Hostname: page-component-599cfd5f84-v8j7l Total loading time: 0 Render date: 2025-01-07T06:49:29.354Z Has data issue: false hasContentIssue false

Regulation in macromolecules as illustrated by haemoglobin

Published online by Cambridge University Press:  17 March 2009

Jeffries Wyman
Affiliation:
The Regina Elena Institute for Cancer Research, Rome, and The Centre of Molecular Biology of the Consiglio Nazionale delle Richerche in the Institute of Biological Chemistry, University of Rome.

Extract

Mηδέν ἄγαν—nothing in excess. These words of the old Greek saying might well find a place in modern Biology. The maintenance of order and balance—homeostasis, as the physiologist would have it—is an attribute of all living things. At a molecular level the study of control and regulation, involving the conjugate concepts of structure and function is a central theme of Biophysics. How is it that an enzyme, by the braking effect of its end products, is prevented from going too far, or, alternatively, by the accumulation of other metabolic substances in its environment, is brought into play? How is it that a working respiratory protein like haemoglobin, by the reciprocal action of its metabolic opposite, carbon dioxide, is aided in the taking up of oxygen in the lungs and the giving it off in the tissues? These are problems of linkage. From one point of view they may be thought of in terms of information— the communication between ligand and macromolecule and between one part of the macromolecule and another. From a different point of view they may be thought of in terms of the storage and transfer of energy, of the way in which the work of introducing ligand, the same or different, at another. The analysis may be pitched either at the phenomenological, or at the mechanistic, level; but whatever the approach it profits cosiderably from the introduction of the concept of the binding potential.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1968

