Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-03T17:56:06.311Z Has data issue: false hasContentIssue false

Similarities of protein topologies: evolutionary divergence, functional convergence or principles of folding? *

Published online by Cambridge University Press:  17 March 2009

O. B. Ptitsyn
Affiliation:
Institute of Protein Research, Academy of Sciences of the USSR, 142292 Poustchino, Moscow Region, USSR
A. V. Finkelstein
Affiliation:
Institute of Protein Research, Academy of Sciences of the USSR, 142292 Poustchino, Moscow Region, USSR

Extract

(A) Evolutionary similarities of protein structures Two decades have passed from the time that the three dimensional structure of the first globular protein, sperm whale myoglobin, was decoded (Kendrew et al. 1960). Its structure, which now looks so simple and habitual, then seemed to be unusually complicated. The decoding of the subsequent proteins, lysozyme (Blake et al. 1965), ribonuclease (Kartha, Bello & Harker, 1967), chymotrypsin (Matthews et al. 1967), carboxypeptidase (Lipscomb et al. 1969) redoubled the feeling of amazement and even of some confusion before the extremely complicated, intricate and, above all, absolutely unlike protein structures. Some consolation against this background was the evident and far-reaching similarity between the three-dimensional structures of myoglobin and hemoglobin subunits (Perutz, Kendrew & Watson, 1965) and an analogous similarity between the structures of chymotrypsin and other serine proteases, elastase (Shotton & Watson, 1970) and trypsin (Stroud, Kay & Dickerson, 1972). However this similarity was easily explained by the far-reaching homology between the primary structures of myoglobin and hemoglobin and between the primary structures of serine proteases.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1980

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adams, M., Archibald, I., Helliwell, J., Jenkins, S., White, S. & Carne, A. (1979). 6-phosphogluconate dehydrogenase. Progress Report, 19781979, University of Oxford, Laboratory of Molecular Biophysics, pp. 3538.Google Scholar
Adman, E. T., Stenkamp, R. E., Sieker, L. C. & Jensen, L. H. (1978). A crystallographic model for azurin at 3 Å resolution. J. Molec. Biol. 123, 3547.CrossRefGoogle ScholarPubMed
Alexanian, V. I. & Skvortsov, A. H. (1974). Freedom of internal rotation in the layer anti-parallel β-structure. Mol. Biol. (USSR) 8, 182192.Google Scholar
Anderson, C. M., Mcdonald, R. C. & Steitz, T. A. (1978). Sequencing a protein by X-ray crystallography. I. Interpretation of yeast hexokinase B at 2·5 Å resolution by model building. J. molec. Biol. 123, 113.CrossRefGoogle ScholarPubMed
Anfinsen, C. B. (1972). The formation and stabilization of protein structure. Biochem. J. 128, 737749.CrossRefGoogle ScholarPubMed
Anfinsen, C. B. (1973). Principles that govern the folding of protein chains. Science, N.Y. 181 223230.CrossRefGoogle ScholarPubMed
Anfinsen, C. B. & Scheraga, H. A. (1975). Experimental and theoretical aspects of protein folding. Adv. Protein Chem. 29, 205300.CrossRefGoogle ScholarPubMed
Anufrieva, E. V., Bychkova, V. E., Krakovyak, M. G., Pautov, V. D. & Ptitsyn, O. B. (1975). A synthetic polypeptide with a compact structure and its self-organization. FEBS Lett. 55, 4649.CrossRefGoogle ScholarPubMed
