. A. (2006). Trafficking and assembly of the cold-sensitive TRPM8 channel. Journal of Biological Chemistry 281, 3839638404.Google Scholar
Fujiwara, Y. & Jr.Minor, D. L. (2008). X-ray crystal structure of a TRPM assembly domain reveals an antiparallel four-stranded coiled-coil. Journal of Molecular Biology 383, 854870.CrossRefGoogle ScholarPubMed
Fujiwara, Y. & Kubo, Y. (2004). Density-dependent changes of the pore properties of the P2X2 receptor channel. Journal of Physiology 558, 3143.Google Scholar
García-Sanz, N., Fernández-Carvajal, A., Morenilla-Palao, C., Planells-Cases, R., Fajardo-Sánchez, E., Fernández-Ballester, G. & Ferrer-Montiel, A. (2004). Identification of a tetramerization domain in the C terminus of the vanilloid receptor. Journal of Neuroscience 24, 53075314.Google Scholar
García-Sanz, N., Valente, P., Gomis, A., Fernández-Carvajal, A., Fernández-Ballester, G., Viana, F., Belmonte, C. & Ferrer-Montiel, A. (2007). A role of the transient receptor potential domain of vanilloid receptor I in channel gating. Journal of Neuroscience 27, 1164111650.Google Scholar
Gaudet, R. (2007). Structural insights into the function of trp channels. In TRP Ion Channels Function in Sensory Transduction and Cellular Signaling Cascades (eds. Liedtke, W. & Heller, S.), pp. 349359. London: CRC Taylor and Francis.Google Scholar
Gaudet, R. (2008). TRP channels entering the structural era. Journal of Physiology 586, 35653575.Google Scholar
Gavva, N. R., Klionsky, L., Qu, Y., Shi, L., Tamir, R., Edenson, S., Zhang, T. J., Viswanadhan, V. N., Toth, A., Pearce, L. V., Vanderah, T. W., Porreca, F., Blumberg, P. M., Lile, J., Sun, Y., Wild, K., Louis, J. C. & Treanor, J. J. S. (2004). Molecular determinants of vanilloid sensitivity in TRPV1. Journal of Biological Chemistry 279, 20283–2025.Google Scholar
Gillo, B., Chorna, I., Cohen, H., Cook, B., Manistersky, I., Chorev, M., Arnon, A., Pollock, J. A., Selinger, Z. & Minke, B. (1996). Coexpression of Drosophila TRP and TRP-like proteins in Xenopus oocytes reconstitutes capacitative Ca2+ entry. Proceedings of the National Academy of Sciences USA 93, 1414614151.Google Scholar
Grandl, J., Hu, H., Bandell, M., Bursulaya, B., Schimdt, M., Petrus, M. & Patapoutian, A. (2008). Pore region of TRPV3 ion channel is specifically required for heat activation. Nature Neuroscience 11, 10071013.Google Scholar
Güler, A. D., Lee, H., Iida, T., Shimizu, I., Tominaga, M. & Caterina, M. (2002). Heat-evoked activation of the ion channel, TRPV4. Journal of Neuroscience 22, 64086414.Google Scholar
Hardie, C. & Minke, B. (1992). The trp gene is essential for a light-activated Ca2+ channel in Drosophila photoreceptors. Neuron 8, 643651.Google Scholar
Harteneck, C., Plant, T. D. & Schultz, G. (2000). From worm to man: three subfamilies of TRP channels. Trends in Neurosciences 23, 159166.Google Scholar
Helwig, N., Albrecht, N., Hartenek, C., Schultz, G. & Schaefer, M. (2005). Homo- and heteromeric assembly of TRPV channel subunits. Journal of Cell Science 118, 917928.CrossRefGoogle Scholar
Hellwig, N., Plant, T. D., Janson, W., Schafer, M., Schultz, G. & Schaefer, M. (2004). TRPV1 acts as proton channel to induce acidification in nociceptive neurons. Journal of Biological Chemistry 279, 3455334561.CrossRefGoogle ScholarPubMed
Hille, B. (2001). Ion Channels of Excitable Membranes. Sunderland, MA: Sinauer Associates.Google Scholar
Hinman, A., Chuang, H-H., Bautista, D. M. & Julius, D. (2006). TRP channel activation by reversible covalent modification. Proceedings of the National Academy of Sciences USA 103, 1956419568.Google Scholar
Hodgkin, A. L. & Huxley, A. F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. Journal of Physiology (London) 117, 500544.CrossRefGoogle ScholarPubMed
Hofmann, T., Chubanov, V., Gudermann, T. & Montell, C. (2003). TRPM5 is a voltage-modulated and Ca(2+)-activated monovalent selective cation channel. Current Biology 13, 11531158.CrossRefGoogle ScholarPubMed
Hofmann, T., Schaefer, M., Schultz, G. & Gudermann, T. (2002). Subunit composition of mammalian transient receptor potential channels in living cells. Proceedings of the National Academy of Sciences USA 99, 74617466.Google Scholar
Hoenderop, J. G. J., Voets, T., Hoefs, S., Weidema, F., Prenen, J., Nilius, B. & Bindels, R. J. M. (2003). Homo- and heterotetrameric architecture of the epithelial Ca2+ channels, TRPV5 and TRPV6. EMBO Journal 22, 776785.CrossRefGoogle Scholar
Hu, H. Z., Gu, Q., Wang, C., Colton, C. K., Tang, J., Kinoshita-Kawada, M., Lee, L. Y., Wood, J. D. & Zhu, M. X. (2004). 2-Aminoethoxydiphenyl borate is a common activator of TRPV1, TRPV2, and TRPV3. Journal of Biological Chemistry 279, 3574135748.Google Scholar
