Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-25T04:16:10.286Z Has data issue: false hasContentIssue false

Structure of viral connectors and their function in bacteriophage assembly and DNA packaging

Published online by Cambridge University Press:  17 March 2009

Jose M. Valpuesta
Affiliation:
Centro Nacional de Biotecnologia, CSIC. Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
Jose L. Carrascosa
Affiliation:
Centro Nacional de Biotecnologia, CSIC. Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain

Extract

The viruses have been an attractive model for the study of basic mechanisms of protein/protein and protein/nucleic acid interactions involved in the assembly of macromolecular aggregates. This has been due primarily to their relative genetic simplicity as compared to their structural and functional complexity. Although most of the initial studies were carried out on bacterial and plant viruses, increasing data has also been accumulated from animal viruses, which has led to an understanding of some basic principles, as well as to many specific strategies in every system. The study of virus assembly has been a source of ideas that underlie our present knowledge of the organization of biological systems. It has also provided, since the production of bacteriophage mutants which have allowed the study of assembly intermediates, the first system in which the genetic studies played a dominant role. The increasing volume of data over the last years has revealed how the structural components can interact sequentially through an ordered pathway to yield macromolecular assemblies that satisfy the demands of stability required for a successful transfer of genetic information from host to host.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alonso, J. C. & Chai, S. (1993). Analysis of the Bacillus subtilis bacteriophage SPP1 gene 1 product, a protein involved in the initiation of headful packaging. Abstracts of the EMBO workshop on nucleic acid-protein interactions in bacteriophages. Salamanca (Spain), pp. 63.Google Scholar
Amos, L., Henderson, R. & Unwin, P. N. T. (1982). Three-dimensional determination by electron microscopy of two-dimensional crystals. Prog. Biophys. Molec. Biol. 39, 183231.Google Scholar
Anderson, D. L., Hickman, D. D. & Reillv, B. E. (1966). Structure of Bacillus subtilis bacteriophage φ29 and the length of φ29 deoxyribonucleic acid. J. Bacteriol. 91, 20812089.CrossRefGoogle Scholar
Backhaus, H. (1985). DNA packaging initiation of Salmonella bacteriophage p22: determination of cut within the DNA sequence coding for gene 3. J. Virol. 55, 458465.CrossRefGoogle ScholarPubMed
Bailey, S., Wichitwechkarn, J., Johnson, D., Reilly, B. E., Anderson, D. L. & Bodley, J. W. (1990). Phylogenetic analysis and secondary structure of the Bacillus subtilis bacteriophage RNA required for DNA packaging. J. Biol. Chem. 265, 22 36522 370.Google Scholar
Bazinet, C. & King, J. (1985). The DNA translocating vertex of dsDNA bacteriophage. Ann. Rev. Microbiol. 39, 109129.CrossRefGoogle ScholarPubMed
Bazinet, C. & King, J. (1988). Initiation of p22 procapsid assembly in vivo. J. Mol. Biol. 202, 7786.CrossRefGoogle ScholarPubMed
Bazinet, C., Benbasat, J., King, J., Carazo, J. M. & Carrascosa, J. L. (1988). Purification and organization of the gene 1 portal protein required for phage P22 DNA packaging. Biochemistry 27, 18491856.Google Scholar
Bazinet, C., Villafane, R. & King, J. (1990). Novel second-site suppression of a coldsensitive defect in phage P22 procapsid assembly. J. Mol. Biol. 216, 701716.CrossRefGoogle ScholarPubMed
Becker, A., Murialdo, H. & Gold, M. (1977). Studies on an in vitro system for the packaging and maturation of phage λ DNA Virology 78, 277290.Google Scholar
Becker, A., Murialdo, H., Lucko, H. & Morell, J. (1988). Bacteriophage lambda DNA packaging. The product of the FI gene promotes the incorporation of the. prohead to the DNA-terminase complex. J. Mol. Biol. 199, 597607.Google Scholar
