Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-23T02:50:19.589Z Has data issue: false hasContentIssue false

The spin 3/2 state and quantum spin mixtures in haem proteins

Published online by Cambridge University Press:  17 March 2009

M. M. Maltempo
Affiliation:
Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19131, U.S.A.
T. H. Moss
Affiliation:
IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598, U.S.A.

Extract

The magnetic state of iron in haem proteins has long been recognized as a convenient indicator of chemical coordination as well as more subtle biochemical properties. In the trivalent case in particular, there are three magnetically distinct configurations of the five 3d electrons, yielding spin states of S = 1/2, 3/2 and 5/2. The first and third are extremely familiar, and often lie close enough in energy so that a thermal mixture of low-spin S = 1/2 and high-spin S = 5/2 states exists in an ensemble of molecules. Selection rules for common perturbations (ΔS = ∘, ± 1 for the spin-orbit interaction and ΔS = ∘ for the electronic Zeeman interaction) ensure that quantum mixtures, in which the wave function is a true combination of S = 1/2 and S = 5/2 components, are not observed. The mid-spin, S = 3/2, state, and allowed 5/2–3/2 and 1/2–3/2 quantum mixtures including it, are much less well known. These have only rarely been invoked in recent years as an explanation for experimental haem protein magnetic data.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1976

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ake, R. L. & Harris-Loew, G. M. (1970). Crystal-field theory investigation of Bis (N, N-dialkyldithiocarbamato) ferric halides. J. chem. Phys. 52, 10982014.CrossRefGoogle Scholar
Bartsch, R. G. & Kamen, M. D. (1957). On the new heme protein of faculative photoheterotrophs. J. biol. Chem. 230, 4163.CrossRefGoogle Scholar
Bartsch, R. G. & Kamen, M. D. (1960). Isolation and properties of two soluble heme proteins in extracts of the photoanaerobe Chromatium. J. biol. Chem. 235, 825–31.CrossRefGoogle ScholarPubMed
Blumberg, W. E., Peisach, J., Wittenberg, B. & Wittenberg, J. (1968). The electronic structure of protoheme proteins. I. An electron paramagnetic resonance and optical study of horseradish peroxidase and its derivatives. J. biol. Chem. 243, 1854–62.CrossRefGoogle ScholarPubMed
Bohm, D. (1951). Quantum Theory. New Jersey: Prentice-Hall.Google Scholar
Coryell, C. D., Stitt, F. & Pauling, L. (1937). The magnetic properties and structure of ferrihemoglobin (methemoglobin) and some of its compounds. J. Am. chem. Soc. 59, 633–42.CrossRefGoogle Scholar
Cusanovich, M. A. (1970). Molecular weights of some cytochromes cc'. Biochim. biophys. Acta 236, 238–41.CrossRefGoogle Scholar
Cusanovich, M. A. & Gibson, Q. H. (1973). Anomalous ligand binding by a class of high spin c−type cytochromes. J. biol. Chem. 248, 822–34.CrossRefGoogle ScholarPubMed
Cusanovich, M. A., Tedrow, S. M. & Kamen, M. D. (1970). Pseudomonas denitrificans cytochrome cc'. Archs Biochem. Biophys. 141, 557–70.CrossRefGoogle ScholarPubMed
Dowsing, R. D. & Gibson, J. F. (1969). Electron spin resonance of high spin d5 systems. J. chem. Phys. 50, 294303.CrossRefGoogle Scholar
Dus, K., Bartsch, R. G. & Kamen, M. D. (1962). The diheme peptide of Chromatium RHP. J. biol. Chem. 237, 3083–93.CrossRefGoogle Scholar