Huang, J., Zhang, X. & Mcnaughton, P. A. (2006). Modulation of temperature-sensitive TRP channels. Seminars in Cell and Developmental Biology 17, 638645.Google Scholar
Ikonen, E. (2008). Cellular cholesterol trafficking and compartmentalization. Nature Review in Molecular and Cellular Biology 9, 125138.Google Scholar
Jahnel, R., Dreger, M., Gillen, C., Bender, O., Kurreck, J. & Hucho, F. (2001). Biochemical characterization of the vanilloid receptor 1 expressed in a dorsal root ganglia derived cell line, European. Journal of Biochemisty 268, 54895496.Google Scholar
Jancsó-Gábor, A., Szolcsányl, J. & Jancsó, N. (1970). Stimulation and desensitization of the hypothalamic heat-sensitive structures by capsaicin in rats. Journal of Physiology (London) 208, 449459Google Scholar
Jara-Oseguera, A., Llorente, I., Rosenbaum, T. & Islas, L. (2008). Properties of the inner pore region of TRPV1 channels revealed by block with quaternary ammonium ions. Journal of General Physiology 132, 547562.CrossRefGoogle Scholar
Jenke, M., Sanchez, A., Monje, F., Stuhmer, W., Weseloh, R. M. & Pardo, L. A. (2003). C-terminal domains implicated in the functional surface expression of potassium channels. EMBO Journal 22, 395403.Google Scholar
Jiang, Y., Lee, A., Chen, J., Ruta, V., Cadene, M., Chait, M. C. & MacKinnon, R. (2002). Crystal structure and mechanism of a calcium-gated potassium channel. Nature 417, 515522.Google Scholar
Jiang, Y., Lee, A., Chen, J., Cadene, M., Chait, B. T. & MacKinnon, R. (2002). The open pore conformation of potassium channels. Nature 417, 523526.Google Scholar
Jiang, Y., Lee, A., Chen, J., Ruta, V., Cadene, M., Chait, M. C. & MacKinnon, R. (2003). X-ray structure of a voltage-dependent K+ channel. Nature 423, 3341.Google Scholar
Jin, J., Touhey, R. & Gaudet, R. (2006). Structure of the N-terminal ankyrin repeat domain of the TRPV2 ion channel, Journal of Biological Chemistry 281, 2500625010.Google Scholar
Jordt, S.-E. & Julius, D. (2002). Molecular basis for species-specific sensitivity to “hot” chili peppers. Cell 108, 421430.Google Scholar
Jordt, S. E., Bautista, D. M., Chuang, H. H., McKemy, D. D., Zygmunt, P. M., Hogestatt, E. D., Meng, I. D. & Julius, D. (2004). Mustard oils and cannabinoids excite sensory nerve fibres through the TRP channel ANKTM1. Nature 427, 260265.Google Scholar
Jung, J., Lee, S. Y., Hwang, S. W., Cho, H., Shin, J., Kang, Y. S., Kim, S. & Oh, U. (2002). Agonist recognition sites in the cytosolic tails of vanilloid receptor 1. Journal of Biological Chemistry 277, 4444844454.CrossRefGoogle ScholarPubMed
Karashima, Y., Talavera, K., Everaerts, W., Janssens, A., Kwan, K. Y., Vennekens, R., Nilius, B. & Voets, T. (2009). TRPA1 acts as a cold sensor in vitro and in vivo. Proceedings of the National Academy of Sciences USA.CrossRefGoogle ScholarPubMed
Kedei, N., Szabo, T., Lile, J. D., Treanor, J. J., Olah, Z., Iadarola, M. J. & Blumberg, P. M. (2001). Analysis OF the native quaternary structure of vanilloid receptor1. Journal of Biological Chemistry 276, 2861328619.CrossRefGoogle Scholar
Krapivinsky, G., Mochida, S., Krapivinsky, L., Cibulsky, S. M. & Clapham, D. E. (2006). The TRPM7 ion channel functions in cholinergic synaptic vesicles and affects transmitter release. Neuron 52, 485496.Google Scholar
Kuzhikandathil, E. V., Wang, H., Szabo, T., Morozova, N., Blumberg, P. M. & Oxford, G. S. (2001). Functional analysis of capsaicin receptor (vanilloid receptor subtype 1) multimerization and agonist responsiveness using a dominant negative mutation. Journal of Neuroscience 21, 86978706.CrossRefGoogle ScholarPubMed
Kwan, K. Y., Allchorne, A. J., Volltrath, M. A., Christensen, A., Zhang, D. S., Woolf, C. J. & Corey, D. P. (2006). TRPA1 contributes to cold, mechanical, and chemical nociception but is not essential for hair-cell transduction. Neuron 50, 277289.Google Scholar
Kwan, K. Y. & Corey, D. P. (2009). Burning cold: involvement of TRPA1 in noxious cold sensation. Journal of General Physiology 133, 251256.Google Scholar
Lapage, P. K., Lussier, M. P., Barajas-Martinez, H., Bousquet, S. M., Blanchard, A. P., Francoeur, N., Dumaine, R. & Boulay, G. (2006). Identification of two domains involved in the assembly of transient receptor potential canonical channels. Journal of Biological Chemistry 281, 3035630364.Google Scholar
Latorre, R. & Brauchi, S. (2006). Large conductance Ca2+-activated K+ (BK) channel: activation by Ca2+ and voltage. Biological Research 39, 385401.Google Scholar