Banks, R. D., Blake, C. C. F., Evans, P. R., Haser, R., Rice, D.W., Hardy, G. W., Merrett, M. & Phillips, A. W. (1979). Sequence, structure and activity of phosphoglycerate kinase: a possible hinge-bending enzyme. Nature, Lond. 279, 773777.CrossRefGoogle ScholarPubMed
Banner, B. W., Bloomer, A. C., Pestko, G. A., Phillips, D. C., Pogson, C. I., Wilson, D. A., Corran, P. H., Furth, A. J., Milman, J. D., Offord, R. E., Priddle, J. D. & Waley, S. G. (1975). Structure of chicken muscle triose phosphate isomerase determined crystallographically at 2·5 Å resolution using amino acid sequence data. Nature, Lond. 255, 609614.CrossRefGoogle ScholarPubMed
Bendzko, P. (1980). Self-organization of β-proteins. Thesis. Berlin: Zentr. Inst. Mol. Biol. AdW., GDR.Google Scholar
Biesecker, G., Harris, J. I., Thierry, J. C., Walker, J. E. & Wonacott, A. J. (1977). Sequence and structure of D-glyceraldehyde-3-phosphate dehydrogenase from Bacillus stearothermophilus. Nature, Lond. 266, 328333.CrossRefGoogle ScholarPubMed
Birstein, T. M. & Ptitsyn, O. B. (1966). Conformations of macromolecules. New York: Interscience.Google Scholar
Blake, C. C. F. (1975). X-ray studies of glycolytic enzymes. Essays Biochem. 11, 3779.Google ScholarPubMed
Blake, C. C. F., Geisow, M. J. & Oatley, S. J. (1978). Structure of prealbumin: secondary, tertiary and quaternary interactions determined by Fourier refinement at I.8 å. j. molec. Biol. 121, 339356.CrossRefGoogle Scholar
Blake, C. C. F.Koenig, D. F.Mair, G. A.North, A. C. T.Phillips, D. C. & Sarma, V. R. (1965). Structure of hen egg-white lysozyme. Nature, Lond. 206, 757763.CrossRefGoogle ScholarPubMed
Borisov, V. V.Borisova, S. N., Sosfenov, N. I., Vagin, A. A., Nekrasov, YU.V., Vainstein, B. K., Kochkina, V. M. & Braunstein, A. E. (1980). Three-dimensional tracing of polypeptide chain in aspartate transaminase molecule. Dokl. Akad. Nauk. SSSR 250, 988992.Google Scholar
Brant, D. A. (1972). Conformational analysis of polymers: conformational energy calculations. A. Rev. Biophys. Bioeng. I, 369408.CrossRefGoogle Scholar
Brant, D. A., Miller, W. G. & Flory, P. J. (1967). Conformational energy estimates for statistically coiling polypeptide chains. J. molec. Biol. 23, 4765.CrossRefGoogle Scholar
Brayer, G. D., Delbaere, L. T. G. & James, M. N. G. (1978). Molecular structure of crystalline Streptomyces griseus protease A at 2·8 Å resolution. J.molec. Biol. 124, 261284.CrossRefGoogle ScholarPubMed
Brayer, G. D., Delbaere, L. T. G. & James, M. N. G. (1979). Molecular structure of α-lytic protease from Myxobacter 495 at 2·8 Å resolution. J. molec. Biol. 131, 743775.CrossRefGoogle Scholar
Browne, W. J., North, A. C. T., Phillips, D. C.Brow, K.Vanaman, T. C. & Hill, R. L. (1969). A possible three-dimensional structure of bovine α-lactalbumin based on that of hen's egg-white lysozyme. J. molec. Biol. 42, 6586.CrossRefGoogle ScholarPubMed
Buehner, M., Ford, G. C., Moras, O., Olsen, K. W. & Rossmann, M. G. (1974). Three-dimensional structure of D-glyceraldehyde-3-phosphate dehydrogenase. J. molec. Biol. 90, 2549.CrossRefGoogle ScholarPubMed