Dus, K., De, Klerk H., Bartsch, R. G., Horio, T. & Kamen, M. D. (1967). On the monoheme nature of cytochrome c' (Rhodopseudomonas Palustris). Proc. natn. Acad. Sci. U.S.A. 57, 367–70.CrossRefGoogle ScholarPubMed
Dutton, P. L. & Leigh, J. S. (1973). Electron spin resonance characterization of Chromatium D hemes, non-heme irons and the components involved in primary photochemistry. Biochim. biophys. Acta 314, 178–90.CrossRefGoogle ScholarPubMed
Ehrenberg, A. (1962). Some oxidative enzymes and related compounds with unpaired electrons. Svensk Kemisk tidskrift 74, 5268.Google Scholar
Ehrenberg, A. & Kamen, M. D. (1965). Magnetic and optical properties of some bacterial haem proteins. Biochim. biophys. Acta 102, 333–40.CrossRefGoogle ScholarPubMed
Eisenberger, P. & Pershan, P. S. (1966). Electron spin resonance of metmyoglobin: field dependence of g. J. chem. Phys. 45, 2832–5.CrossRefGoogle ScholarPubMed
George, P., Beetlestone, J. & Griffith, J. S. (1964). Ferrihemoprotein hydroxides: a correlation between magnetic and spectroscopic properties. Rev. mod. Phys. 36, 441–58.CrossRefGoogle Scholar
Griffith, J. S. (1956). On the magnetic properties of some haemoglobin complexes. Proc. R. Soc. A 235, 2336.Google Scholar
Griffith, J. S. (1961). The Theory of Transition Metal Ions. Cambridge University Press.Google Scholar
Griffith, J. S. (1962). The Irreducible Tensor Method for Molecular Symmetry Groups. New Jersey: Prentice-Hall.Google Scholar
Griffith, J. S. (1964). Magnetic properties of hemoglobin and myoglobin derivatives. Biopolymers 1, 3546.Google Scholar
Harris, G. (1968). Zero-field splitting, magnetic-field energies, effective magnetic moments, and electric field gradients in high-spin ferric porphyrin compounds. J. chem. Phys. 48, 2191–214.CrossRefGoogle Scholar
Hudson, & Whitfield, (1966). A Mossbauer-effect study of some ironphthalocyanine derivatives. Inorg. Chem. 6, 1120–3.CrossRefGoogle Scholar
Iizuka, T. & Kotani, M. (1969). Analysis of thermal equilibrium between high-spin and low-spin states in ferrimyoglobin complexes. Biochim. biophys. Acta 181, 275–86.CrossRefGoogle ScholarPubMed
Iizuka, T., Kotani, M. & Yonetani, T. (1968). A thermal equilibrium between high and low-spin states in ferric cytochrome c peroxidase and some discussion on the enzyme substrate complex. Biochim. Biophys. Acta 167, 257–67.CrossRefGoogle ScholarPubMed
Iizuka, T. & Yonetani, T. (1970). Spin changes in hemoproteins. Adv. Biophys. 1, 157–82.Google ScholarPubMed
Imai, Y., Imai, K., Sato, R. & Horio, T. (1969 a). Three spectrally different states of cytochrome cc' and c' and their interconversion. J. Biochem. 65, 225–37.Google Scholar
Imai, Y., Imai, K., Hamiguchi, K. & Horio, T. (1969 b). Circular dichroism of cytochrome cc' and cytochrome c'. J. Biochem. 65, 629–37.CrossRefGoogle ScholarPubMed
Kamen, M. D. (1963). On bacterial cytochromoids. Acta chem. Scand. 17, S41–S46.CrossRefGoogle Scholar
Kamen, M. D. & Bartsch, R. G. (1961). The atypical haemoprotein of purple photosynthetic bacteria. In Haematin Enzymes (ed. Falk, J. E., Lemberg, R. and Morton, R. K.), pp. 419–32. London: Pergamon Press.Google Scholar
Kamen, M. D. & Horio, T. (1970). Bacterial cytochromes. I. Structural aspects. A. Rev. Biochem. 39, 673700.CrossRefGoogle ScholarPubMed
