Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2025-01-03T20:28:00.298Z Has data issue: false hasContentIssue false

Some recent applications of the use of paramagnetic centres to probe biological systems using nuclear magnetic resonance

Published online by Cambridge University Press:  17 March 2009

Arabella T. Morris
Affiliation:
Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX13QU
Raymond A. Dwek
Affiliation:
Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX13QU

Extract

The explosion of the use of paramagnetic probes to study biological problems by nuclear magnetic resonance (n.m.r.) stems from the large and easily quantifiable perturbations they produce. The main reason for these perturbations is that the magnetic moments of unpaired electrons are about 103 times greater than nuclear magnetic moments and consequently they generate much greater local fields.Such fields can give rise to large shifts in nuclear resonances; but if these fields fluctuate at the appropriate frequencies they will also cause very efficient relaxation in the nuclear resonances. It is possible to select probes that result mainly in one of these parameters being perturbed so that the terms shift and relaxation probe are now well established in the literature.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1977

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abragam, A. & Bleaney, B. (1970). Electron Paramagnetic Resonance of Transition Metal Ions. Oxford: Clarendon Press.Google Scholar
Barry, C. D.North, A. C. T.Glasel, J. A.Williams, R. J. P. & Xavier, A. V. (1971). Quantitative determination of mononucleotide conformations in solution using lanthanide shift and broadening probes. Nature, Lond. 232, 236–45.CrossRefGoogle Scholar
Barry, C. D.Martin, D. R.Williams, R. J. P. & Xavier, A. V. (1974). Quantitative determination of cyclic AMP conformation in solution using lanthanide ions as n.m.r. probes. J. Molec. Biol. 84, 491502.CrossRefGoogle Scholar
Bleaney, B. (1972). N.m.r. shifts in solution due to lanthanide ions. J. Magn. Reson. 8, 91100.Google Scholar
Bleaney, B.Dobson, C. M.Levine, B. A.Martin, R. B.Williams, R. J. P. & Xavier, A. V. (1972). Origin of lanthanide n.m.r. shifts and their uses J.C.S. chem. Comm. pp. 791–3.Google Scholar
Bloembergen, N. & Morgan, L. O. (1961). Proton relaxation times in paramagnetic solutions. J. chem. Phys. 34, 842–50.CrossRefGoogle Scholar
Brewer, C. F.Sternlicht, H.Marcus, D. M. & Grollman, A. P. (1973). The binding of sugars to Concanavalin A, determined by 13C n.m.r. Biochemistry, N. Y. 12, 4448–57.CrossRefGoogle Scholar
Burton, D. R. (1977). To be published.Google Scholar
Burton, D. R.Dwek, R. A.Forsen, S. & Karlström, G. (1977). A novel approach to water proton relaxation in paramagnetic ion–macromolecule complexes. Biochemistry, N.Y. 16, 250–4.CrossRefGoogle ScholarPubMed
Burton, D. R.Forsen, S.Karlström, G.Dwek, R. A.Mclaughlin, A. C. & Wain-hobson, S. (1976). Difficulties in determining accurate molecular motion parameters from PRE measurements as illustrated by the IgG. Gd(III) system. Eur. J. Biochem. 71, 519–28.CrossRefGoogle Scholar
Campbell, I. D.Dobson, C. M.Williams, R. J. P. & Xavier, A. V. (1973). Resolution enhancement of protein PMR spectra using the difference between a broadened and a normal spectrum. J. Magn. Res. II, 172–81.Google Scholar