Burnett, R. M., Darling, G. D., Kendall, D. S., Le, Quense H. E., Mayhew, S. G., Smith, W. W. & Ludwig, M. L. (1974). The structure of oxidized form of clostridial flavodoxin at 1.9 Å resolution. J. biol. Chem. 249, 43834392.CrossRefGoogle ScholarPubMed
Bychkova, V. E., Gudkov, A. T, Miller, W. G., Mitin, Yu. V., Ptitsyn, O. B. & Spungin, I. L. (1975). Thermodynamic parameters of helix-coil transitions in polypeptide chains. III. Random copolymers of L-leucine with L-glutamic acid. Biopolymers 14, 17391753.CrossRefGoogle ScholarPubMed
Bychkova, V. E., Semisotnov, G. V., Ptitsyn, O. B., Gudkova, O. V., Mitkin, Yu. V. & Anufrieva, E. V. (1980). The compact structure of random copolymers of hydrophobic and hydrophilic amino acids. Mol. Biol. (USSR) 14, 278286.Google Scholar
Campbell, J. W., Watson, H. C. & Hodgson, G. I. (1974). Structure of yeast phosphoglycerate mutase. Nature, Lond. 250, 301303.CrossRefGoogle ScholarPubMed
Chothia, C. (1973). Conformation of twisted β-pleated sheets in proteins. J. molec. Biol. 75, 295302.CrossRefGoogle ScholarPubMed
Chothia, C., Levitt, M. & Ricardson, D. (1977). Structure of proteins: packing of α-helices and pleated sheets. Proc. natn. Acad. Sci. U.S.A. 74, 41304134.CrossRefGoogle ScholarPubMed
Colman, P. M., Freeman, H. C., Guss, J. M., Murata, m., Norris, V. A., Ramshaw, J. A. M. & Venkatappa, M. P. (1978). X-ray crystal structure analysis of plastocyanin at 2·7 Å resolution. Nature, Lond. 272, 319324.CrossRefGoogle Scholar
Delbaere, L. T. J., Mutcheon, W. L. B., James, M. N. G. & Theissen, W. E. (1975). Tertiary structural differences between microbal serine proteases and pancreatic serine enzymes. Nature, Lond. 257, 758763.CrossRefGoogle Scholar
Drenth, J., Hol, W. G. J., Jansonius, J. N. & Koekoek, R. (1972). Comparison of the three-dimensional structures of subtilisin BPN' and subtilisin Novo. Cold Spring Harbour Symp. quant. Biol. 36, 107116.CrossRefGoogle ScholarPubMed
Efimov, A. V. (1977). Stereochemistry of α-helices and β-sheets packing in compact globule. Dokl. Adak. Nauk. SSSR 235, 699702.Google Scholar
Efimov, A. V. (1979). Packing of α-helices in globular proteins. Layer- structure of globin hydrophobic cores. J. molec. Biol. 134, 2340.CrossRefGoogle ScholarPubMed
Eklund, H., Nordström, B., Zeppezauer, E., Söderlund, G., Ohlsson, I., Boiwe, T., Söderberg, B.-O., Tapia, O. & Bränden, C.-I. (1976). Three-dimensional structure of horse liver alcohol dehydrogenase at 2·4 Å resolution. J. molec. Biol. 102, 2759.CrossRefGoogle ScholarPubMed
Evans, P. R. & Hudson, P. J. (1979). Structure and control of phosphofructokinase from Bacillus stearothermophilis. Nature, Lond. 279, 500504.CrossRefGoogle Scholar
Finkelstein, A. V. (1975). One-dimensional Izing model for a polypeptide chain forming several types of the local secondary structures. Dokl. Akad. Nauk. SSSR 223, 744747.Google Scholar
Finkelstein, A. V. (1977) Theory of protein molecule self-organization. III. A calculating method for the probabilities of the secondary structure formation in an unfolded polypeptide chain. Biopolymers 16, 525529.CrossRefGoogle Scholar
Finkelstein, A. V. (1978 a). Kinetics of the antiparallel β-structure formation. Bioorgan Khim. (USSR) 4, 340344.Google Scholar