Kennel, S. J., Mayer, T. D., Kamen, M. D. & Bartsch, R. G. (1972). On the monoheme character of cytochromes c'. Proc. natn. Acad. Sci. U.S.A. 69, 3432–5.CrossRefGoogle ScholarPubMed
Koenig, D. F. (1965). The structure of alpha-chlorohemin. Acta Crystallogr. 18, 663–73.CrossRefGoogle ScholarPubMed
Kotani, M. (1961). Theoretical study on the effective magnetic moments of some hemeproteins. Prog. theor Phys (Supp.) 17, 413.CrossRefGoogle Scholar
Lang, G. (1970). Mossbauer spectroscopy of haem proteins. Q. Rev. Biophys. 3,160.CrossRefGoogle ScholarPubMed
Leigh, J. S., Maltempo, M. M., Ohlsson, P. I. & Paul, K. G. (1975). Optical, NMR and EPR properties of horseradish peroxidase and its donor complexes. FEBS Lett. 51, 304–8.CrossRefGoogle ScholarPubMed
Lever, A. B. P. (1965). The magnetic behavior of transition metal phthalocyanines. J. Chem. Soc. pp. 18211829.Google Scholar
Maltempo, M. M. (1974). Magnetic state of an unusual bacterial heme protein. J. chem. Phys. 61, 2540–7.CrossRefGoogle Scholar
Maltempo, M. M. (1975). EPR studies of protein state transitions in Chromatium cytochrome c'. Biochim. biophys. Acta 379, 95102.CrossRefGoogle Scholar
Maltempo, M. M. (1976 a). Visible absorption spectra of quantum mixedspin ferric hemes. Biophysical J. 16, 86a.Google Scholar
Maltempo, M. M. (1976 b). Visible absorption spectra of quantum mixedspin ferric heme proteins. Biochim. biophys. Acta, in the Press.CrossRefGoogle Scholar
Maltempo, M. M., Moss, T. H. & Cusanovich, M. A. (1974). Magnetic studies on the changes in the iron environment in Chromatium ferricytochrome c'. Biochim. biophys. Acta 342, 290305.CrossRefGoogle ScholarPubMed
Morita, Y. & Mason, H. (1965). An electron spin resonance study of some hemoproteins. J. biol. Chem. 240, 2654–9.CrossRefGoogle ScholarPubMed
Moss, T. H. (1971). In Probes of Structure and Function of Macromolecules and Membranes, vol. 11 (ed. Chance, B., Yonetani, T. and Mildvan, A.), pp. 515–18. New York: Academic Press.Google Scholar
Moss, T. H., Bearden, A. J., Bartsch, R. G. & Cusanovich, M. A. (1968). Mossbauer spectroscopy of bacterial cytochromes. Biochemistry, N. Y. 7, 1583–90.CrossRefGoogle ScholarPubMed
Moss, T. H., Bearden, A. J. & Caughey, W. S. (1969). Mossbauer studies of bonding in iron-porphyrin-ligand systems. J. Chem. Phys. 51, 2624–31.CrossRefGoogle ScholarPubMed
Otsuka, J. (1970). One interpretation of the thermal equilibrium between high-spin and low-spin states in ferrihemoproteins. Biochim. biophys. Acta 214, 233–5.CrossRefGoogle ScholarPubMed
Pauling, L. & Coryell, C. D. (1936). The magnetic properties and structure of hemoglobin, oxyhemoglobin and carbonmonoxyhemoglobin. Proc. natn. Acad. Sci. U.S.A. 22, 210–16.CrossRefGoogle ScholarPubMed
Perutz, M. F. (1970). Stereochemistry of cooperative effects in hemoglobin. Nature, Lond. 228, 726–39.CrossRefGoogle Scholar
Rakshit, G. & Spiro, T. G. (1974). Resonance Raman spectra of horseradish peroxidase: evidence for anomalous heme structure. Biochemistry, N.Y. 13, 5317.CrossRefGoogle ScholarPubMed
Salemme, F. R. (1974). Preliminary crystallograhic data for cytochrome c' of Rhodopseudomonas palustris. Archs Biochem. Biophys. 163, 423–5.CrossRefGoogle Scholar
Salmeen, I. & Palmer, G. (1968). Electron paramagnetic resonance of beef heart ferricytochrome c. J. chem. Phys. 48, 2049–52.CrossRefGoogle ScholarPubMed