Becker, A. & Murialdo, H. (1990). Bacteriophage λ DNA: the beginning of the end. J. Bacteriol. 172, 28192824.Google Scholar
Bjornsti, M. A., Reilly, B. E. & Anderson, D. (1981). In vitro assembly of the Bacillus subtilis bacteriophage φ29. Proc. Natl. Acad. Sci. USA 78, 58615865.CrossRefGoogle Scholar
Bjornsti, M. A., Reilly, B. E. & Anderson, D. (1982). Morphogenesis of bacteriophage φ29 of Bacillus subtilis: DNA-gp3 intermediate in in vivo and in vitro assembly. J. Virol. 41, 508517.Google Scholar
Bjornsti, M. A., Reilly, B. E. & Anderson, D. (1983). Morphogenesis of bacteriophage φ29 of Bacillus subtilis: Oriented and quantized in vitro packaging of DNA protein gp3. J. Virol. 45, 383396.Google Scholar
Black, L. W. & Silverman, D. J. (1978). Model for DNA packaging into bacteriophage heads. J. Virol. 28, 643655.CrossRefGoogle Scholar
Black, L. W. (1986). In vitro packaging into phage T4 particles and specific recircularization of phage lambda DNAs. Gene 46, 97101.Google Scholar
Black, L. W. (1988). DNA packaging in dsDNA bacteriophages. In The Bacteriophages (ed. Calendar, R.), Vol. 2, pp. 321373. New York: Plenum.CrossRefGoogle Scholar
Black, L. W. (1989). DNA packaging in dsDNA bacteriophages. Annu. Rev. Microbiol. 43. 267292.CrossRefGoogle ScholarPubMed
Bowden, D. W. & Calendar, R. (1979). Maturation of bacteriophage P2 DNA in vitro: a complex, site-specific system for DNA cleavage. J. Mol. Biol. 129, 18.Google Scholar
Bowden, D. W. & Modrich, P. (1985). In vitro maturation of circular bacteriophage P2 DNA: purification of ter components and characterization of their reaction. J. Biol. Chem. 260, 69997007.CrossRefGoogle ScholarPubMed
Bravo, A., Alonso, J. C. & Trautner, T. A. (1990). Functional analysis of the Bacillus subtilis bacteriophage SPP1 pac site. Nucl. Acids Res. 18, 28812886.Google Scholar
Camacho, A., Jimenez, F., de la Torre, J., Carrascosa, J. L., Mellado, R. P., Vásquez, C., Viñuela, E. & Salas, M. (1977). Assembly of Bacillus subtilis phage φ29. I. Mutants in the cistrons coding for the structural proteins. Eur. J. Biochem. 73, 3955.CrossRefGoogle ScholarPubMed
Camacho, A., Jiménez, F., Viñuela, E. & Salas, M. (1979). Order of assembly of the lower collar and the tail proteins of Bacillus subtilis bacteriophage φ29. J. Virol. 29, 540545.Google Scholar
Carazo, J. M., García, N., Santisteban, A. & Carrascosa, J. L. (1984). Structural study of tetragonal-ordered aggregates of phage φ29 necks. J. Ultrastruct. Res. 89, 7988.Google Scholar
Carazo, J. M., Santisteban, A. & Carrascosa, J. L. (1985). Three-dimensional reconstruction of bacteriophage φ29 neck particles at 2·2 nm resolution. J. Mol. Biol. 183. 7988.Google Scholar
Carazo, J. M., Fujisawa, H., Nakasu, S. & Carrascosa, J. L. (1986 a). Bacteriophage T3 gene 8 product oligomer structure. J. Ultrastruct. Res. 94, 105113.Google Scholar
Carazo, J. M., Donate, L. E., Herranz, L., Secilla, J. P. & Carrascosa, J. L. (1986 b). Three-dimensional reconstruction of the bacteriophage φ29 at 1·8 nm resolution. J. Mol. Biol. 192, 853867.Google Scholar
Carrascosa, J. L., Viñuela, E., García, N. & Santisteban, A. (1982). Structure of the head-tail connector of bacteriophage φ29. J. Mol. Biol. 154, 311324.Google Scholar
Carrascosa, J. L., Carazo, J. M. & García, N. (1983). Structural localization of the proteins of the head to tail connecting region of bacteriophage φ29. Virology 124, 133143.Google Scholar
Carrascosa, J. L., Carazo, J. M., Ibañez, C. & Santisteban, A. (1985). Structure of phage φ29 connector protein assembled in vivo. Virology 141, 190200.Google Scholar
Carrascosa, J. L. (1986). Bacteriophage morphogenesis. In Electron Microscopy of Proteins vol. 5, Viral Structure (ed. Harris, J. R. & Home, R. W.), pp. 3770. Academic Press: London.Google Scholar