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Allen, D. W. & Wyman, J. (1952). The oxygen equilibrium of hemerythrin of Arenicola cristata. J. cell. comp. Physiol. 39, 383–9.CrossRefGoogle ScholarPubMed
Antonini, E., Brunori, M. & Anderson, S. (1968). Studies on the relation between molecular and functional properties of haemoglobin. VII. Kinetic effects of the reversible dissociation of haemoglobin into single chain molecules. J. biol. Chem. (in the Press.)Google Scholar
Antonini, E., Bucci, E., Fronticelli, C., Chiancone, E., Wyman, J. & Rossi-Fanelli, A. (1966). The properties and interactions of the isolated α- and β-chains of human haemoglobin. V. The reaction of α- and β-chains. J. molec. Biol. 17, 2946.CrossRefGoogle ScholarPubMed
Antonini, E., Rossi-Fanelli, A. & Caputo, A. (1962). Studies on chlorocruorin. I. The oxygen equilibrium of Spriographis chlorocruorin. Archs. Biochem. Biophys. 97, 336–42.CrossRefGoogle ScholarPubMed
Antonini, E., Schuster, T. M., Brunori, M. & Wyman, J. (1965). The kinetics of the Bohr effect in the reaction of human haemoglobin with carbon monoxide. J. biol. Chem. 240, PC 2262–4.CrossRefGoogle ScholarPubMed
Antonini, E., Wyman, J., Brunori, M., Bucci, E., Fronticelli, C. & Rossi-Fanelli, A. (1963). Studies on the relations between molecular and functional properties of haemoglobin. IV. The Bohr effect in human haemoglobin measured by proton binding. J. biol. Chem. 238, 2950–7.CrossRefGoogle ScholarPubMed
Antonini, E., Wyman, J., Brunori, M., Fronticelli, C., Bucci, E., & Rossi-Fanelli, A. (1965). Studies on the relations between molecular and functional properties of hemoglobin. V. The influence of temperature on the Bohr effect in human and in horse hemoglobin. J. biol. Chem. 240, 1096–103.CrossRefGoogle ScholarPubMed
Antonini, E., Wyman, J., Bucci, E., Fronticelli, C., Brunori, M., Reichlin, M. & Rossi-Fanelli, A. (1965). The oxygen equilibrium of the hybrids of canine and human haemoglobin. Biochim. biophys. Acta 104, 160–6.CrossRefGoogle ScholarPubMed
Antonini, E., Wyman, J., Moretti, R. & Rossi-Fanelli, A. (1963). The interaction of bromthymol blue with hemoglobin and its effect on the oxygen equilibrium. Biochim. biophys. Acta 71, 124–38.CrossRefGoogle ScholarPubMed
Antonini, E., Wyman, J., Rossi-Fanelli, A. & Caputo, A. (1962). Studies on the relations between molecular and functional properties of hemoglobin. J. biol. Chem. 237, 2773–7.CrossRefGoogle ScholarPubMed
Benesch, R. E. & Benesch, R. (1962). The influence of oxygenation on the reactivity of the –SH groups of hemoglobin. Biochemistry I, 735–8.CrossRefGoogle Scholar
Benesch, R. E., Ranney, H. M., Benesch, R. & Smith, G. M. (1961). The chemistry of the Bohr effect II. Some properties of the hemoglobin H. J. biol. chem. 236, 2926–38.CrossRefGoogle ScholarPubMed
Bohr, C., Hasselbach, K. & Krogh, A. (1904). Ueber einen in biologischer Beziehung wichtigen Einfluss, den die Kohlensäurespannung des Blutes auf dessen Sauerstoffbindung übt. Skand Arch. Physiol. 16, 402–12.CrossRefGoogle Scholar
Brunori, M., Engel, J. & Schuster, T. M. (1967). The effect of ligand binding on the optical rotary dispersion of myoglobin subunits. J. biol. Chem. 242, 773–6.CrossRefGoogle Scholar
Brunori, M., Noble, R. W., Antonini, E. & Wyman, J. (1966). The reactions of the isolated α and β chains of human hemoglobin with oxygen and carbon monoxide. J. biol. Chem. 241, 5238–43.CrossRefGoogle ScholarPubMed
Brunori, M., Wyman, J., Antonini, E., & Rossi-Fanelli, A. (1965).Studies on the oxidation-reduction potentials of heme proteins. J. biol. Chem. 240, 3317–27.CrossRefGoogle ScholarPubMed
Bucci, E. & Fronticelli, C. (1965). A new method for the preparation of αand β subunits of human hemoglobin. J. biol. Chem. 240, PC 551–2.CrossRefGoogle Scholar
Changeux, J. P., Thiery, J., Tung, Y. & Kittel, C. (1967). On the cooperativity of biological membranes. Proc. natn. Acad. Sci. U.S.A. 57, 335–41.CrossRefGoogle ScholarPubMed
Chiancone, E., Wittenberg, J. B., Wittenberg, B. A., Antonini, E. & Wyman, J. (1966). The combination of haptoglobin 2-2 with oxy and deoxy forms of human haemoglobin before and after digestion by carboxypeptidase A and with isolated α-chains. Biochim. biophys. Acta 117,379–86.CrossRefGoogle ScholarPubMed
Chipperfield, J. R., Rossi-Bernardi, L. & Roughton, F. J. W. (1967).Direct calorimetric studies on the heats of ionization of oxygenated and deoxygenated hemoglobin. J. biol. Chem. 242, 777783.CrossRefGoogle ScholarPubMed
Christiansen, J., Douglas, C. G. & Haldane, J. S. (1914). Carbon dioxide in blood. J. Physiol. Land. 48, 244271.CrossRefGoogle Scholar