Campbell, I. D.Dobson, C. M. & Williams, R. J. P. (1975 a). N.m.r. studies on the structure of lysozyme in solution. Proc. R. Soc. A 345, 4159.Google Scholar
Campbell, I. D.Dobson, C. M. & Williams, R. J. P. (1975 b). Proton magnetic resonance studies of the tyrosine residues of hen lysozyme; assignment and detection of conformational mobility. Proc. R. Soc. B 189, 503–9.Google ScholarPubMed
Cohn, M. & Leigh, J. S. (1962). Magnetic resonance investigations of ternary complexes of enzyme–metal–substrate. Nature, Lond. 193, 1037–40.CrossRefGoogle ScholarPubMed
Dobson, C. M. & Levine, B. A. (1976). Lanthanide ions as n.m.r. probes of the conformation of molecules in solution. New Techniques in Biophysics and Cell Biology, pp. 1991.Google Scholar
Dower, S. K.Dwek, R. A.Mclaughlin, A. C.Mole, L. E.Press, E. M. & Sunderland, C. A. (1975). The binding of lanthanides to non-immune IgG and its fragments. J. Biochem. 149, 7382.CrossRefGoogle ScholarPubMed
Dower, S. K.Wain-hobson, S.Gettins, P.Givol, D.Jackson, W. R. C.Perkins, S. J.Sunderland, C. A.Sutton, B. J.Wright, C. E. & Dwek, R. A. (1977). The combining site of the Dnp -binding IgA myeloma protein 315. J. Biochem. 165, 207–25.CrossRefGoogle Scholar
Dwek, R. A. (1972). PRE probes; applications and limitations to systems containing macromolecules. Advances in Molecular Relaxation Processes, 4, 152.CrossRefGoogle Scholar
Dwek, R. A. (1973). N.M.R. in Biochemistry: Application to Enzyme Systems. Oxford University Press.Google Scholar
Dwek, R. A., Jones, R., Marsh, D., Mclaughlin, A. C., Press, E. M., Price, N. C. & White, A. I. (1975). Structural studies on the combining site of the myeloma protein MOPC 315. Eur. J. Biochem. 53, 2539.CrossRefGoogle Scholar
Dwek, R. A.Wain-hobson, S.Dower, S. K.Gettins, P.Sutton, B. J.Perkins, S. J. & Givol, D. (1977). Structure of an antibody combining site by magnetic resonance. Nature, Lond. 266, 31–7.CrossRefGoogle ScholarPubMed
Edelman, G. M.Cunningham, B. A., Reeke, G. N.Becker, J. W.Waxdal, M. J. & Wang, J. L. (1972). The covalent and 3-dimensional structure of concanavalin A. Proc. natn. Acad. Sci. U.S.A. 69, 2580–4.CrossRefGoogle Scholar
Eisinger, J.Shulman, R. G. & Blumberg, W. E. (1961). Relaxation enhancement by paramagnetic ion binding to DNA solutions. Nature, Lond. 192, 963–4.CrossRefGoogle Scholar
Eisinger, J.Shulman, R. G. & Szymanski, B. M. (1962). Transition metal binding to DNA solutions. J. chem. Phys. 36, 1721–9.CrossRefGoogle Scholar
Hardman, K. D. & Ainsworth, C. F. (1976). Structure of the concanavalin A-α-methyl-D-mannopyranoside complex at 6 Å resolution. Biochemistry, N.Y. 15, 1120–8.CrossRefGoogle ScholarPubMed
Haselkorn, D.Friedman, S.Givol, D. & Pecht, I. (1974). Kinetic mapping of an antibody combining site by chemical relaxation spectrometry. Biochemistry, N.Y. 13, 2210–22.CrossRefGoogle ScholarPubMed
Huber, R.Deisenhofer, J.Colman, P. M.Matsushima, M. & Palm, W. (1976). Crystallographic studies of an IgG molecule and an Fc fragment. Nature, Lond. 264, 415–20.CrossRefGoogle Scholar
Hyslop, N. E.Dourmashkin, R. R.Green, N. M. & Porter, R. R. (1970). The fixation of complement and the activated first component of complement by complexes formed between antibody and divalent hapten. J. exp. Med. 131, 783802.CrossRefGoogle ScholarPubMed