Carrascosa, J. L., Carazo, J. M., Herranz, L., Donate, L. E. & Secilla, J. P. (1990). Study of two related configurations of the neck of bacteriophage φ29. Computers Math. Applic. 20, 5769.CrossRefGoogle Scholar
Casjens, S., Huang, W., Hayden, M. & Parr, R. (1987). Initiation of bacteriophage P22 DNA packaging series: analysis of a mutant which alters the DNA target specificity of the packaging apparatus, J. Mol. Biol. 194, 411422.Google Scholar
Casjens, S. & Hayden, M. (1988). Analysis in vivo of the bacteriophage P22 headful nuclease. J. Mol. Biol. 199, 467474.Google Scholar
Casjens, S. & Hendrix, R. W. (1988). Control Mechanisms in dsDNA bacteriophage assembly. In The Bacteriophages (ed. Calendar, R.), vol. 1, pp. 1590. New York: Plenum.Google Scholar
Casjens, S., Wyckoff, E., Hayden, M., Sampson, L., Eppler, K., Randall, S., Moreno, E. T. & Serwer, P. (1992 a). Bacteriophage P22 portal protein is part of the gauge that regulates packaging density of intravirion DNA. J. Mol. Biol. 224, 10551074.Google Scholar
Casjens, S., Sampson, L., Randall, S., Eppler, K., Wu, H., Petri, J. B. & Schmieger, H. (1992 b). Molecular genetic analysis of bacteriophage P22 gene 3 product, a protein involved in the initiation of headful DNA packaging. J. Mol. Biol. 227, 10861099.CrossRefGoogle ScholarPubMed
Caspar, D. & Klug, A. (1962). Physical principles in the construction of regular viruses. Cold Spring Harbor Symp. Quant. Biol. 27, 124.CrossRefGoogle ScholarPubMed
Cerritelli, M. E., Cheng, N., Conway, J. F., Trus, B. L., Studier, F. W. & Steven, A. C. (1993). A role for the bacteriophage T7 connector in controlling prohead expansion. Abstracts of the XIII International Conference on Virus and Phage Assembly. Syria Virginia.Google Scholar
Chai, S., Bravo, A., Lüder, G., Nedlin, A., Trautner, T. A. & Alonso, J. C. (1992). Molecular analysis of the B. subtilis bacteriophage SPP1 region encompassing genes 1 to 6. The products of gene 1 and gene 2 are required for pac cleavage. J. Mol. Biol. 224, 87102.Google Scholar
Chattoraj, D. K. & Inman, R. B. (1974). Location of DNA ends in P2, 186, P4 and lambda bacteriophage heads. J. Mol. Biol. 87, 1122.CrossRefGoogle ScholarPubMed
Chung, H. Y. & Hinkle, D. C. (1990). Bacteriophage T7 DNA packaging. II. Analysis of the DNA sequences required for packaging using a plasmid transduction assay. J. Mol. Biol. 216, 927938.Google Scholar
Cue, D. & Feiss, M. (1993). A site required for termination of packaging of the phage A chromosome. Proc. Natn. Acad. Sci. U.S.A. 90, 92909294.Google Scholar
Donate, L. E., Herranz, L., Secilla, J. P., Carazo, J. M., Fujisawa, H. & Carrascosa, J. L. (1988). Bacteriophage T3 connector: Three-dimensional structure and comparison with other viral head-tail connecting regions. J. Mol. Biol. 201, 91100.Google Scholar
Donate, L. E., Murialdo, H. & Carrascosa, J. L. (1990). Production of λ-φ29 phage chimeras. Virology 179, 936940.Google Scholar
Donate, L. E. & Carrascosa, J. L. (1991). Characterization of a versatile in vitro DNA-packaging system based on hybridλ/φ29 proheads. Virology 182, 534544.Google Scholar
Donate, L. E., Valpuesta, J. M., Rocher, A., Méndez, E., Rojo, F., Salas, M. & Carrascosa, J. L. (1992). Role of the amino-terminal domain of bacteriophage φ29 connector in DNA binding and packaging, J. Biol. Chem. 267, 1091910924.Google Scholar
Donate, L. E., Valpuesta, J. M., Mier, C., Rojo, F. & Carrascosa, J. L. (1993). Characterization of an RNA-binding domain in the bacteriophage φ29 connector. J. Biol. Chem. 268, 2019820204.CrossRefGoogle Scholar
Driedonks, R. A., Engel, A., ten Heggeler, B. & van Driel, R. (1981). Gene 20 product of bacteriophage T4. Its purification and structure. J. Mol. Biol. 152, 641662.Google Scholar
Driedonks, R. A. & Caldentey, J. (1983). Gene 20 product of bacteriophage T4. II. Its structural organization in prehead and bacteriophage. J. Mol. Biol. 166, 341360.CrossRefGoogle ScholarPubMed