Latorre, R., Brauchi, S., Orta, G., Zaelzer, C. & Vargas, G. (2007a). ThermoTRP channels as modular proteins with allosteric gating. Cell Calcium 42, 427438.Google Scholar
Latorre, R., Vargas, G., Orta, G. & Brauchi, S. (2007b). Voltage and temperature gating in thermoTRP channels. In: TRP Ion Channels Function in Sensory Transduction and Cellular Signaling Cascades (eds. Liedtke, W. & Heller, S.), pp. 287302. London: CRC Taylor and Francis.Google Scholar
Launay, P., Cheng, H., Srivatsan, S., Penner, R., Fleig, A. & Kinet, J.-P. (2004). TRPM4 regulates calcium oscillations after T cell activation. Science 306, 13741377.Google Scholar
Lee, H., Iida, T., Mizuno, A., Suzuki, M. & Caterina, M. J. (2005). Altered thermal selection behavior in mice lacking transient receptor potential vanelloid 4. Journal of Neuroscience 25, 13041310.CrossRefGoogle ScholarPubMed
Li, M., Jiang, J. & Yue, L. (2006). Functional characterization of homo- and heteromeric channel kinases TRPM6 and TRPM7. Journal of General Physiology 127, 525537.Google Scholar
Liapi, A. & Wood, J. (2005). Extensive co-localization and heteromultimer formation of the vanilloid receptor-like protein TRPV2 and the capsaicin receptor TRPV1 in the adult rat cerebral cortex. European Journal of Neuroscience 22, 825834.Google Scholar
Liedtke, W. & Friedman, M. (2003). Abnormal osmotic regulation in trpv4−/− mice. Proceedings of the National Academy of Sciences USA 100, 1369813703.Google Scholar
Liedtke, W. B. & Heller, S. (2007). Preface. In TRP ion channel function in sensory transduction and cellular signaling cascades (eds. Liedke, W. B. & Heller, S.), New York, CRC Press, Taylor and Francis Groups.Google Scholar
Liedtke, W., Choe, Y., Marti-Renom, M. A., Bell, A. M., Denis, C. S., Sali, A., Hudspeth, A. J., Friedman, J. M. & Heller, S. (2000). Vanilloid receptor-related osmotically activated channel (VR-OAC), a candidate vertebrate osmoreceptor. Cell 103, 525535.Google Scholar
Lintschinger, B., Balzer-Geldsetzer, M., Baskaran, T., Graier, W. F., Romanin, C., Zhu, M. X. & Groschner, K. (2000). Coasembly of TRP1 and TRP3 proteins generates dyacylglycerol- and Ca2+-sensitive cation channels. Journal of Biological Chemistry 275, 2779927805.Google Scholar
Lishko, P. V., Procko, E. P., Jin, X., Phelps, C. B., Gaudet, R. (2007). The ankyrin repeats of TRPV1 bind multiple ligands and modulate channel sensitivity. Neuron 54, 905918.Google Scholar
Liu, X., Bandyopadhyay, B. C., Singh, B. B., Groschner, K. & Ambudkar, I. S. (2005). Molecular analysis of a store-operated and 2-acetyl-sn-glycerol-sensitive non-selective cation channel. Heteromeric assembly of TRPC1–TRPC3. Journal of Biological Chemistry 280, 2160021606.CrossRefGoogle ScholarPubMed
Liu, B., Hui, K. & Qin, F. (2003). Thermodynamics of heat activation of single capsaicin ion channel VR1. Biophysical Journal 85, 119.Google Scholar
Liu, B., Ma, W. & Qin, F. (2004). Inhibitory modulation of distal C-terminal on protein kinase C-dependent phospho-regulation of rat TRPV1 receptors. Journal of Physiology (London) 560(3), 627638.Google Scholar
Locovei, S., Scemes, E., Qiu, F., Spray, D. C. & Dahl, G. (2007). Pannexin1 is part of the pore forming unit of the P2X(7) receptor death complex. FEBS Letters 581, 483488.CrossRefGoogle ScholarPubMed
Long, S. B., Campbell, E. B. & MacKinnon, R. (2005). Crystal structure of a mammalian voltage-dependent Shaker family K+ channel. Science 309, 897903.CrossRefGoogle ScholarPubMed
Long, S. B., Tao, X., Campbell, E. B. & MacKinnon, R. (2007). Atomic structure of a voltage-dependent K+ channel in a lipid membrane-like environment. Nature 450, 376382.Google Scholar
Madrid, M., Donovan-Rodríguez, T., Meseguer, V., Acosta, M. C., Carlos, Belmonte & Viana, F. (2006). Contribution of TRPM8 channels to cold transduction in primary sensory neurons and peripheral nerve terminals. Journal of Neuroscience 26, 1251212525.Google Scholar
Macpherson, L. J., Geierstanger, B. H., Viswanath, V., Bandell, M., Eid, S. R., Hwang, S. & Patapoutian, A. (2005). The pungency of garlic: activation of TRPA1 and TRPV1 in response to allicin. Current Biology 15, 929934.Google Scholar
Macpherson, L. J., Hwang, S. W., Miyamoto, T., Dubin, A. E., Patapoutian, A. & Story, G. M. (2006). More than cool: Promiscuous relationships of menthol and other sensory compounds. Molecular and Cellular Neuroscience 32, 335343.Google Scholar
Macpherson, L. J., Dubin, A. E., Evans, M. J., Marr, F., Schultz, P. G., Cravatt, B. F. & Patapoutian, A. (2007). Noxious compounds activate TRPA1 ion channels through covalent modification of cysteines. Nature 445, 541545.Google Scholar