Finkelstein, A. V. (1978b). Secondary structure of the unfolded protein chain. Bioorgan. Khim. (USSR) 4, 345348.Google Scholar
Finkelstein, A. V. (1979). Fluctuating secondary structure formation during the first step of protein self-organization. Proc. Symp. Biomolecular Structure, Conformation, Function and Evolution, Madras, 1978, vol. 2, pp. 103110, Oxford: Pergamon Press.Google Scholar
Finkelstein, A. V. & Ptitsyn, O. B. (1976). Theory of protein molecule self-organization. IV. Helical and irregular local structures of unfolded protein chains. J. molec. Biol. 103, 1524.CrossRefGoogle ScholarPubMed
Finkelstein, A. V. & Ptitsyn, O. B. (1977) Theory of protein molecule self-organization. I Thermodynamic parameters of local secondary structures in the unfolded protein chain. Biopolymers 16, 469495.CrossRefGoogle ScholarPubMed
Finkelstein, A. V. & Ptitsyn, O. B. (1978). Theory of protein secondary structure self-organization: the dependence of native globular structure on the secondary structures of unfolded chain. Dokl. Akad. Nauk SSSR 242, 12261228.Google Scholar
Finkelstein, A. V., Ptitsyn, O. B. & Bendzko, P. (1979). Folding and topology of antiparallel β-structure. Biofizika (USSR) 24, 2126.Google Scholar
Finkelstein, A. V., Ptitsyn, O. B. & Kozitsyn, S. A. (1977). Theory of protein molecule self-organization. II. A comparison of calculated thermodynamic parameters of local secondary structure with experiment. Biopolymers 16, 497524.CrossRefGoogle Scholar
Flory, P. J. (1969). Statistical Mechanics of Chain Molecules. New York, London, Sydney, Toronto: Interscience Publishers.CrossRefGoogle Scholar
Harrison, S. C., Olson, A. J., Schutt, C. E., Winkler, F. K. & Bricogne, G. (1978). Tomato bushy stunt virus at 2·9 Å resolution. Nature, Lond. 276, 368373.CrossRefGoogle ScholarPubMed
Hendrickson, W. A. & Ward, K. B. (1975). Atomic models for polypeptide backbone of myohemerythrin and hemerythrin. Biochem. biophys. Res. Comm. 66, 13491356.CrossRefGoogle ScholarPubMed
Hill, E., Tsernoglou, D., Webb, L. & Banaszak, L. J. (1972). Polypeptide conformation of cytoplasmic malate dehydrogenase from an electron density map at 3·0 Å resolution. J. molec. Biol. 72, 577591.CrossRefGoogle Scholar
Holmgren, A., Söderberg, B.-O., Eklund, H. & Bränden, C.-I. (1975). Three-dimensional structure of E. coli thioredoxin-S2, to 2·8 Å resolution. Proc. natn. Acad. Sci. U.S.A. 72, 23052309.CrossRefGoogle ScholarPubMed
Irwin, M. J., Nyborg, J., Reid, B. R. & Blow, D. M. (1976). The crystal structure of tyrosyl-transfer RNA synthetase at 2·7 Å resolution. J. molec. Biol. 105, 577586.CrossRefGoogle ScholarPubMed
Janin, J. (1979) The protein kingdom: a survey of the three-dimensional structure and evolution of globular proteins. Bull. Inst. Pasteur 77, 337373.Google Scholar
Kartha, G., Bello, J. & Harker, D. (1967). Tertiary structure of ribonuclease. Nature, Lond. 213, 862865.CrossRefGoogle ScholarPubMed
Kauzmann, W. (1959). Some factors in interpretation of protein denaturation. Adv. Protein. Chem. 14, 163.CrossRefGoogle ScholarPubMed
Kendrew, J. C., Dickerson, R. E., Strandberg, B. E., Hart, R. G., Davies, D. R., Phillips, D. C. & Shore, V. C. (1960). Structure of myoglobin. Nature, Lond. 185, 422427.CrossRefGoogle ScholarPubMed