Dube, P., Tavares, P., Lurz, R. & van Heel, M. (1993). The portal protein of bacteriophage SPP1: a DNA pump with 13-fold symmetry. EMBO J. 12, 13031309.Google Scholar
Eiserling, F. A. (1979). In Comprehensive Virology 13 (ed. Fraenkel-Conrat, R. & Wagner, W.), pp. 543580. New York, Plenum.Google Scholar
Eppler, K., Wyckoff, E., Goates, J., Parr, R. & Casjens, S. (1991). Nucleotide sequence of the bacteriophage P22 genes required for DNA packaging. Virology 183, 519538.CrossRefGoogle ScholarPubMed
Feiss, M. & Becker, A. (1983). DNA packaging & cutting. In lambda II (ed. Hendrix, R. W.), pp. 305330. New York: Cold Spring Harbor.Google Scholar
Feiss, M., Sippy, J. & Miller, G. (1985). Processive action of terminase during sequential packaging of bacteriophage λ chromosomes. J. Mol. Biol. 186, 759771.CrossRefGoogle ScholarPubMed
Feiss, M. (1986). Terminase and the recognition, cutting and packaging of λ chromosomes. Trends in Genetics 2, 100104.Google Scholar
Feiss, M. & Anderson, D. (1991). Capsid caper in Cable (Meeting review). The New Biologist 3, 10481054.Google Scholar
Frackman, S., Siegele, D. A. & Feiss, M. (1984). A functional domain of bacteriophage λ terminase for prohead binding. J. Mol. Biol. 180, 283300.Google Scholar
Frackman, S., Siegele, D. A. & Feiss, M. (1985). The terminase of bacteriophage λ: functional domains for cos B binding and multimer assembly. J. Mol. Biol. 183, 225242.Google Scholar
Fujisawa, H., Yamagishi, M. & Minagawa, T. (1980). In vitro formation of the concatemeric DNA bacteriophage T3 and its biological activity in the in vitro packaging reaction. Virology 101, 327334.Google Scholar
Fujisawa, H., Hamada, K., Shibata, H. & Minagawa, T. (1987). On the molecular mechanism of DNA translocation during in vitro packaging of bacteriophage T3 DNA. Virology 161, 228233.Google Scholar
Fujisawa, H., Shibata, H. & Kato, H. (1991). Analysis of interactions among factors involved in the bacteriophage T3 DNA packaging reaction in a defined in vitro system. Virology 185, 788794.Google Scholar
Galisteo, M. L. & King, J. (1993). Conformational transformations in the protein lattice of phage P22 procapsids. Biophys. J. 65, 227235.Google Scholar
García, J. A., Méndez, E. & Salas, M. (1984). Cloning, nucleotide sequence and highlevel expression of the gene coding for the connector protein of the Bacillus subtilis phage φ29. Gene 30, 8798.Google Scholar
Georgopoulos, C., Hendrix, R., Casjens, S. R. & Kaiser, A. D. (1973). Host participation in bacteriophage lambda head assembly. J. Mol. Biol. 76, 4560.Google Scholar
Grimes, S. & Anderson, D. (1989). Cleaving the prohead RNA of bacteriophage φ29 alters the in vitro packaging of restriction fragments of DNA-gp3. J. Mol. Biol. 209, 101108.Google Scholar
Grimes, S. & Anderson, D. (1990). RNA dependence of the bacteriophage φ29 DNA packaging ATPase. J. Mol. Biol. 215, 559566.Google Scholar
Guo, P., Grimes, S. & Anderson, D. (1986). A defined system for in vitro packaging of DNA-g3 of the Bacillus subtilis bacteriophage φ29. Proc. Natn. Acad. Sci. U.S.A. 83, 35O535O9.Google Scholar
Guo, P., Peterson, C. & Anderson, D. (1987 a). Initiation events in in vitro packaging of bacteriophage φ29 DNA-P3. J. Mol. Biol. 197, 219228.Google Scholar
Guo, P., Peterson, C. & Anderson, D. (1987 b). Prohead and DNA-P3 dependent activity of the DNA packaging protein p16 of bacteriophage φ29. J. Mol. Biol. 197, 229236.CrossRefGoogle Scholar
Guo, P., Erickson, S. & Anderson, D. (1987 c). A small RNA is required for in vitro packaging of bacteriophage φ29 DNA. Science 236, 690694.CrossRefGoogle Scholar
Guo, P., Bailey, S., Bodley, J. W. & Anderson, D. (1987 d). Characterization of the small RNA of the bacteriophage φ29 DNA packaging machine. Nucl. Acids. Res. 15, 70817090.Google Scholar