Mandadi, S. & Roufogalis, B. D. (2008). ThermoTRP channels in nociceptors: taking a lead from capsaicin receptor TRPV1. Current Neuropharmacology 6, 2138.Google Scholar
Maruyama, Y., Ogura, T., Mio, K., Kiyonaka, S., Kato, K., Mori, Y. & Sato, C. (2007). Three-dimensional reconstruction using transmission electron microscopy reveals a swollen, bell-shaped structure of transient receptor potential melastatin type 2 cation channel. Journal of Biological Chemistry 282, 3696136970.Google Scholar
Matta, J. A. & Ahern, G. P. (2007). Voltage is a partial activator of rat thermosensitive TRP channels. Journal of Physiology (London) 585(2), 469482.Google Scholar
McCleverty, C. J., Koesema, E., Patapoutian, A., Lesley, S. A. & Kreusch, A. (2006). Crystal structure of the human TRPV2 channel ankyrin repeat domain. Protein Science 15, 22012206.Google Scholar
McKemy, D. D. (2005). How cold is it? TRPM8 and TRPA1 in the molecular logic of cold sensation. Molecular Pain 1, 16.Google Scholar
McKemy, D. D., Neuhausser, W. M. & Julius, D. (2002). Identification of a cold receptor reveals a general role for TRP channels in thermosensation. Nature 416, 5258.Google Scholar
McNamara, C. R., Mandel-Brehm, J., Bautista, D. M., Siemens, J., Deranian, K. L., Zhao, M., Hayward, N. J., Chong, J. A., Julius, D., Moran, M. M. & Fanger, C. M. (2007). TRPA1 mediates formalin-induced pain. Proceedings of the National Academy of Sciences USA 104, 1352513530.Google Scholar
Mei, Z. Z., Xia, R., Beech, D. J. & Jiang, L. H. (2006). Intracellular coiled-coil domain engaged in subunit interaction and assembly of melastatin-related transient receptor potential channel 2. Journal of Biological Chemistry 281, 3874838756.Google Scholar
Meyers, J. R., MacDonald, R. B., Duggan, A., Lenzi, D., Standaert, D. G., Corwin, J. T. & Corey, D. P. (2003). Lighting up the senses: FM1-43 loading of sensory cells through nonselective ion channels. Journal of Neuroscience 23, 40544065.Google Scholar
Minke, B. (1996). Coexpression of Drosophila TRP and TRP-like proteins in Xenopus oocytes reconstitutes capacitative Ca2+ entry. Proceedings of the National Academy of Sciences USA 93, 1414614151.Google Scholar
Mio, K., Ogura, T., Hara, Y., Mori, Y. & Sato, C. (2005). The non-selective cation-permeable channel TRPC3 is a tetrahedron with a cap on the large cytoplasmic end. Biochemical Biophysical Research Communications 333, 768777.CrossRefGoogle ScholarPubMed
Mio, K., Ogura, T., Kiyonaka, S., Hiroaki, Y., Tanimura, Y., Fujiyoshi, Y., Mori, Y. & Sato, C. (2007). The TRPC3 channel has a large internal chamber surrounded by signal sensing antennas. Journal of Molecular Biology 367, 373383.Google Scholar
Mizuno, A., Matsumoto, N., Imai, M. & Susuki, M. (2003). Impaired osmotic sensation in mice lacking TRPV4. American Journal of Physiology 285, C96C101.Google Scholar
Moiseenkova, V. Y., Stanciu, L. A., Iseresheva, I. I., Tobe, B. J. & Wensel, T. G. (2008). Structure of TRPV1 channel revealed by electron cryomicroscopy. Proceedings of the National Academy of Sciences USA 105, 74517455.Google Scholar
Moiseenkova, V. Y. & Wensel, T. G. (2009). Hot on the trail of TRP channel structure. Journal of General Physiology (in press).Google Scholar
Moqrich, A., Hwang, S. W., Earley, T. J., Petrus, M. J., Murray, A. N., Spencer, K. S. R., Andahazy, M., Story, G. M. & Patapoutian, A. (2005). Impaired thermosensation in mice lacking TRPV3, a heat and camphor sensor in the skin. Science 307, 14681472.Google Scholar
Montell, C. (2001). Physiology, phylogeny, and functions of ther TRP superfamily of cation channels. Science STKE re1, 117.Google Scholar
Montell, C. (2005a). The TRP superfamily of cation channels. Science STKE re3, 124.Google Scholar
Montell, C. (2005b). Drosophila TRP channels. Pfluegers Archives 451, 1928.Google Scholar
Montell, C. & Rubin, G. M. (1989). Molecular characterization of the Drosophila trp locus: A putative integral membrane potein requird for phototransduction. Neuron 2, 13131323.Google Scholar
Montell, C. & Caterina, M. J. (2007). Thermoregulation: channels that are cool to the core. Current Biology 17, R885R887.Google Scholar
Morenilla-Palao, C., Pertusa, M., Meseguer, V., Cabedo, H. & Viana, F. (2009). Lipid raft segregation modulates TRPM8 channel activity. Journal of Biological Chemistry 284, 92159224.CrossRefGoogle ScholarPubMed
Morenilla-Palao, C., Planells-Cases, R., García-Sanz, N. & Ferrer-Montiel, A. (2004). Regulated exocytosis contributes to protein kinase C potentiation of vanilloid receptor activity, Journal of Biological Chemistry 279, 2566525672.Google Scholar
