Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-08T02:09:13.208Z Has data issue: false hasContentIssue false

Prospects in genetic engineering of plants

Published online by Cambridge University Press:  17 March 2009

R. Frans Heyn
Affiliation:
Department of Biochemistry and Laboratory of Molecular Genetics, Leiden State University, Leiden, The Netherlands
Arthur Rörsch
Affiliation:
Department of Biochemistry and Laboratory of Molecular Genetics, Leiden State University, Leiden, The Netherlands
Robbert A. Schilperoort
Affiliation:
Department of Biochemistry and Laboratory of Molecular Genetics, Leiden State University, Leiden, The Netherlands

Extract

Genetic engineering has quite rightly an image of science fiction. The time when new species with any wanted combination of genetic properties can be ordered from an animal or plant breeding factory seems far away. The layman's view that the science fiction of today is the reality of tomorrow is certainly an insufficient argument to justify optimism. If this were so, we should by now be able to produce hybrids between members of the animal and plant kingdom as was foreseen by a nineteenth-century equivalent of Fred Hoyle (see Fig. I). Despite the scepsis expressed by the prominent scientist Si.r Macfarlane Burnet in his book Genes, Dreams and Realities (1971), recent advances in molecular genetics have raised new enthusiasm (and uneasiness) which make people speak of genetic engineering as something to aim at as an approach to correct inborn errors of metabolism. This will, however, not be our principal dish if we restrict ourselves to a vegetarian menu. We view genetic engineering of plants not only as a future method to improve species, but also as a fundamental approach to the study of gene expression, especially with respect to cell differentiation. If we consider the term literally, the definition of genetic engineering might be any intentional genetic manipulation to alter species or to make new ones. In this sense genetic engineering was practised long before Mendel presented his laws (1865). In the seventeenth century the bulb growers of the Low Countries produced new varieties of tulips for which prices of a thousand forms each were paid (at the 1636 price index!). We notice here already a strong impact of genetic engineering on society; the so-called crazy tulip trade caused a financial disaster on the Amsterdam stock-exchange comparable to the Wall Street crash in the 1930s.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1974

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Agarwal, K. L., Büchi, H., Caruthers, M. H., Gupta, N., Khorana, H. G., Kleppe, K., Kumar, A., Ohtsuka, E., Raybhandary, L., Van de Sande, J. H., Sgaramella, V., Weber, H. & Yamada, T. (1970). Total synthesis of the gene for an alanine transfer ribonucleic acid from yeast. Nature, Lond. 227, 27.Google Scholar
Aoki, S. & Takebe, I. (1969). Infection of tobacco mesophyll protoplasts by tobacco mosaic virus ribonucleic acid. Virology 39, 439.CrossRefGoogle ScholarPubMed
Avery, O. T., MacLeod, C. M. & McCarty, M. (1944). Studies on the chemical nature of the substance inducing transformation of pneumococcal types. J. exp. Med. 79, 137.Google Scholar
Baltimore, D. (1970). Viral RNA dependent DNA polymerase. Nature, Lond. 226, 1209.CrossRefGoogle Scholar
Barski, G., Sorieul, S. & Cornefert, F. (1960). Production dans des cultures in vitro de deux souches cellulaires en association de cellules de caractère “hybride”. C. r. hebd. Séanc. Acad. Sci., Paris, Série D 251, 1825.Google Scholar