Guo, P., Erickson, S., Xu, W., Olson, N., Backer, T. & Anderson, D. L. (1991 a). Regulation of the phage φ29 prohead shape and size by the portal vertex. Virology 183, 366373.CrossRefGoogle Scholar
Guo, P., Rajagopal, B. S., Anderson, D., Erickson, S. & Lee, C. (1991 b) sRNA of phage φ29 of Bacillus subtilis mediates DNA packaging of φ29 proheads assembled in Escherichia coli. Virology 185, 395400.CrossRefGoogle Scholar
Hafner, E., Tabor, C. & Tabor, H. (1979). Mutants of Escherichia coli that do not contain 1, 4-diaminobutane (putrescine) or spermidine. J. Biol. Chem. 254, 1241912426.Google Scholar
Hagen, E. W., Reilly, B. E., Tosi, M. E. & Anderson, D. L. (1976). Analysis of gene function of bacteriophage φ29 of Bacillus subtilis: Identification of cistrons essential for viral assembly. J. Virol. 19, 501517.Google Scholar
Hamada, K., Fujisawa, H. & Minagawa, T. (1986 a). Overproduction and purification of the products of the bacteriophage T3 genes 18 and 19, two genes involved in DNA packaging. Virology 151, 110119.CrossRefGoogle Scholar
Hamada, K., Fujisawa, H. & Minagawa, T. (1986 b). A defined in vitro system for packaging of bacteriophage T3 DNA. Virology 151, 119123.Google Scholar
Hamada, K., Fujisawa, H. & Minagawa, T. (1987). Characterization of a ATPase activity of a defined in vitro system for packaging of bacteriophage T3 DNA. Virology 159, 244249.CrossRefGoogle ScholarPubMed
Hashimoto, C. & Fujisawa, H. (1992 a). DNA sequences necessary for packaging bacteriophage T3 DNA. Virology 187, 788796.Google Scholar
Hashimoto, C. & Fujisawa, H. (1992 b). Transcription dependence of DNA packaging of bacteriophages T3 and T7. Virology 191, 246250.Google Scholar
Hendrix, R. & Casjens, S. R. (1974). Protein fusion: A novel reaction in bacteriophage lambda head assembly. Proc. Natn. Acad. Sci. U.S.A. 71, 14511455.CrossRefGoogle ScholarPubMed
Hendrix, R. & Casjens, S. R. (1975). Protein processing and its genetic control in petit λ assembly. J. Mol. Biol. 91, 187199.Google Scholar
Hendrix, R. (1978). Symmetry mismatch and DNA packaging in large DNA bacteriophages. Proc. Natn. Acad. Sci. U.S.A. 75, 47794783.Google Scholar
Hermoso, J. M. & Salas, M. (1980). Protein p3 is linked to the DNA of phage φ29 through a phosphodiester bound between serine and 5′-dAMP. Proc. Natn. Acad. Sci. U.S.A. 7, 64256428.Google Scholar
Herranz, L., Salas, M. & Carrascosa, J. L. (1986). Interaction of the bacteriophage connector protein with the viral DNA. Virology 155, 289292.Google Scholar
Herranz, L., Bordas, J., Towns-Andrews, E., Mendez, E., Usobiaga, P. & Carrascosa, J. L. (1990). Conformational changes in bacteriophage φ29 connector prevents DNA-binding activity. J. Mol. Biol. 213, 263273.CrossRefGoogle Scholar
Higgins, R. R., Lucko, H. J. & Becker, A. (1988). Mechanisms of cos DNA cleavage by bacteriophage lambda terminase – multiple roles of ATP. Cell 54, 765775.Google Scholar
Hoffman, D. W., Query, C. C., Golden, B. L., White, S. W. & Keene, J. D. (1991). RNA-binding domain of the A protein component of the U1 small nuclear ribonucleoprotein analyzed by NMR spectroscopy is structurally similar to ribosomal proteins. Proc. Natn. Acad. Sci. U.S.A. 88, 24592499.Google Scholar
Hohn, B., Wurtz, M., Klein, B., Lustig, A. & Hohn, T. (1974). Phage lambda DNA packaging in vitro. J. Supramol. Struct. 2, 302317.Google Scholar
Hsiao, C. L. & Black, L. W. (1977). DNA packaging and the pathway of bacteriophage T4 assembly. Proc. Natn. Acad. Sci. U.S.A. 74, 36523656.Google Scholar
Hsiao, C. L. & Black, L. W. (1978). Head morphogenesis of bacteriophage T4. II. The role of gene 40 in initiating prehead assembly. Virology 91, 1525.CrossRefGoogle ScholarPubMed
Ibáñez, C., García, J. A., Carrascosa, J. L. & Salas, M. (1984). Overproduction and purification of the connector protein of Bacillus subtilis phage φ29. Nucl. Acids Res. 12, 23512365.Google Scholar