Mosavi, L. K., Cammett, T. J., Desrosiers, D. C. & Peng, Z. Y. (2004). The ankyrin repeat as molecular architecture for protein recognition. Protein Science 13, 14351448.Google Scholar
Murata, Y., Iwazaki, H., Sasaki, M., Inaba, K. & Okamura, Y. (2005). Phosphoinositide phosphatase activity coupled to an intrinsic voltage sensor, Nature 435, 12391243.Google Scholar
Myrdal, S. E. & Steyger, P. S. (2005). TRPV1 regulators mediate gentamicin penetration of cultured kidney cells. Hear Research 204, 170182.Google Scholar
Nagata, K., Duggan, A., Kumar, G. & García-Añoveros, J. (2005). Nociceptor and Hair Cell Transducer properties of TRPA1, a channel for pain and hearing. Journal of Neuroscience 25, 40524061.Google Scholar
Niemeyer, B. A., Bergs, C., Wissenbach, U., Flockerzi, V. & Trost, C. (2001). Competitive regulation of CaT-like-mediated Ca2+ entry by protein kinase C and calmodulin. Proceedings of the National Academy of Sciences USA 98, 36003605.Google Scholar
Nilius, B., Vriens, J., Prenen, J., Droogmans, G. & Voets, T. (2004). TRPV4 calcium entry channel: a paradigm for gating diversity. American Journal of Physiology Cell Physiology 286, C195C205.Google Scholar
Nilius, B., Karel, T., Owsianik, G., Prenen, J., Droogmans, G. & Voets, T. (2005). Gating of TRP channels: a voltage connection? Journal of Physiology London 567(1), 3544.Google Scholar
Noda, M., Shimizu, S., Tanabe, T., Takai, T., Kayano, T., Ikeda, T., Takahashi, H., Nakayama, H., Kanaoka, Y. & Minamino, N. (1984). Primary structure of Electrophorus electricus sodium channel deduced from cDNA sequence. Nature 312, 121127.Google Scholar
Nooren, I. M., Kaptein, R., Sauer, R. T. & Boelens, S. R. (1999). The tetramerization domain of the Mnt repressor consists of two right-handed coiled-coils. Nature Structural Biology 6, 755759.Google Scholar
Notredame, C., Higgins, D. & Heringa, J. (2000). T-Coffee: a novel method for multiple sequence alignments. Journal of Molecular Biology 302, 205217.Google Scholar
Numazaki, M., Tominaga, T., Takeuchi, K., Murayama, N., Toyooka, H. & Tominaga, M. (2003). Structural determinant of TRPV1 desensitization interacts with calmodulin. Proceedings of the National Academy of Sciences USA 100, 80028006.Google Scholar
Owsianik, G., Talavera, K., Voets, T. & Nilius, B. (2006). Permeation and selectivity of TRP channels. Annual Review of Physiology 68, 4.14.33.Google Scholar
Papazian, D. M., Shao, X. M., Seoh, S.-A., Mock, A. F., Huang, Y. & Wainstock, D. H. (1995). Electrostatic interactions of S4 voltage sensor in Shaker K1 channel. Neuron 14, 12931301.Google Scholar
Patapoutian, A., Peier, A. P., Story, G. M. & Viswanath, V. (2003). ThermoTRP channels and beyond: Mechanisms of temperature sensation. Nature Reviews in Neuroscience 4, 529539.Google Scholar
Peier, A. M., Moqrich, A., Hergarden, A. C., Reeve, A. J., Andersson, D. A., Story, G. M., Barley, T. J., Dragoni, I., Mclntyre, P., Bevan, S. & Patapoutian, A. (2002a). A TRP channel that senses cold stimuli and menthol. Cell 108, 705715.Google Scholar
Peier, A. M., Reeve, A. J., Andersson, D. A., Moqrich, A., Barley, T. J., Hergarden, A. C., Story, G. M., Colley, S., Hogenesch, J. B., Mclntyre, P., Bevan, S., Patapoutian, A. (2002b). A heat-sensitive TRP channel expressed in keratinocytes. Science 296, 20462049.Google Scholar
Pérez, C. A., Huang, L., Rong, M., Kozak, A., Preuss, A. K., Zhang, H., Max, M., Margolskee, R. F. (2002). A transient receptor potential channel expressed in taste receptor cells. Nature Neuroscience 5, 11691176.Google Scholar
Perraud, A. L., Fleig, A., Dunn, C. A., Bagley, L. A., Launay, P., Schmitz, C., Stokes, A. J., Zhu, Q., Bessman, M. J., Penner, R., Kinet, J. P. & Scharenberg, A. M. (2001). ADP-ribose gating of the calcium-permeable LTRPC2 channel revealed by Nudix motif homology. Nature 411, 595599.CrossRefGoogle ScholarPubMed
Petersen, C. C., Berridge, M. J., Borgese, M. F. & Bennett, D. L. (1995). Putative capacitative calcium entry channel: expression of Drosophila trp and evidence of existence of vertebrate homologues. Biochemical Journal 311, 4144.Google Scholar
Phelps, C. B. & Gaudet, R. (2007). The role of the N terminus and transmembrane domain of TRPM8 in channel localization and tetramerization. Journal of Biological Chemistry 282, 3647436480.Google Scholar
Phelps, C. B., Huang, R. J., Lishko, P. V., Wang, R. R. & Gaudet, R. (2008). Structural analyses of the ankyrin repeat domain of TRPV6 and related TRPV ion channels. Biochemistry 47, 24762484.Google Scholar