Inbar, D.Hochman, J. & Givol, D. (1972). Localisation of antibody combining sites within the variable portions of heavy and light chains. Proc. natn. Acad. Sci. U.S.A. 69, 2659–62.CrossRefGoogle ScholarPubMed
Jaton, J.-C.Huser, H.Riesen, W. F.Schlesinger, J. & Givol, D. (1977). The binding of complement by complexes formed between a rabbit antibody and oligosaccharides of increasing size. J. Immun. 116, 1363–6.CrossRefGoogle Scholar
Jones, R.Dwek, R. A. & Walker, I. O. (1974). The mechanism of water proton relaxation in the Mn(II). ATP. phosphofructokinase ternary complex. Eur. J. Biochem. 47, 285–93.CrossRefGoogle ScholarPubMed
Lanir, A. & Navon, G. (1974). N.m.r. studies of the two binding sites of acetate ions to Mn(II) carbonic anhydrase. Biochim. biophys. Acta 341, 7584.CrossRefGoogle Scholar
Lehninger, A. (1965). Biochemistry. Worth.Google Scholar
Leigh, J. S. (1970). Esr rigid-lattice lineshape in a system of two interacting spins. J. chem. Phys. 52, 2608–12.CrossRefGoogle Scholar
Levine, B. A., Williams, R. J. P. & Xavier, A. V. (1975). The determination of the conformations of small molecules in solution by means of paramagneticshift and relaxation perturbations of n.m.r. spectra. Proc. R. Soc. Lond. A 345, 522.Google Scholar
Luz, Z. & Meiboom, S. (1964). Proton relaxation in dilute solutions of Co(II) and Nu(II) ions in methanol and the rate of methanol exchange in the solution sphere. J. chem. Phys. 40, 2686–92.CrossRefGoogle Scholar
Metzger, H. (1974). Effect of antigen binding on the properties of antibody. Adv. Immun. 18, 169207.CrossRefGoogle ScholarPubMed
Moore, G. R. (1977). D.Phil. thesis, University of Oxford.Google Scholar
Moore, G. R. & Williams, R. J. P. (1977). Int. Symp. on Electron Transport in Microorganisms(ed. J. Senez, J. LeGall and H. Peck). (In the Press.)Google Scholar
Porter, R. R. (1959). The hydrolysis of rabbit γ-globulin and antibodies with crystalline papain. J. Biochem. 73, 119–26.CrossRefGoogle ScholarPubMed
Redfield, A. G. & Gupta, R. K. (1971). Pulsed n.m.r. study of the structure of cytochrome c. Cold Spring Harb. Symp. quant. Biol. 36, 405–11.CrossRefGoogle Scholar
Sutton, B. J.Gettins, P.Givol, D.Marsh, D.Wain-hobson, S.Willan, K. J. & Dwek, R. A. (1977). The gross architecture of an antibody combining site as determined by spin label mapping. J. Biochem. 165, 177–97.CrossRefGoogle ScholarPubMed
Swift, T. J. & Connick, R. E. (1962). N.m.r. relaxation mechanisms of 17O in aqueous solutions of paramagnetic cations and the lifetime of water molecules in the first co-ordination sphere. J. chem. Phys. 37, 307–20.CrossRefGoogle Scholar
Thomas, D. D.Dalton, L. R. & Hyde, J. S. (1976). Rotational diffusion studied by passage saturation transfer esr. J. chem. Phys. 65, 3006–24.CrossRefGoogle Scholar
Willan, K. J.Wallace, K. H.Jaton, J.-C. & Dwek, R. A. (1977). The use of Gd(III) as a probe in the Fc region of a homogeneous anti-(Type III pneumococcal polysaccharide) antibody. J. Biochem. 161, 205–11.CrossRefGoogle ScholarPubMed
Wüthrich, K. (1976). N.m.r. in Biological Research: Peptides and Proteins. North Holland: American Elsevier.Google Scholar
Yguerabide, J.Epstein, H. E. & Stryer, L. (1970). Segmental flexibility in an antibody molecule. J. molec. Biol. 51, 573–90.CrossRefGoogle Scholar