Jackson, E., Jackson, D. & Deans, R. (1978). EcoRI analysis of bacteriophage P22 DNA packaging. J. Mol. Biol. 118, 365388.Google Scholar
Jardine, P. J. & Coombs, H. (1993). DNA packaging triggers prohead expansion in phage T4. Abstracts of the XIII International Conference on Virus and Phage Assembly. Syria Virginia.Google Scholar
Jiménez, J., Santisteban, A., Carazo, J. M. & Carrascosa, J. L. (1986). Computer graphic display method for visualizing three-dimensional biological structures. Science 232, 11131115.CrossRefGoogle ScholarPubMed
Kalinski, A. & Black, L. W. (1986). End structure and mechanism of packaging of bacteriophage T4 DNA. J. Virol. 58, 951954.Google Scholar
Kellenberger, E. (1990). Form determination of the heads of bacteriophages. Eur. J. Biochem. 190, 233248.Google Scholar
Kenan, D. J., Query, C. C. & Keene, J. D. (1991). RNA recognition: towards identifying determinants of specificity. Trends in Biochem. Sci., 16, 214220.Google Scholar
Kochan, J. & Murialdo, H. (1983). Early intermediates in bacteriophage lambda prohead assembly. II. Identification of biologically active intermediates. Virology 131, 100115.Google Scholar
Kochan, J., Carrascosa, J. L. & Murialdo, H. (1984). Bacteriophage lambda preconnectors. Purification and structure. J. Mol. Biol. 174, 433447.Google Scholar
Kocsis, E., Cerritelli, M. E., Cheng, N., Trus, B. & Steven, A. C. (1993). Polymorphism of the head to tail connector complex of bacteriophage T7: 13-fold and 12-fold symmetric variants. Proceedings of the XIII International Conference on Virus and Phage Assembly, Syria Virginia.Google Scholar
Laemmli, U. K., Molbert, E., Showe, M. & Kellenberger, E. (1970). Form determining function of the genes required for the assembly of the head of bacteriophage T4. J. Mol. Biol. 49, 99113.Google Scholar
Laski, F. & Jackson, E. (1982). Maturation cleavage of bacteriophage P22 DNA in the absence of DNA packaging, J. Mol. Biol. 154, 565579.Google Scholar
Lee, C., Trottier, M. & Guo, P. (1993). Requirement of triplex interaction of the capsid protein, scaffolding protein and portal protein in the assembly of a functional prohead of phage φ29. Proceedings of the XIII International Conference on Virus and Phage Assembly. Syria Virginia.Google Scholar
Lin, H., Rao, V. B. & Black, L. W. (1993). Identification of a putative domain docking site in the portal vertex protein (connector), p20, of phage T4. Abstracts of the XIII International Conference on Virus and Phage Assembly. Syria Virginia.Google Scholar
Matsuo-Kato, H., Fujisawa, H. & Minagawa, T. (1981). Structure and assembly of bacteriophage T3 tails. Virology 109, 157164.Google ScholarPubMed
McIntosh, P. K., Dunker, R., Mulder, C. & Brown, N. C. (1978). DNA of Bacillus subtilis bacteriophage SPPi: physical mapping and localization of the origin of replication. J. Virol. 28, 865876.Google Scholar
Michaud, G., Zachary, A., Rao, B. & Back, L. W. (1989). Membrane-associated assembly of a phage T4 DNA entrance vertex structure studied with expression vectors. J. Mol. Biol. 209, 667681.Google Scholar
Miyakazi, J., Fujisawa, H. & Minagawa, T. (1978). Biological activity of purified bacteriophage T3 prohead and prohead-like structure a precursors for in vitro head assembly. virology 91, 283290.Google Scholar
Moody, M. (1965). The shape of T-even bacteriophage head. Virology 26, 567576.Google Scholar
Mosig, G., Chosal, D. & Bock, S. (1981). Interactions between the maturation protein p17 and the single stranded DNA binding protein P32 initiate DNA packaging and complete with initiation of secondary replication forks in phage T4. In Bacteriophage Assembly (ed. Bulow, M. S.), pp. 139151. New York: Liss.Google Scholar
Murialdo, H. & Becker, A. (1978). Head morphogenesis of complex double-stranded DNA bacteriophages. Microbiol. Rev. 42, 529576.Google Scholar