Phillips, A. M., Bull, A. & Kelly, L. E., (1992). Identification of a Drosophila gene encoding a calmodulin-binding protein with homology to the trp phototransduction gene. Neuron 8, 631642.Google Scholar
Poteser, M., Graziani, A., Rosker, C., Eder, P., Derler, I., Kahr, H., Zhu, M. X., Romanin, C. & Groscner, K. (2006). Trpc3 and trpc4 associate to form a redox-sensitive cation channel-evidence for expression of native trpc3/trpc4 heteromeric channels in endothelial cells. Journal of Biological Chemistry 281, 1358813595.Google Scholar
Premkumar, L., Agarwal, S. & Steffen, D. (2002). Single-channel properties of native and cloned rat vanilloid receptors. Journal of Physiology 545, 107117.CrossRefGoogle ScholarPubMed
Ramsey, S., Delling, M. & Clapham, D. E. (2006a). An introduction to TRP channels. Annual Review of Physiology 68, 619647.Google Scholar
Ramsey, I. S., Moran, M. M., Chong, J. A. & Clapham, D. E. (2006b). A voltage-gated proton-selective channel lacking the pore domain. Nature 440, 12131216.Google Scholar
Reid, G. (2005). ThermoTRP channels and cold sensing: what are they really up to? Pfluegers Archives 451, 250263.Google Scholar
Rohacs, T., Lopes, C. M., Michailidis, I. & Logothetis, D. E. (2005). PI(4,5)P(2) regulates the activation and desensitization of TRPM8 channels through the TRP domain. Nature Neuroscience 8, 626634.Google Scholar
Rohacs, T. (2006). Regulation of TRP channels by PIP(2). Pfluegers Archives 453, 753762.Google Scholar
Rosenbaum, T., Gordon-Shaag, A., Munari, M. & Gordon, S. E. (2004). Ca2+/calmodulin modulates TRPV1 activation by capsaicin. Journal of General Physiology 123, 5362.Google Scholar
Roza, C., Belmonte, C. & Viana, F. (2006). Cold sensitivity in axotomized fibers of experimental neuromas in mice. Pain 120, 2435.CrossRefGoogle ScholarPubMed
Salazar, H., Jara-Oseguera, A., Hernandez-Garcia, E., Llorente, I., Arias-Olguin, I. I., Soriano-Garcia, M., Islas, L. D. & Rosenbaum, T. (2009). Structural determinants of gating in the TRPV1 channel. Nature Structural Molecular Biology 16, 704710.Google Scholar
Salazar, H., Llorente, I., Jara-Oseguera, A., Garcia-Villegas, R., Munari, M., Gordon, S. E., Islas, L. D. & Rosenbaum, T. (2008). A single N-terminal cysteine in TRPV1 determines activation by pungent compounds from onion and garlic. Nature Neuroscience 11, 255261.Google Scholar
Samways, D. S., Khakh, B. S. & Egan, T. M. (2008). Tunable calcium current through TRPV1 receptor channels. Journal of Biological Chemistry 283, 3127431278.Google Scholar
Sasaki, M., Takagi, M. & Okamura, Y. (2006). A voltage sensor-domain protein is a voltage-gated proton channel. Science 312, 589592.Google Scholar
Sawada, Y., Hosokawa, H., Hori, A., Matsumura, K. & Kobayashi, S. (2007). Cold sensitivity of recombinant TRPA1 channels. Brain Research 1160, 3946.Google Scholar
Schaefer, M. (2005). Homo- and heteromeric assembly of TRP channel subunits. Pflügers Archives 451, 3542.Google Scholar
Schmitz, C., Dorovkov, M. V., Zhao, X., Davenport, V. J., Ryazanov, A. G. & Perraud, A. L. (2005). The channel kinases TRPM6 and TRPM7 are functionally nonredundant. Journal of Biological Chemistry 280, 3776337771.Google Scholar
Schlingmann, K. P., Weber, S., Peters, M., Niemann Nejsum, L., Vitzthum, H., Klingel, K., Kratz, M., Haddad, E., Ristoff, E., Dinour, D., Syrrou, M., Nielsen, S., Sassen, M., Waldegger, S., Seyberth, H. W. & Konrad, M. (2002). Hypomagnesemia with secondary hypocalcemia is caused by mutations in TRPM6, a new member of the TRPM gene family. Nature Genetics 31, 166170.Google Scholar
Schreiber, M., Yuan, A. & Salkoff, L. (1999). Transplantable sites confer calcium sensitivity to BK channels. Nature Neuroscience 2, 416421.Google Scholar
Schwake, M., Athanasiadu, D., Beimgraben, C., Blanz, J., Beck, C., Jentsch, T. J., Saftig, P. & Friedrich, T. (2006). Structural determinants of M-type KCNQ (Kv7) K+ channel assembly. Journal of Neuroscience 26, 37573766.Google Scholar
Sedgwick, S. G. & Smerdon, S. J. (1999). The ankyrin repeat: a diversity of interactions on a common structural framework. Trends in Biochemical Sciences 24, 311316.Google Scholar
Seoh, S. A., Sigg, D., Papazian, D. M. & Bezanilla, F. (1996). Voltage-sensing residues in the S2 and S4 segments of the Shaker K+ channel. Neuron 16, 11591167.Google Scholar
Sharif-Naeini, R., Ciura, S. & Charles, W.Bourque, C. W. (2008). TRPV1 Gene required for thermosensory transduction and anticipatory secretion from vasopressin neurons during hyperthermia. Neuron 58, 179185.Google Scholar