Kretsinger, R. H. & Barry, C. D. (1975). The predicted structure of calcium-binding component of troponin. Biochim. biophys. Acta 405, 4052.CrossRefGoogle ScholarPubMed
Levine, M., Muirhead, H., Stammers, D. K. & Stuart, D. I. (1978). Structure of pyruvate kinase and similarities with other enzymes: possible implication for protein taxonomy and evolution. Nature, Lond. 271, 626630.CrossRefGoogle ScholarPubMed
Levitt, M. & Chothia, C. (1976). Structural patterns in globular proteins. Nature, Lond. 261, 552557.CrossRefGoogle ScholarPubMed
Lewis, P. N., Momany, F. A. & Scheraga, H. A. (1971). Folding of polypeptide chain in proteins: a proposed mechanism of folding. Proc. natn. Acad. Sci. U.S.A. 68, 22932297.CrossRefGoogle ScholarPubMed
Lim, V. I. (1974-a). Structural principles of the globular organization of protein chains. A stereochemical theory of globular protein secondary structure. J. molec. Biol. 88, 857872.CrossRefGoogle ScholarPubMed
Lim, V. I. (1974b). Algorithm for prediction of α-helical and β-structural regions in globular proteins. J. molec. Biol. 88, 873894.CrossRefGoogle ScholarPubMed
Lim, V. I. (1975). Structural transitions of protein chain during the formation of native globule. The hypothesis of ‘extra’ helices. Dokl. Akad. Nauk SSSR 222, 14671469.Google Scholar
Lim, V. I. (1978). Polypeptide chain folding through a highly helical intermediate as a general principle of globular protein structure formation. FEBS Lett 89, 1014.CrossRefGoogle ScholarPubMed
Lim, V. I., Mazanov, A. L. & Efimov, A. V. (1978). Highly helical intermediate structures. Mol. Biol. (USSR) 12, 206213.Google ScholarPubMed
Lipscomb, W. N., Hartsuck, J. A., Reeke, G. N. JrQuiocho, F. A., Bethge, P. H., Ludwig, M. L., Steitz, T. A., Muirhead, H. & Coppola, J. C. (1969). The structure of carboxypeptidase A. Brookhaven Symp. Biol. 21, 2488.Google Scholar
Matheson, R. R. Jr, & Scheraga, H. A. (1978). A method for predicting nucleation sites for protein folding based on hydrophobic contacts. Macromolecules 11, 819829.CrossRefGoogle Scholar
Matthews, B. W., Siegler, P. B., Henderson, R. & Blow, D. M. (1967). Three-dimensional structure of tosyl-α-chymotrypsin. Nature, Lond. 214, 652656.CrossRefGoogle ScholarPubMed
Matthews, D. A., Alden, R. A., Bolin, J. T., Filman, D. J., Freer, S. T., Hamlin, R., Hol., W. G., Kisliuk, R. L., Pastore, E. J., Plante, L. T., Xuong, N. & Kraut, J. (1978). Dihydrofolate reductase from Lactobacillus calei. J. biol. Chem. 253, 69466954.CrossRefGoogle Scholar
Matthews, D. A., Alden, R. A., Bolin, J. T., Freer, S. T., Hamlin, R., Xuong, N., Kraut, J., Poe, M., Williams, M. & Hoogsteen, K. (1977). Dihydrofolate reductase: X-ray structure of the complex with methotrexate. Science, N. Y. 197, 452455.CrossRefGoogle ScholarPubMed
Mclachlan, A. D. (1980). Pseudo-symmetric structural elements and the folding of domains. Protein Folding (ed. Jaenicke, R.). Elsevier/North- Holland Biochemical Press.Google Scholar
Monaco, H. L., Crawford, J. L. & Lipscomb, W. N. (1978). Three- dimensional structure of aspartate carbomoiltransferase from E. coli and of its complex with cytidine triphosphate. Proc. natn. Acad. Sci. U.S.A. 75, 52765280.CrossRefGoogle Scholar