Murialdo, H. (1979). Early intermediates in bacteriophage lambda prohead assembly. Virology, 96, 341367.Google Scholar
Murialdo, H. (1991). Bacteriophage lambda DNA maturation and packaging. Annu. Rev. Biochem. 60, 125153.Google Scholar
Nagai, K., Oubridge, C. J., Jessen, T. H., Li, J. & Evans, P. R. (1990). Crystal structure of the RNA-binding domain of the U1 small nuclear ribonucleoprotein A. Nature 348, 515520.Google Scholar
Nakasu, S., Fujisawa, H. & Minagawa, T. (1983). Role of gene 8 product in morphogenesis of bacteriophage T3. Virology 127, 124133.Google Scholar
Nakasu, S., Fujisawa, H. & Minagawa, T. (1985). Purification and characterization of gene 8 product of bacteriophage T3. Virology 143, 422434.Google Scholar
Pabo, C. O. & Sauer, R. T. (1984). Protein-DNA recognition. Annu. Rev. Biochem. 53, 292321.Google Scholar
Parris, W., Davidson, A., Keeler, C. L. Jr. & Gold, M. (1988). The Nui subunit of bacteriophage λ terminase. J. Biol. Chem. 263, 84138419.Google Scholar
Penczek, P., Radermacher, M. & Frank, J. (1992). Three-dimensional reconstruction of single particles embedded in ice. Ultramicroscopy 40, 3353.Google Scholar
Poteete, A. & King, J. (1977). Functions of two new genes in Salmonella phage P22 assembly. Virology 76, 725739.Google Scholar
Poteete, A. R., Jarvik, J. & Botstein, D. (1979). Encapsidation of P22 DNA in vitro. Virology 95, 550564.Google Scholar
Poteete, A. R. & Botstein, D. (1979). Purification and properties of proteins essential to DNA encapsulation by phageP22. Virology 95, 565573.Google Scholar
Prasad, B. V., Prevelige, P. E., Marietta, E., Chen, R. O., Thomas, D., King, J. & Chiu, W. (1993). Three-dimensional transformation of capsids associated with genome packaging in a bacterial virus. J. Mol. Biol. 231, 6574.Google Scholar
Prevelige, P. E., Thomas, D., Aubrey, K. L., Towse, S. A. & Thomas, G. J. (1993). Subunit conformational changes accompanying bacteriophage P22 capsid maturation. Biochemistry 32, 537543.Google Scholar
Rao, V. B. & Black, L. W. (1985). DNA packaging of bacteriophage T4 proheads in vitro: evidence that proheads expansion is not coupled to DNA packaging. J. Mol. Biol. 185, 565578.Google Scholar
Rao, V. B. & Black, L. W. (1988). Cloning, overexpression and purification of the terminase proteins p16 and p17 of bacteriophage T4: construction of a defined in vitro DNA packaging system using purified terminase proteins. J. Mol. Biol. 200, 475488.Google Scholar
Ray, P. N. & Murialdo, H. (1975). The role of gene Nu3 in bacteriophage lambda head morphogenesis. Virology 64, 247263.Google Scholar
Riemer, S. C. & Bloomfield, V. A. (1980). Packaging of DNA in bacteriophage heads: Some considerations on Energetics. Biopolymers 17, 784800.Google Scholar
Roeder, G. S. & Sadowski, P. D. (1977). Bacteriophage T7 morphogenesis: Phagerelated particles in cells infected with wild-type and mutant T7 phage. Virology 76, 263285.Google Scholar
Ross, P. D., Black, L. W., Bisher, M. E. & Steven, A. C. (1985). Assembly-dependent conformational changes in a viral capsid protein: calorimetric comparisons of successive conformational states of the gp23 surface lattice of bacteriophage T4. J. Mol. Biol. 183, 353364.Google Scholar
Saigo, K. & Uchida, H. (1974). Connection of the right-hand terminus of DNA to the proximal end of the tail in bacteriophage lambda. Virology 61, 524536.Google Scholar
Schindelin, H., Marahiel, M. & Heinemann, U. (1993). Universal nucleic acidbinding domain revealed by crystal structure of the B. subtilis major cold-shock protein. Nature 364, 164168.Google Scholar
Schmieger, H. & Koch, E. (1987). In vitro assay of packaging gp3 of Salmonella phage P22. Intervirology 28, 157162.Google Scholar
Schnuche, A., Wiltscheck, R., Czisch, M., Herrier, M., Willimsky, G., Graumann, P., Marahiel, M. & Holak, T. A. (1993). Structure in solution of the major coldshock protein from Bacillus subtilis. Nature 364, 169171.Google Scholar
