Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-09T05:50:01.513Z Has data issue: false hasContentIssue false

The stereochemical code and the logic of a protein molecule

Published online by Cambridge University Press:  17 March 2009

A. M. Liquori
Affiliation:
Laboratorio di Chimica Fisica, Università di Roma, Italy

Extract

Like DNA and the various forms of RNA, a protein molecule is an information storage system. It contains in fact one or more polypeptide chains which may be regarded as linear sequences of twenty different types of monomer units. It is now clearly established that the chemical information corresponding to a given sequence of a polypeptide chain, containing n amino acid residues, is stored in a segment of one of the two strands of DNA containing 3n nucleotides. The transfer of such information from a gene to a polypeptide chain takes place according to the well-known process involving a transcription and a chemical translation step. This last step leads to a polymer which, in appropriate conditions, takes a three-dimensional conformation or tertiary structure which should correspond to a free-energy minimum of the molecule and its surrounding water solution.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1969

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Corey, R. B. & Pauling, L.Fundamental dimensions of polypeptide chains. Proc. R. Soc. B 141, 10.Google Scholar
De Coen, J. L., Elefante, G., Liquori, A. M. & Damiani, A. (1967). Role of van der Waals interaction on hindered rotation about single bonds in simple molecules. Nature, Lond. 216, 910.CrossRefGoogle Scholar
De Santis, P., Giglio, E., Liquori, A. M. & Ripamonti, A. (1962). Conformational analysis of some linear polymers in the solid state. Nuovo Cim. 26, 616.CrossRefGoogle Scholar
De Santis, P., Giglio, E., Liquori, A. M. & Ripamonti, A. (1963). Stability of helical conformations of simple linear polymers. J. Polymer Sci. A I, 1383.Google Scholar
De Santis, P., Giglio, E., Liquori, A. M. & Ripamonti, A. (1965). Van der Waals interactions and the stability of helical polypeptide chains. Nature, Lond. 206, 456.CrossRefGoogle Scholar
Kendrew, J. C., Dickerson, R. E., Strandberg, B. E., Hart, R. G., Davies, D. R., Phillips, D. C. & Shore, V. C. (1960). Structure of myoglobin A three-dimensional Fourier synthesis at 2 Å resolution. Nature, Lond. 185, 422.CrossRefGoogle ScholarPubMed
Kendrew, J. C., Watson, H. C., Strandberg, B. E., Dickerson, R. E., Phillips, D. C. & Shore, V. C. (1961). A partial determination by X-ray methods, and its correlation with chemical data. Nature, Lond. 190, 666.CrossRefGoogle Scholar
Liquori, A. M. (1961). Analisi conformazionale di macromolecule lineari allo stato solido. In Chimica delle Macromolecole (ed. C. N. R., ), pp. 209 (1963).Google Scholar
Liquori, A. M. (1966 a). The role of van der Waals interactions on the conformational stability of helical macromolecules. J. Polymer Sci. C 12, 209.Google Scholar
Liquori, A. M. (1966 b). Minimum energy conformations of biological polymers. Ciba Foundation Symposium on Principles of Biomolecular Organization, pp. 40. London: J. and A. Churchill Ltd.CrossRefGoogle Scholar
Liquori, A. M. (1968). Macromolecules as information storage systems. In The Stereochemistry of Macromolecules (ed. Katley, A. D. and Dekker, M.), pp. 287. New York.Google Scholar
Liquori, A. M. & Conti, F. (1968). Molecular structure NMR studies of gramicidine S in solution. Nature, Lond. 217, 635.Google Scholar
Liquori, A. M., Damiani, A., De Coen, J. L. & De Santis, . In preparation.Google Scholar
Liquori, A. M., De Santis, P., Kovacs, A. L. & Mazzarella, L. (1966). The stereochemical code of amino acid residues: The conformation of Gramicidine S. Nature, Lond. 211, 1039.CrossRefGoogle ScholarPubMed
Liquori, A. M., Giglio, E. & Mazzarella, L. (1968). Van der Waals interactions and the packing of molecular crystals. Nuovo Cim. X 55 B, 475.Google Scholar
Perutz, M. F., Muirhead, H., Cox, J. M. & Goaman, L. C. G. (1968). Three-dimensional synthesis of horse oxyhaemoglobin at 2·8 Å resolution: The Atomic model. Nature, Lond. 219, 131.CrossRefGoogle ScholarPubMed
Ramachandran, G. A., Ramakrishnan, G. & Sasisekharan, V. (1963). In Aspects of Protein structure (ed. Ramachandran, G. N.), p.21. London: Academic Press.Google Scholar
Ramachandran, G. A., Ramakrishnan, G. & Venkatachalen, C. M. (1967). In Conformation of Biopolymers (ed. Ramachandran, G. N.), vol. II, p. 249. London: Academic Press.Google Scholar
Sheraga, H. A., Scott, R. A., Vanderkoi, G., Leach, S. J., Gibson, K. D., Ooi, T. & Nemethy, G. (1967). In Conformation of Biopolymers (ed. Ramachandran, G. N.), vol. I, p. 43. London: Academic Press.Google Scholar
Stockmayer, W. H. (1941). Second virial coefficients of polar gases. J. Chem. Phys. 9, 398.CrossRefGoogle Scholar
Watson, H. C. (1968). The stereochemistry of the protein myoglobin. Progress in Stereochemistry. (in the Press.)Google Scholar