Schonbaum, G. R. (1973). New complexes of peroxidases with hydroxamic acids, hydrozides, and amides. J. biol. Chem. 248, 502–11.CrossRefGoogle ScholarPubMed
Schultz, J. (1972). In The Molecular Basis of Electron Transport (ed. Schultz, J. and Cameron, B. F.), p. 323. New York: Academic Press.Google Scholar
Spaulding, L. D., Chang, C. C., Yu, N. T. & Felton, R. H. (1975). Resonance Raman spectra of metallooctaethylporphyrins. A structural probe of metal displacement. J. Am. chem. Soc. 97, 2517–25.CrossRefGoogle Scholar
Spiro, T. G. (1975). Resonance Raman spectroscopic studies of heme proteins. Biochim. biophys. Acta 416, 169–89.CrossRefGoogle ScholarPubMed
Spiro, T. G. &Strekas, T. C. (1974). Resonance Raman spectra of heme proteins. Effects of oxidation and spin state. J. Am. chem. Soc. 96, 338–45.CrossRefGoogle ScholarPubMed
Strekas, T. C. & Spiro, T. G. (1972). Hemoglobin: Resonance Raman spectra. Biochim. biophys. Acta 263, 830–3.CrossRefGoogle ScholarPubMed
Strekas, T. C. & Spiro, T. G. (1974). Resonance Raman evidence for anomabus heme structure in cytochrome c' from Rps Palustris. Biochim. biophys. Acta 351, 237–45.CrossRefGoogle Scholar
Suzuki, H. & Iwasaki, H. (1962). Studies on denitrification: VI. J. Biochem. 52, 193–9.CrossRefGoogle ScholarPubMed
Tamura, M. & Hori, H. (1972). Optical and magnetic measurements of horseradish peroxidase III. Electron paramagnetic resonance studies at liquid-hydrogen and -helium temperatures. Biochim. biophys. Acta 284, 20–9.CrossRefGoogle ScholarPubMed
Taniguchi, S. & Kamen, M. D. (1963). On the anomalous interactions of ligands with Rhodospirillum haem protein. Biochim. biophys. Acta 74, 438–55.CrossRefGoogle ScholarPubMed
Tasaki, A., Otsuka, J. & Kotani, M. (1966). Magnetic susceptibility measurements on hemoproteins down to 4·2 °K. Biochim. biophys. Acta 140, 284–90.CrossRefGoogle Scholar
Taube, H. (1952). Rates and mechanisms of substitution in inorganic complexes in solution. Chem. Rev. 50, 69126.CrossRefGoogle Scholar
Vallee, B. L. & Williams, R. J. P. (1968). Metalloenzymes: the entatic nature of their active sites. Proc. natn. Acad. Sci. U.S.A. 59, 498505.CrossRefGoogle ScholarPubMed
Vernon, L. P. & Kamen, M. D. (1954). Hematin compounds in photosynthetic bacteria. J. biol. Chem. 211, 643662.CrossRefGoogle ScholarPubMed
Weissbluth, M. (1967). The physics of hemoglobin. Struct. Bond. 2, 1125.CrossRefGoogle Scholar
Williams, R. J. P. (1972). The entatic state. Cold Spring Harb. Symp. quant. Biol. 36, 5362.CrossRefGoogle ScholarPubMed
Yamamoto, T., Palmer, P., Gill, D., Salmeen, I. T. & Rimai, L. (1973). The valence and spin state of iron in oxyhemoglobin as inferred from resonance Raman spectroscopy. J. biol. Chem. 248, 5211–14.CrossRefGoogle Scholar
Yonetani, T. (1974). Cytochrome c peroxidase. In Microbial Iron Metabolism (ed. Neilands, J. B.), pp. 309–35. New York: Academic Press.Google Scholar
Yonetani, T., Iizuka, T., Asakura, T., Otsuka, J. & Kotani, M. (1972). Analysis of thermal equilibria between high spin and low spin states in mesohemoproteins. J. biol. Chem. 247, 863–8.CrossRefGoogle ScholarPubMed
Yong, F. C. & King, T. E. (1970). ORD of some c' and cc' cytochromes. J. biol. Chem. 245, 2457–64.CrossRefGoogle Scholar
Zerner, M., Gouterman, M. & Kobayashi, H. (1966). Porphyrins. VIII. Extended Hückel calculations on iron complexes. Theor. Chim. Acta 6. 363400.CrossRefGoogle Scholar