Serwer, P. (1979). Fibrous projections from the core of a bacteriophage T7 procapsid. J. Supramol. Struct. 11, 321326.Google Scholar
Serwer, P. & Watson, R. H. (1982). Internal proteins of bacteriophage T7. J. Mol. Biol. 107, 271291.Google Scholar
Shibata, H., Fujisawa, H. & Minagawa, T. (1987). Characterization of the bacteriophage T3 DNA packaging reaction in vitro in a defined system. J. Mol. Biol. 196, 845851.Google Scholar
Shinder, G. & Gold, M. (1988). The Nu1 subunit of bacteriophage lambda terminase binds to specific sites in cos DNA. J. Virol. 62, 387392.Google Scholar
Sternberg, N. & Coulby, J. (1987 a). Recognition and cleavage of the bacteriophage P1 packaging site (pac). I. Differential processing of the cleaved ends in vivo. J. Mol. Biol. 194, 453468.Google Scholar
Sternberg, N. & Coulby, J. (1987 b). Recognition and cleavage of the bacteriophage P1 packaging site (pac). II. Functional limits and location of pac cleavage termini. J. Mol. Biol. 194, 469479.Google Scholar
Strobel, E., Bechnichs, W. & Schnieger, H. (1984). In vitro packaging of mature phage DNA by Salmonella phage P22 DNA. Virology 132, 158165.Google Scholar
Tavares, P., Santos, M. A., Lurz, R., Morelli, G., de Lencastre, H. & Trautner, T. A. (1992). Identification of a gene in Bacillus subtilis bacteriophage SPP1 determining the amount of packaged DNA. J. Mol. Biol. 225, 8192.Google Scholar
Thomas, J. O. (1974). Chemical linkage of the tail to the right-hand end of bacteriophage lambda DNA. J. Mol. Biol. 87, 19.Google Scholar
Traub, F. & Maeder, M. (1984). Formation of the prohead core of bacteriophage T4in vivo. J. Virol. 49, 892901.Google Scholar
Tsui, L. & Hendrix, R. (1980). Head-tail connector of bacteriophage lambda. J. Mol. Biol. 142, 419438.Google Scholar
Turnquist, S., Simon, M., Egelman, E. & Anderson, D. A. (1992). Supercoiled DNA wraps around the bacteriophage φ29 head-tail connector. Proc. Natn. Acad. Sci. U.S.A. 89, 1047910483.Google Scholar
Unwin, P. N. T. & Ennis, P. D. (1984). Two configurations of a channel-forming membrane protein. Nature 307, 609613.Google Scholar
Valpuesta, J. M., Fujisawa, H., Marco, S., Carazo, J. M. & Carrascosa, J. L. (1992 a). Three-dimensional structure of T3 connector purified from overexpressing bacteria. J. Mol. Biol. 224, 103112.Google Scholar
Valpuesta, J. M., Serrano, M., Donate, L. E., Herranz, L. & Carrascosa, J. L. (1992 b). DNA conformational change induced by the bacteriophage φ29 connector. Nucleic Acids Res. 20, 55495554.Google Scholar
Valpuesta, J. M., Donate, L. E., Mier, C., Herranz, L. & Carrascosa, J. L. (1993). RNA-mediated specificity of DNA packaging into hybrid proheads. EMBO J. 12, 44534459.Google Scholar
Van Driel, R. & Couture, E. (1978). Assembly of bacteriophage T4 head-related structures. II. In vitro assembly of prehead-like structures. J. Mol. Biol. 123, 115128.Google Scholar
Wichitwechkarn, J., Johnson, D. & Anderson, D. (1992). Mutant prohead RNAs in the in vitro packaging of bacteriophage φ29 DNA-P3. J. Mol. Biol. 223, 991998.Google Scholar
Wu, W. F., Christiansen, S. & Feiss, M. (1988). Domains for protein–protein interactions at the N and C termini of the large subunit of bacteriophage λ terminase. Genetics 119, 477484.Google Scholar
Yarmolinsky, M. B. & Sternberg, N. (1988). Bacteriophage P1. In The Bacteriophages (ed. Calendar, R.), vol. 1, pp. 291438. New York: Plenum.Google Scholar
Yeo, A. (1992). The prohead binding of bacteriophage λ terminase. Ph.D. Thesis. University of Iowa.Google Scholar
Yeo, A. & Feiss, M. (1993). Genetic analysis of the prohead binding domain of phage I terminase. Abstracts of the XIII International Conference on Virus and Phage Assembly. Syria Virginia.Google Scholar
Zachary, A. & Black, L. W. (1992). Isolation and characterization of a portal protein-DNA complex from dsDNA bacteriophage. Intervirology 33, 616.Google Scholar