Sigg, D. & Bezanilla, F. (1997). Total charge movement per channel. The relation between gating charge displacement and the voltage sensitivity of activation. Journal of General Physiology 109, 2739.Google Scholar
Smith, G. D., Gunthorpe, M. J., Kelsell, R. E., Hayes, P. D., Reilly, P., Facer, P., Wright, J. E., Jerman, J. C., Walhin, J. P., Ooi, L., Egerton, J., Charles, K. J., Smart, D., Randall, A. D., Anand, P. & Davis, J. B. (2002). TRPV3 is a temperature-sensitive vanilloid receptor-like protein. Nature 418, 186190.Google Scholar
Steiner, A. A., Turek, V. F., Almeida, M. C., Burmeister, J. J., Oliveira, D. L., Roberts, J. L., Bannon, A. W., Norman, M. H., Louis, J.-C., Treanor, J. S., Narender, R.Gavva, N. R. & Andrej, A., Romanovsky, A. A. (2007). Nonthermal Activation of Transient Receptor Potential Vanilloid-1 Channels in Abdominal Viscera Tonically Inhibits Autonomic Cold-Defense Effectors. Journal of Neuroscience, 27, 74597468.Google Scholar
Stokes, A. J., Wakano, C., Del Carmen, K. A., Koblan-Huberson, M. & Turner, H. (2005). Formation of a physiological complex between TRPV2 and RGA protein promotes cell surface expression of TRPV2. Journal of Cell Biochemistry 94, 669683.Google Scholar
Story, G. M., Peier, A. M., Reeve, A. J., Eid, S. R., Mosbacher, J., Hricik, T. R., Earley, T. J., Hergarden, A. C., Andersson, D. A., Hwang, S. W., McIntyre, P., Jegla, T., Bevan, S. & Patapoutian, A. (2003). ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures. Cell 112, 819829.Google Scholar
Strotmann, R., Harteneck, C., Nunnenmacher, K., Schultz, G. & Plant, T. D. (2000). OTRPC4, a nonselective cation channel that confers sensitivity to extracellular osmolarity. Nature Cell Biology 2, 695702.Google Scholar
Strotmann, R., Schultz, G. & Plant, T. D. (2003). Ca2+-dependent potentiation of the nonselective cation channel TRPV4 is mediated by a carboxyl terminal calmodulin binding site. Journal of Biological Chemistry 278, 2654126549.Google Scholar
Strübing, G., Krapivinsky, G., Krapivinsky, L. & Clapham, D. E. (2001). TRPC1 and TRPC5 form a novel cation channel in mammalian brain. Neuron 29, 645655.CrossRefGoogle Scholar
Strübing, G., Krapivinsky, G., Krapivinsky, L., Clapham, D. E. (2003). Formation of novel TRPC channels by complex subunit interactions in embryonic brain. Journal of Biological Chemistry 278, 3901439019.Google Scholar
Susuki, M., Mizuno, A., Kodaira, K. & Imai, M. (2003). Impaired pressure sensation in mice lacking TRPV4. Journal of Biological Chemistry 278, 2266422668.Google Scholar
Tabuchi, K., Sususki, M., Mizuno, A. & Hara, A. (2005). Hearing impairment in TRPV4 knockout mice. Neurosciences Letters 382, 304308.Google Scholar
Talavera, K., Yasumatsu, K., Voets, T., Droogmans, G., Shigemura, N., Ninomiya, Y., Margolskee, R. F. & Nilius, B. (2005). Heat activation of TRPM5 underlies thermal sensitivity of sweet taste. Nature 438, 10221025.Google Scholar
Todaka, H., Taniguchi, J., Satoh, J., Mizuno, A. & Suzuki, M. (2004). Warm temperature-sensitive transient receptor potential vanilloid 4 (TRPV4) plays an essential role in thermal hyperalgesia. Journal of Biological Chemistry 279(34), 3513335138.Google Scholar
Togashi, K., Hara, Y., Tominaga, T., Higashi, T., Konishi, Y., Mori, Y. & Tominaga, M. (2006). TRPM2 activation by cyclic ADP-ribose at body temperature is involved in insulin secretion. EMBO Journal 25, 18041815.Google Scholar
Tominaga, M., Caterina, M. J., Malmberg, A. B., Rosen, T. A., Gilbert, H., Skinner, K., Raumann, B. E., Basdbaum, A. I. & Julius, D. (1998). The cloned capsaicin receptor integrates multiple pain-producing stimuli. Neuron 21, 531543.CrossRefGoogle ScholarPubMed
Topala, C. N., Groenestege, W. T., Thébault, S., Van den Verg, D., Nilius, B., Hoenderop, J. G. & Bindels, R. N. (2007). Molecular determinants of permeation through the cation channel TRPM6. Cell Calcium 41, 513523.Google Scholar
Trevisani, M., Siemens, J., Materazzi, S., Bautista, D. M., Nassini, R., Campi, B., Imamachi, N., Andre, E., Patacchini, R., Cottrell, G. S., Gatti, R., Basbaum, A. I., Bunnett, N. W., Julius, D., Geppetti, P. (2007). 4-Hydroxynonenal, an endogenous aldehyde, causes pain and neurogenic inflammation through activation of the irritant receptor TRPA1. Proceedings of the. National Academy of Sciences of the United States of America 104, 1351913524.Google Scholar
Tsuruda, P. R., Julius, D. & Jr.Minor, D. L. (2006). Coiled coils direct assembly of a cold-activated trp channel. Neuron 51, 201212.Google Scholar
Vannier, B., Zhu, X., Brown, D. & Birnbaumer, L. (1998). The membrane topology of human transient receptor potential 3 as inferred from glycosilation-scanning mutagenesis and epitope immunocytochemistry. Journal of Biological Chemistry 273, 86758679.Google Scholar