Nagano, K. (1977). Logical analysis of mechanism of protein folding. IV. Super-secondary structures. J. molec. Biol. 109, 235250.CrossRefGoogle ScholarPubMed
Perutz, M. F., Kendrew, J. C. & Watson, M. J. (1965). Structure and function of haemoglobin. II. Some relations between polypeptide chain configuration and amino acid sequence. J. molec. Biol. 13, 669678.CrossRefGoogle Scholar
Ploegman, J. H., Drent, G., Kalk, K. H., Hol, W. G. J., Heinrikson, R. L., Keim, P., Weng, L. & Russel, J. (1978). The covalent and tertiary structure of bovine liver rodanese. Nature, Lond. 273, 124129.CrossRefGoogle Scholar
Poljak, R. J., Amzel, L. H., Chen, B. L., Phizakerley, R. P. & Saul, F (1974). The three-dimensional structure of the Fab' fragment of a human myeloma immunoglobulin at2· Å resolution. Proc. natn. Acad. Sci. U.S.A. 71, 34403444.CrossRefGoogle Scholar
Ptitsyn, O. B. (1969). Statistical analysis of the distribution of amino acid residues among helical and non-helical regions in globular proteins. J. molec. Biol. 42 501510.CrossRefGoogle Scholar
Ptitsyn, O. B. (1972). Thermodynamic parameters of helix-coil transitions in polypeptide chains. Pure and Appl. Chem. 31, 227244.CrossRefGoogle ScholarPubMed
Ptitsyn, O. B. (1973-a). Self-organization of protein molecules. Vestnik Akad. Nauk. SSSR 5, 5768.Google Scholar
Ptitsyn, O. B. (1973-b). The stepwise mechanism of protein molecule selforganization. Dokl. Adad. Nauk SSSR 210, 12131215.Google Scholar
Ptitsyn, O. B. (1974). Invariant features of globin primary structure and coding of their secondary structure. J. molec. Biol. 88, 287300.CrossRefGoogle Scholar
Ptitsyn, O. B. & Finkelstein, A. V. (1978). Mechanism of self-organization of the tertiary structure of globular proteins. Bioorgan. Khim. (USSR) 4, 349353.Google Scholar
Ptitsyn, O. B. & Finkelstein, A. V. (1979-a). Prediction of protein three- dimensional structure by its amino acid sequence. Proc. 12th FEBS Meeting, Dresden, 1978, vol. 52, pp. 105115. Oxford–New York: Pergamon Press.Google Scholar
Ptitsyn, O. B. & Finkelstein, A. V. (1979-b). Folding and topology of the parallel β-structure. Biofizika (USSR) 24, 2731.Google ScholarPubMed
Ptitsy, O. B. & Finkelstejn, A. V. (1979-c). Mechanism of protein folding. Int. J. Quantum Chem. 16, 407418.CrossRefGoogle Scholar
Ptitsyn, O. B. & Finkelstein, A. V. (1979-d). Problem of protein structure prediction. Itogi Nauki i Tekhniki, Seriya Mol. Biol. (USSR) 15, 641.Google Scholar
Ptitsyn, O. B. & Finkelstein, A. V. (1980). Self-organization of proteins and the problem of their three-dimensional structure prediction. Protein Folding (ed. Jaenicke, R.). Elsevier/North-Holland Biochemical Press.Google Scholar
Ptitsyn, O. B., Finkelstein, A. V. & Falk, , (Bendzko), P. (1979). Principle folding pathway and topology of all-β proteins. FEBS Lett 101, 15.Google Scholar
Ptitsyn, O. B., Lim, V. I. & Finkelstein, A. V. (1972). Secondary structure of globular proteins and principle of concordance of local and long-range interactions. Proc. 8th FEBS Meeting, Amsterdam, 1972, vol. 25, pp. 421429.Google Scholar
Ptitsyn, O. B. & Rashin, A. A. (1973). The self-organization of myglobin molecule. Dokl. Akad. Nauk. SSSR 213, 473475.Google Scholar