Bergersen, F. J. & Goodchild, D. J. (1973). Cellular location and concentration of leghaemoglobin in soybean root nodules. Austr. J. Biol. Sci. 26, 741.Google Scholar
Bergmann, L. (1960). Growth and division of single cells of higher plants in vitro. J. gen. Physiol. 43, 841.CrossRefGoogle ScholarPubMed
Bianchi, F. & Walet-Foederer, H. G. (1974). An investigation into the anatomy of the shoot apex of Petunia hybrida in connection with the results of transformation experiments. Acta Bot. Neerl. 23, 1CrossRefGoogle Scholar
Binding, H., Binding, K. & Straub, J. (1970). Selektion in Gewebekulturen mit haploiden Zellen. Naturwissenschaften 57, 138.Google Scholar
Blakeslee, A. F. & Avery, A. G. (1937). Methods of inducing doubling of chromosomes in plants by treatment with colchicine. J. Hered. 28, 393.Google Scholar
Blakeslee, A. F., Belling, J., Farnham, M. E. & Bergner, A. D. (1922). A haploid mutant in the Jimson weed, Datura stramonium, Science, N.Y. 55, 1433.Google Scholar
Bopp, M. (1966). Die Wirkung von Nukleinsäure Hemmstoffen auf die Morphogenese von Pflanzen. Biol. Rundschau 4, 25.Google Scholar
Bovin, A. & Vendreley, R. (1946). Rôle de l'acide désoxyribonucléique hautement polymérisé dans le déterminisme des caractères héréditaires des bactéries. Signification pour la biochimie générale de l'hérédité. Helv. chim. Acta 29, 1338.Google Scholar
Bourgin, J. P. & Nitsch, J. P. (1967). Obtention de Nicotiana haploids à partir d'étamines cultivées in vitro. Annls Physiol. vég., Paris 9, 377.Google Scholar
Boyer, H. W., Chow, L. T., Dugaiczyk, A., Hedgpeth, J. & Goodman, H. M. (1973). DNA substrate site for the EcoRII restriction endonuclease and modification methylase. Nature New Biol. 244, 40.Google Scholar
Burnet, M. (1971). Genes, Dreams and Realities. Aylesbury: Medical and Technical Publishing Co.CrossRefGoogle Scholar
Carlson, P. S. (1970). Induction and isolation of auxotrophic mutants in somatic cell cultures of Nicotiana tabacum. Science, N.Y. 168, 487.Google Scholar
Carlson, P. S. (1973a). The use of protoplasts for genetic research. Proc. natn. Acad. Sci., U.S.A. 70, 598.Google Scholar
Carlson, P. S. (1973b). Methionine sulfoximine-resistant mutants of tobacco. Science, N.Y. 180, 1366.CrossRefGoogle ScholarPubMed
Carlson, P. S., Smith, H. H. & Dearing, R. D. (1972). Parasexual interspecific plant hybridization. Proc. natn. Acad. Sci., U.S.A. 69, 2292.Google Scholar
Chase, S. S. (1964). Monoploids and diploids of maize: A comparison of genotypic equivalents. Am. J. Bot. 51, 928.Google Scholar
Cocking, E. C. (1972). Plant cell protoplasts – isolation and development. Ann. Rev. Pl. Physiol. 23, 29.Google Scholar
Cosloy, S. D. & Oishi, M. (1973). Genetic transformation in E. coli K12. Proc. natn. Acad. Sci., U.S.A. 70, 84.Google Scholar
Cutting, J. A. & Schulman, H. M. (1969). The site of heme synthesis in soybean root nodules. Biochim. biophys. Acta 192, 486.Google Scholar
Daniell, E., Boram, W. & Abelson, J. (1973). Genetic mapping of the inversion loop in bacteriophage Mu DNA. Proc. natn. Acad. Sci., U.S.A. 70, 2153.Google Scholar
Davey, M. R. & Cocking, E. C. (1972). Uptake of bacteria by isolated higher plant protoplasts. Nature, Lond. 239, 455.Google Scholar
Dilworth, M. J. (1969). The plant as the determinant of leghaemoglobin production in the legume root nodule. Biochim. biophys. Acta 184, 432.CrossRefGoogle Scholar