De Renzo, E. C., Joppolo, C., Amiconi, G., Antonini, E. & Wyman, J. (1967). Properties of the αand β chains of haemoglobin prepared from their mercuribenzoate derivatives by treatment with I dodecanethiol. J. biol. Chem. 242, 4850–53.CrossRefGoogle Scholar
Gibson, Q. H. & Antonini, E. (1967). Observations on rapidly reacting hemoglobin. J. biol. Chem. 242, 4678–83.CrossRefGoogle ScholarPubMed
Guidotti, G. (1967 a). Studies on the chemistry of hemoglobin. I. The reactive sulfhydral groups. J. biol. Chem. 242, 3673–84.CrossRefGoogle Scholar
Guidotti, G. (1967 b). Studies on the chemistry of hemoglobin. II. The effect of salts on the dissociation of hemoglobin into subunits of hemoglobin. J. biol. Chem. 242, 3685–93.CrossRefGoogle ScholarPubMed
Guidotti, G. (1967 c). Studies on the chemistry of hemoglobin. III. The interactions of the αβ subunits of hemoglobin. J. biol. Chem. 242, 3694–703.CrossRefGoogle Scholar
Guidotti, G. (1967 d). Studies on the chemistry of hemoglobin. IV. The mechanism of reaction with ligands. J. biol. Chem. 242, 3704–12.CrossRefGoogle ScholarPubMed
Kirschner, K., Eigen, M., Bittman, R. & Voigt, B. (1966). The binding of nicotinamide-adenine dinucleotide to yeast D-glyceraldehyde-3-phoSphate dehydrogenase: temperature jump relaxation studies on the mechanism of an allosteric enzyme. Proc. natn. Acad. Sci. U.S.A. 56, 1661–7.CrossRefGoogle ScholarPubMed
Monod, J. & Jacob, F. (1961). General conclusions: teleonomic mechanisms in cellular metabolism, growth and differentiation. Cold Spring Harb. Symp. quant. Biol. 26, 389401.CrossRefGoogle Scholar
Monod, J., Wyman, J. & Changeux, J. P. (1965). On the nature of allosteric transitions: A plausible model. J. molec. Biol. 12, 88118.CrossRefGoogle ScholarPubMed
Nagel, R. L., Wittenberg, J. B., & Ranney, H. M. (1965). Oxygen equilibria of the hemoglobin-haptoglobin complex. Biochim. biophys. Acta 100, 286–9.CrossRefGoogle ScholarPubMed
Pauling, L. & Coryell, C. (1936 a). The magnetic properties and structure of the hemochromogens and related substances. Proc. natn. Acad. Sci. U.S.A. 22, 159–63.CrossRefGoogle ScholarPubMed
Pauling, L. & Coryell, C. (1936 b). The magnetic properties and structure of hemoglobin, oxyhemoglobin and carbon-monoxyhemoglobin. Proc. natn. Acad. Sci. U.S.A. 22, 210–16.CrossRefGoogle Scholar
Perutz, M. F., Rossmann, M. G., Cullis, A. F., Muirhead, H., Will, G. & North, A. C. T. (1960). Structure of haemoglobin. A three-dimensional Fourier synthesis at 5·5-Å. Resolution, obtained by X-ray analysis. Nature, Lond. 185, 416–22.CrossRefGoogle Scholar
Pickett, S. M., Riggs, A. F. & Larimer, J. L. (1966). Lobster hemocyanin: Properties of the minimum functional subunit and of aggregates. Science, N.Y. 151, 1005–7.CrossRefGoogle ScholarPubMed
Reichlin, M., Bucci, E., Fronticelli, C., Wyman, J., Antonini, E. & Rossi-Fanelli, A. (1965). Properties and interactions of the isolated α and β chains of human haemoglobin. II. Immunochemical behaviour of the chains: fractionation of an antigen. J. molec. Biol. 12, 774–9.CrossRefGoogle ScholarPubMed
Rossi-Bernardi, L. & Roughton, F. J. W. (1967). The specific influence of carbon dioxide and carbamate compounds on the buffer power and Bohr effects in human haemoglobin solutions. J. Physiol., Lond. 189, 129.CrossRefGoogle ScholarPubMed
Roughton, T. J. W., Otis, A. L. & Lyster, R. L. J. (1955). The determination of the individual equilibrium constants of the four intermediate reactions between oxygen and sheep haemoglobin. Proc. Roy. Soc. B 144, 2954.Google ScholarPubMed
Schachman, H. K. & Edelstein, S. J. (1966). Ultracentrifuge studies with absorption optics. IV. Molecular weight determinations at the microgram level. Biochemistry 5, 2681–705.CrossRefGoogle ScholarPubMed
Simon, R. & Konigsberg, W. H. (1966). Possible conformational constraints in a ‘cross-linked’ hemoglobin. Abstracts of International Biophysics Congress, Vienna, 5–19 September. no. 78Google Scholar
Wyman, J. (1948). Heme proteins.Adv. Protein Chem. 4, 407531.CrossRefGoogle ScholarPubMed
Wyman, J. (1964). Linked functions and reciprocal effects in hemoglobin:a second look. Adv. Protein Chem. 19 223–86.CrossRefGoogle ScholarPubMed
Wyman, J. (1965). The binding potential, a neglected linkage concept. J. molec. Biol. II, 631–44.CrossRefGoogle Scholar
Wyman, J. (1964). Allosteric linkage. J. Am. Chem. Soc. 89, 2202–18.CrossRefGoogle Scholar
Wyman, J. & Allen, D. W. (1964). The problem of the heme interactions in hemoglobin and the basis of the Bohr effect. J. Polym. Sci. 7, 499518.CrossRefGoogle Scholar
Zito, R., Antonini, E. & Wyman, J. (1964). Effect of oxygenation on the rate of digestion of human hemoglobins by carboxypeptidases. J. biol.Chem. 239, 1804–8.CrossRefGoogle ScholarPubMed