Ptitsyn, O. B. & Rashin, A. A. (1975). A model of myoglobin self-organization. Biophys. Chem. 3, 120.CrossRefGoogle Scholar
Qulocho, F. A., Gilliland, G. L. & Phillips, G. N. Jr, (1977). The 2·8-å resolution structure of the L-arabinose-binding protein from E. coil. J. biol. Chem. 252, 51425149.Google Scholar
Rao, S. T. & Rossmann, M. G. (1973). Comparison of super-secondary structures in proteins. J. molec. Biol. 76, 241256.CrossRefGoogle ScholarPubMed
Reeke, G. N., Becker, J. W. & Edelman, G. M. (1975). The covalent and three-dimensional structure of concanavalin A. J. biol. Chem. 250, 15251547.CrossRefGoogle ScholarPubMed
Richardson, J. S. (1976). Handedness of crossover connections in β-sheets. Proc. natn. Acad. Sci. U.S.A. 73, 26192623.CrossRefGoogle ScholarPubMed
Richardson, J. S. (1977). β-sheets topology and the relatedness of proteins. Nature, Lond. 268, 495500.CrossRefGoogle Scholar
Richardson, J. S., Richardson, D. C., Thomas, K. A., Silverton, E. W. & Davies, D. R. (1976). Similarity of the three-dimensional structure between the immunoglobuline domains and the Cu, Zn superoxide dismutase subunit. J. molec. Biol. 102, 221235.CrossRefGoogle Scholar
Richardson, J. S., Thomas, K. A., Rubin, B. H. & Richardson, D. C. (1975). Crystal structure of bovine Cu, Zn superoxide dismutase at 3 Å resolution: chain tracing and metal ligands. Proc. natn. Acad. Sci. U.S.A. 72, 13491353.CrossRefGoogle ScholarPubMed
Richmond, T. J. & Richards, F. M. (1978). Packing of α-helices: geometrical constraints and contact areas. J. molec. Biol. 119, 537555.CrossRefGoogle ScholarPubMed
Rossmann, M. G., Adams, M. J., Buehner, M., Ford, G. C., Hackert, M. L., Lentz, P. J. Jr, Mcpherson, A. JrSchewitz, R. W. & Smiley, L E. (1972). Structural constraints on possible mechanism of lactate dehydrogenase as shown by high resolution studies of apoenzyme and a variety of enzyme complexes. Cold Spring Harb. Symp. quant. Biol. 36, 179191.CrossRefGoogle Scholar
Rossmann, M. G., Moras, D. & Olsen, K. W.Chemical and biological evolution of nucleotide binding protein. Nature, Lond. 250, 194199.CrossRefGoogle Scholar
Ryden, L. & Lundgren, J.-O. (1976). Homology relationship among the small blue proteins. Nature, Lond. 261, 344346.CrossRefGoogle ScholarPubMed
Scheraga, H. A. (1979). Interactions in aqueous solutions. Acc. Chem. Res. 12, 714.CrossRefGoogle Scholar
Schiffer, M. & Edmunson, A. B. (1967). Use of helical wheels to represent the structures of protein and to identify segments with helical potential. Biophys. J. 7, 121135.CrossRefGoogle ScholarPubMed
Schmid, M. F. & Herriot, J. R. (1976). Structure of carboxypeptidase B at 2·8 Å resolution. J. molec. Biol. 103, 175190.CrossRefGoogle ScholarPubMed
Schulz, G. E. (1977). Structural rules for globular proteins. Angew. Chem. Int. Edit. 16, 2333.CrossRefGoogle ScholarPubMed
Schulz, G. E., Elzinga, M., Marx, F. & Schirmer, R. H. (1974). Three- dimensional structure of adenyl kinase. Nature, Lond. 250, 120123.CrossRefGoogle ScholarPubMed
Schulz, G. E. & Sachirmer, R. H. (1974). Topological comparison of adenylate kinase with other proteins. Nature, Lond. 250, 142144.CrossRefGoogle Scholar
Schulz, G. E. & Schirmer, R. H. (1979). Principles of Protein Folding. New York, Heidelberg, Berlin: Springer-Verlag.Google Scholar