Doy, C. H., Gresshoff, P. M. & Rolfe, B. G. (1972). Phage mediated transfer and subsequent expression of the galactose operon from E. coli in cells of haploid tomato callus. Proc. Austr. Biochem. Soc. 5, 3.Google Scholar
Doy, C. H., Gresshoff, P. M. & Rolfe, B. G. (1973a). Biological and molecular evidence for the transgenosis of genes from bacteria to plant cells. Proc. natn. Acad. Sci., U.S.A. 70, 723.Google Scholar
Doy, C. H., Gresshoff, P. M. & Rolfe, B. C. (1973b). Time course of phenotypic expression of E. coli gene Z following transgenosis in haploid Lycopersicon esculentum cells. Nature New Biol. 244, 90.CrossRefGoogle ScholarPubMed
Durand, J., Potrykus, I. & Donn, G. (1973). Plantes issues de protoplastes de Pétunia. Z. Pflanzenphysiol. 69, 26.Google Scholar
Giles, K. L. (1973). Attempts to demonstrate genetic complementation by the technique of protoplast fusion. In Colloq. Int. CNRS 212, 485.Google Scholar
Graaff, J. de, Kreuning, P. C. & Putte, P. van de (1973). Host controlled restriction and modification of bacteriophage Mu and Mu-promoted chromosome mobilization in Citrobacter freundii. Molec. Gen. Genet. 123, 283.Google Scholar
Grambow, H. J., Kao, K. N., Miller, R. A. & Gamborg, O. L. (1972). Cell division and plant development from protoplasts of carrot cell suspension cultures. Planta 103, 348.Google Scholar
Guha, S. & Maheshwari, S. C. (1966). Cell division and differentiation of embryos in the pollen grains of Datura in vitro. Nature, Lond. 212, 97.Google Scholar
Gupta, N. & Carlson, P. S. (1972). Preferential growth of haploid plant cells in vitro. Nature New Biol. 239, 86.Google Scholar
Harris, H. & Watkins, J. F. (1965). Behaviour of differentiated nuclei in heterokaryons of animal cells from different species. Nature, Lond. 205, 640.Google Scholar
Hess, D. (1972). Transformationen an höheren Organismen. Naturwissenschaften 59, 348.Google Scholar
Heyn, R. F. & Schilperoort, R. A. (1973). The use of protoplasts to follow the fate of Agrobacterium tumefaciens DNA on incubation with tobacco cells. In Colloq. Int. CNRS 212, 385.Google Scholar
Jackson, D. A., Symons, R. H. & Berg, P. (1972). Biochemical method for inserting new genetic information into DNA of Simian virus 40: Circular SV40 DNA molecules containing lambdaphage genes and the galactose operon of E. coli. Proc. natn. Acad. Sci., U.S.A. 69, 2904.CrossRefGoogle Scholar
Keller, W. A. & Melchers, G. (1974). The effect of high pH and calcium on tobacco leaf protoplast fusion. Z. Naturforsch. 28, 737.Google Scholar
Ledoux, L. (ed.) (1971). Informative Molecules in Biological Systems. Amsterdam: North Holland Publishing Co.Google Scholar
Lescure, A. M. (1973). Selection of markers of resistance to base-analogues in somatic cell cultures of Nicotiana tabacum. Plant Sci. Lett. 1, 375.Google Scholar
Ley, J. de (1972). Agrobacterium: intrageneric relationships and evolution. Proc. 3rd Int. Conf. Plant Pathogenic Bacteria, Wageningen, 1971, p. 251. Wageningen: PUDOC.Google Scholar
Lipetz, J. (1966). Crown gall Tumorigenesis. II. Relations between wound healing and the tumorigenic response. Cancer Res. 26, 1597.Google Scholar
Lippincott, B. B. & Lippincott, J. A. (1969). Bacterial attachment to a specific wound site as an essential stage in tumor initiation by Agrobacterium tumefaciens. J. Bact. 97, 620.Google Scholar
MacGregor, A. N. & Alexander, M. (1971). Formation of tumor-like structures on legume roots by Rhizobium. J. Bact. 105, 728.Google Scholar
Maliga, P., Sz.-Breznovits, A. & Márton, L. (1973). Streptomycinresistant plants from callus culture of halpoid tobacco. Nature New Biol. 244, 29.Google Scholar