Viana, et al. (2002). Specificity of cold thermotransduction is determined by differential ionic channel expression. Nature Neurosience 5, 254260.Google Scholar
Venkatachalam, K. & Montell, C. (2007). TRP channels. Annual Review of Biochemistry 76, 387417.Google Scholar
Vlachova, V., Teisinger, J., Susankova, K., Lyfenko, A., Ettrich, R. & Vyklicky, L. (2003). Functional role of C-terminal cytoplasmic tail of rat vanilloid receptor 1. Journal of Neuroscience 23, 13401350.Google Scholar
Voets, T., Janssens, A., Droogmans, G., Nilius, B. (2004). Outer pore architecture of a Ca2+-selective TRP channel. Journal of Biological Chemistry 279, 1522315230.CrossRefGoogle ScholarPubMed
Voets, T., Janssens, A., Prenen, J., Droogmans, G. & Nilius, B. (2003). Mg2+-dependent gating and strong inward rectification of the cation channel TRPV6. Journal of General Physiology 121, 245260.Google Scholar
Voets, T., Owsianick, G., Jansens, A., Talavera, K. & Nilius, B. (2007). TRPM8 voltage sensor mutants reveal a mechanism for integrating thermal and chemical stimuli. Nature Chemical Biology 3, 174182.Google Scholar
Voets, T., Talavera, K., Owsianik, G. & Nilius, B. (2005). Sensing with TRP channels. Nature Chemical Biology 1, 8592.Google Scholar
Walder, R. Y., Landau, D., Meyer, P., Shalev, H., Tsolia, M., Borochowitz, Z., Boettger, M. B., Beck, G. E., Englehardt, R. K., Carmi, R. & Sheffield, V. C. (2002). Mutation of TRPM6 causes familial hypomagnesemia with secondary hypocalcemia. Nature Genetics 31, 171174.Google Scholar
Watanabe, H., Davis, J. B., Smart, D., Jerman, J. C., Smith, G. D., Hayes, P., Vriens, J., Cairns, W., Wissenbach, U., Prenen, J., Flockerzi, V., Droogmans, G., Benham, C. D. & Nilius, B. (2002). Activation of TRPV4 channels (hVRL-2/mTRP12) by phorbol derivatives. Journal of Biological Chemistry 277, 1356913577.Google Scholar
Webster, S. M., Del Camino, D., Dekker, J. P., Yellen, G. (2004). Intracellular gate opening in Shaker K+ channels defined by high-affinity metal bridges. Nature 428, 864868.Google Scholar
Wes, P. D., Chevesich, J., Jeromin, A., Rosenbergt, C., Stetten, G. & Montell, C. (1995). TRPC1, a human homolog of a Drosophila store-operated channel. Proceedings of the National Academy of Sciences USA 92, 96529656.Google Scholar
Winter, J., Dray, A., Woods, J. N., Yeats, J. C. & Bevan, S. (1990). Cellular mechanism of action of resiniferatoxin a potent sensory neuron excitotoxin. Brain Research 520, 131140.Google Scholar
Xu, H. N. T., Blair, D. E. & Clapham, D. (2005). Camphor activates and strongly desensitizes the transient receptor potential vanilloid subtype 1 channel in a vanilloid-independent mechanism. Journal of Neurosciences 25, 89248937.Google Scholar
Xu, H., Delling, M., Jun, J. C. & Clapham, D. E. (2006). Oregano, thyme and clove-derived flavors and skin sensitizers activate specific TRP channels. Nature Neuroscience 9, 628635.Google Scholar
Xu, H., Ramsey, I. S., Kotecha, S. A., Moran, M. M., Chong, J. A., Lawson, D., Ge, P., Lilly, J., Silos-Santiago, I., Xie, Y., DiStefano, P. S., Curtis, R. & Clapham, D. E. (2002). TRPV3 is a calcium-permeable temperature-sensitive cation channel. Nature 418, 181186.Google Scholar
Xu, X. Z., Chien, F., Butler, A., Salkoff, L. & Montell, C. (2000). TRPγ, a Drosophila TRP-related subunit, forms a regulated cation channel with TRPL. Neuron 26, 647657.Google Scholar
Xu, X. Z., Li, H. S., Guggino, W. B. & Montell, C. (1997). Coassembly of TRP and TRPL produces a distinct store-operated conductance. Cell 89, 11551164.Google Scholar
Yamagushi, H., Matsushita, M., Nairn, M. & Kuriyan, J. (2001). Crystal structure of the atypical protein kinase domain of a TRP channel with phosphotransferase activity. Molecular Cell 7, 10471057.Google Scholar
Yeh, B-II., Kim, Y. K., Jabbar, W. & Huang, C.-L. (2005). Conformational changes pore helix coupled gating TRPV5 by protons. EMBO Journal 24, 32243234.Google Scholar
Zhou, Y., Morais-Cabral, J. H., Kaufman, A. & MacKinnon, R. (2001). Chemistry of ion coordination and hydration revealed by a K+ channel–Fab complex at 2·0 Å resolution. Nature 414, 4348.Google Scholar
Zhu, X., Chu, P. B., Peyton, M. & Birnbaumer, L. (1995). Molecular cloning of a widely expressed human homolog for the Drosophila trp gene. FEBS Letters 373, 193198.Google Scholar
Zurborg, S. B., Yurgionas, J. A., Jira, O., Caspani, P. A. & Heppenstall, P. A. (2007). Direct activation of the ion channel TRPA1 by Ca2+. Nature Neuroscience 10, 277279.Google Scholar