Schulz, G. E., Schirmer, R. H., Sachsenheimer, W. & Pai, E. F. (1978). The structure of flavoenzyme glutathione reductase. Nature, Lond. 273, 120124.CrossRefGoogle ScholarPubMed
Semisotnov, G. V., Anufrieva, E. V., Zicherman, K. Kh., Kasatkin, S. B. & Ptitsyn, O. B. (1980). Polarized luminescence and mobility of tryptophane residues in polypeptide chains. (Submitted to Biopolymers.)Google Scholar
Shaw, P. J. & Muirhead, H. (1977). Crystallographic structure analysis of glucose-6-phosphate isomerase at 3·5 Å resolution. J. molec. Biol. 109, 475485.CrossRefGoogle ScholarPubMed
Shotton, D. H. & Watson, H. C. (1970). Three-dimensional structure of tosyl-elastase. Nature, Lond. 225, 811816.CrossRefGoogle ScholarPubMed
Skvortzov, A. M., Birstein, T. M. & Zalensky, A. O. (1971). Calculation of thermodynamic characteristics of agr;-helix in solution by means of Monte-Carlo method. Mol. Biol. (USSR) 5, 390398.Google Scholar
Sprang, S. & Fletterick, R. J. (1979). The structure of glycogen phosphorilase at 2·5 Å resolution. J. molec. Biol. 131, 523551.CrossRefGoogle Scholar
Sternberg, M. J. E. & Thornton, J. M. (1976). On the conformation of proteins: the handedness of β-strand-αa-helix-β-strand unit. J. molec. Biol. 105, 367382.CrossRefGoogle ScholarPubMed
Sternberg, M. J. E. & Thornton, J. M. (1977-a). On the conformation of proteins: the handedness of the connection between parallel β-strands. J. molec. Biol. 110, 269283.CrossRefGoogle ScholarPubMed
Sternberg, M. J. E. & Thornton, J. M. (1977-b). On the conformation of proteins: hydrophobic ordering of strands in β-pleated sheets. J. molec.Biol. 115, 117.CrossRefGoogle ScholarPubMed
Stroud, R. M., Kay, L. M. & Dickerson, R. E. (1972). The crystal and molecular structure of DIP-inhibited bovine trypsin at 2·7 Å resolution. Cold Spring Harb. Symp. quant. Biol. 36, 125140.CrossRefGoogle Scholar
Tanford, C. (1973). The Hydrophobic Effect. New York: John Wiley.Google Scholar
Tonevitsky, A. G. (1979). The prediction of initiation complex localization in the all-β proteins. Thesis, Moscow State University.Google Scholar
Udaltsov, A. V. (1979). The prediction of parallel β-sheet topology in α/β proteins and domains. Thesis. Moscow State University.Google Scholar
Vainstein, B. K., Melik-Adamyan, B. P., Barynin, V. V. & Vagin, A. A. (1980). X-ray investigation of catalase from Penicilium vitale at 3·5 Å resolution. Dokl. Akad. Nauk. SSSR 250, 242246.Google Scholar
Warme, P. K., Momany, F. A., Rumball, S. V., Tuttle, R. W. & Scheraga, H. A. (1974). Computation of structures of homologous proteins, α-Lactalbumin from lysozyme. Biochemistry 13, 768782.CrossRefGoogle ScholarPubMed
Watenpaugh, K. D., Sieker, L. C., Jensen, L. H., Legall, J. & Dubourdieu, M. (1974). Structure of the oxidized form of a flavodoxin at 2·5-Å resolution: resolution of the phase ambiguity by anomalous scattering. Proc. natn. Acad. Sci. U.S.A. 69, 31853188.CrossRefGoogle Scholar
Wetlaufer, D. B. (1973). Nucleation, rapid folding and globular intrachain regions in proteins. Proc. natn. Acad. Sci. U.S.A. 70, 697701.CrossRefGoogle ScholarPubMed
Wetlaufer, D. B. & Ristow, S. (1973). Aquisition of three-dimensional structure of proteins. A. Rev. Biochem. 42, 135158.CrossRefGoogle Scholar