Melchers, G. (1960). Haploide Blütenpflanzen als Material der Mutationszuchtung. Beispiele: Blattfarbmutanten und mutatio wettsteinii von Antirrhinum majus. Züchter 30, 129.Google Scholar
Melchers, G. (1965). Einige genetische Gesichtspunkte zu sogenannten Gewebekulturen. Ber. dt. Bot. Ges. 78, 21.Google Scholar
Melchers, G. (1972a). Haploid higher plants for plant breeding. Z. PflZücht. 67, 19.Google Scholar
Melchers, G. (1972b). Haploids Information Service. Tübingen: MPI für Biologie (available only for contributors).Google Scholar
Melchers, G. & Bergmann, L. (1958). Untersuchungen an Kulturen von haploiden Geweben von Antirrhinum majus. Ber. dt. Bot. Ges. 71, 459.Google Scholar
Merrill, C. R., Geier, M. R. & Petricciani, J. C. (1971). Bacterial virus gene expression in human cells. Nature, Lond. 233, 398.Google Scholar
Mezger-Freed, L. (1972). Effect of ploidy and mutagens on bromodeoxyuridine resistance in haploid and diploid frog cells. Nature New Biol. 235, 245.CrossRefGoogle ScholarPubMed
Milo, G. E. & Srivastava, B. I. S. (1969). RNA-DNA hybridization studies with the crown gall bacteria and the tobacco tumor tissue. Biochem. biophys. Res. Commun. 34, 196.Google Scholar
Mintz, B. (1967). Gene control of mammalian pigmentory differentiation. Proc. natn. Acad. Sci., U.S.A. 58, 345.Google Scholar
Nagata, T. & Takebe, I. (1971). Plating of isolated tobacco mesophyll protoplasts on agar medium. Planta 99, 12.Google Scholar
Nei, M. (1963). The efficiency of haploid method of plant breeding. Heredity 18, 95.Google Scholar
Nitsch, J. P. (1969). Experimental androgenesis in Nicotiana. Phytomorphology 19, 389.Google Scholar
Nitsch, J. P. & Nitsch, C. (1969). Haploid plants from pollen grains. Science, N.Y. 163, 85.Google Scholar
Nitsch, J. P. & Ohyama, K. (1971). Obtention de plantes à partir de protoplastes haploides cultivés in vitro. C. r. hebd. Séanc. Acad. Sci., Paris, Série D 273, 801.Google Scholar
N.N. (Nature editorial) (1971). Salting the transduction tale. Nature New Biol. 230, 129.Google Scholar
Parsons, C. L. & Beardsley, R. E. (1968). Bacteriophage activity in homogenates of crown gall tissue. J. Virol. 2, 651.Google Scholar
Potrykus, I. (1971). Intra- and interspecific fusion of protoplasts from petals of Torenia baillonii and Torenia fournieri. Nature New Biol. 231, 57.Google Scholar
Power, J. B., Cummins, S. E. & Cocking, E. C. (1970). Fusion of isolated plant protoplasts. Nature, Lond. 225, 1016.Google Scholar
Putte, P. van de & Gruythuyzen, M. (1972). Chromosome mobilization and integration of F factors in the chromosome of recA strains of E. coli under the influence of bacteriophage Mu-1. Molec. Gen. Genet. 118, 173.Google Scholar
Sacristan, M. D. (1971). Karyotypic changes in callus cultures from haploid and diploid plants of Crepis capillaris (L.) Wallr. Chromosoma 33, 273.Google Scholar
Sander, E. (1967). Alteration of fd phage in tobacco leaves. Virology 33, 121.Google Scholar
Schilperoort, R. A. (1969). Investigations on plant tumors – crown gall. On the biochemistry of tumor induction by Agrobacterium tumefaciens. Thesis, Leiden.Google Scholar
Schilperoort, R. A., Veldstra, H., Warnaar, S. O., Mulder, G. & Cohen, J. A. (1967). Formation of complexes between DNA isolated from tobacco crown gall tumors and RNA complementary to Agrobacteriurn tumefaciens DNA. Biochim. biophys. Acta 145, 523.Google Scholar
Schilperoort, R. A., Meys, W. H., Pippel, G. M. W. & Veldstra, H. (1969). Agrobacterium tumefaciens cross-reacting antigens in sterile crown-gall tumors. FEBS Lett. 3, 173.Google Scholar
Schilperoort, R. A., Van Sittert, N. J. & Schell, J. (1973). The presence of both phage PS8 and Agrobacterium tumefaciens A6 DNA base sequences in A6-induced sterile crown-gall tissue cultured in vitro. Eur. J. Biochem. 33, 1.Google Scholar
Schleiden, M. J. (1838). Beiträge zur Phytogenesis. Arch. Anat. Physiol. Wiss. Med. (J. Müller), p. 137.Google Scholar
Schwann, T. (1839). Mikroskopische Untersuchungen über die Ubereinstimmung in der Struktur und dem Wachstum der Tiere und Pflanzen. Leipzig: W. Engelmann, Nr. 176, Oswalds Klassiker der exakten Wissenschaften, 1910.Google Scholar
Schwinghamer, E. A., Evans, H. J. & Dawson, M. D. (1970). Evaluation of effectiveness in mutant strains of Rhizobium by acetylene reduction relative to other criteria of N2 fixation. Pt. Soil 33, 192.Google Scholar
Sell, E. K. & Krooth, R. S. (1972). Tabulation of somatic cell hybrids formed between lines of cultured cells. J. Cell. Physiol. 80, 453.Google Scholar
Shapiro, J., MacHattie, L., Eron, L., Ihler, G., Ippen, K. & Beckwith, J. (1969). Isolation of pure lac operon DNA. Nature, Lond. 224, 768.CrossRefGoogle ScholarPubMed
Shih, T. Y. & Martin, M. A. (1973). A general method of gene isolation. Proc. natn. Acad. Sci., U.S.A. 70, 1697.Google Scholar
Stern, M. S. (1973). Chimaeras obtained by aggregation of mouse eggs with rat eggs. Nature, Lond. 243, 472.Google Scholar
Takebe, I., Otsuki, Y. & Aoki, S. (1968). Isolation of tobacco mesophyll cells in intact and active state. Pl. Cell Physiol. 9, 115.Google Scholar
Takebe, I., Labib, G. & Melchers, G. (1971). Regeneration of whole plants from isolated mesophyll protoplasts of tobacco. Naturwissenschaften 58, 318.CrossRefGoogle Scholar
Taylor, A. L. (1963). Bacteriophage induced mutations in Escherichia coli. Proc. natn. Acad. Sci., U.S.A. 50, 1043.Google Scholar
Tempé, J. (ed.) (1973). Protoplastes et fusion de cellules somatiques végétales. Colloques Int. CNRS, no. 212. Paris: Editions INRA.Google Scholar
Tomasz, A. (1971). Cell physiological aspects of DNA uptake during genetic transformation in bacteria. In Informative Molecules in Biological Systems (ed. Ledoux, L.). Amsterdam: North Holland Publishing Co.Google Scholar
Vasil, V. & Hildebrandt, A. C. (1965). Differentiation of tobacco plants from single, isolated cells in microcultures. Science, N.Y. 150, 889.Google Scholar
Vasil, K. & Vasil, V. (1972). Totipotency and embryogenesis in plant cell and tissue cultures. In Vitro 8, 117.Google Scholar
Weiss, M. C. & Green, H. (1967). Human—mouse hybrid cell lines containing partial complements of human chromosomes and functioning human genes. Proc. natn. Acad. Sci., U.S.A. 58, 1104.Google Scholar
Wiering, H. & de Vlaming, P. (1973). Glycosylation and methylation patterns of anthocyanins in Petunia hybrida. I. The gene Gf. Genen Phaenen 15, 35.Google Scholar
Withers, L. A. & Cocking, E. C. (1972). Fine-structural studies on spontaneous and induced fusion of higher plant protoplasts. J. Cell Sci. 11, 59.Google Scholar
Woodland, H. R., Ford, C. C. & Gurson, J. B. (1972). Studies on genetic regulation utilizing micro-injection of nuclei and DNA into living eggs and oocytes. In Workshop on Mechanisms and Prospects of Genetic Exchange. Advances in the Biosciences, no. 8. Pergamon Press.Google Scholar
Zaenen, I., Van Larebeke, N., Teuchy, H. & Schell, J. (1974). Super- coiled circular DNA in crown-gall inducing Agrobacterium strains. J. molec. Biol. (in press).Google Scholar