Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-24T21:10:36.199Z Has data issue: false hasContentIssue false

Physical principles of membrane organization

Published online by Cambridge University Press:  17 March 2009

J. N. Israelachvili
Affiliation:
Department of Applied Mathematics, Research School of Physical Sciences Institute of Advanced Studies, Australian National University, Canberra A.C. T. 2600, Australia
S. Marčelja
Affiliation:
Department of Applied Mathematics, Research School of Physical Sciences Institute of Advanced Studies, Australian National University, Canberra A.C. T. 2600, Australia
R. G. Horn
Affiliation:
Department of Applied Mathematics, Research School of Physical Sciences Institute of Advanced Studies, Australian National University, Canberra A.C. T. 2600, Australia

Extract

Membranes are the most common cellular structures in both plants and animals. They are now recognized as being involved in almost all aspects of cellular activity ranging from motility and food entrapment in simple unicellular organisms, to energy transduction, immunorecognition, nerve conduction and biosynthesis in plants and higher organisms. This functional diversity is reflected in the wide variety of lipids and particularly of proteins that compose different membranes. An understanding of the physical principles that govern the molecular organization of membranes is essential for an understanding of their physiological roles since structure and function are much more interdependent in membranes than in, say, simple chemical reactions in solution. We must recognize, however, that the word ‘understanding’ means different things in different disciplines, and nowhere is this more apparent than in this multidisciplinary area where biology, chemistry and physics meet.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1980

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ahkong, Q. F., Fisher, D., Tampion, W. & Lucy, J. A. (1975). Mechanism of cell fusion, Nature Lond. 253, 194195.Google Scholar
Alexander, A. E. & Johnson, P. (1950). Colloid Science. Oxford: Clarendon Press.Google Scholar
Amos, L. A. (1979). Structure of microtubules. In Microtubules, ch. I (ed. Roberts, K. and Hyams, J. S.). New York: Academic Press.Google Scholar
Anderson, R. G. W. & Hein, C. E. (1977). Distribution of anionic sites on the oviduct ciliary membrane. J. Cell. Biol. 72, 482492.CrossRefGoogle ScholarPubMed
Andersson, B. & Anderson, J. M. (1980). Lateral heterogeneity of chlorophyll-protein complexes along the thylakoid membrane of spinach chloroplasts. Biochim. biophys. Acta (in the press).Google Scholar
Aniansson, E. A. G., Wall, S. N., Almgren, M., Hoffmann, H., Kielmann, I., Ulbricht, W., Zana, R., Lang, J. & Tondre, C. (1976).Theory of the kinetics of micellar equilibria. J. Phys. Chem. 80, 905922.CrossRefGoogle Scholar
Armond, P. A. & Staehelin, L. A. (1979). Lateral and vertical displacement of integral membrane proteins during lipid phase transition in Anacystis nidulans. Proc. natn. Acad. Sci. U.S.A. 76, 19011905.CrossRefGoogle ScholarPubMed
Ashcroft, R. G. & Coster, H. G. L. (1978). The hydration number of protons in membranes: thermodynamic implications for ATP synthesis. Bioelectrochem. & Bioenergetics 5, 3742.CrossRefGoogle Scholar
Bangham, A. D., Morley, C. J. & Phillips, M. C. (1979). The physical properties of an effective lung surfactant. Biochim. biophys. Acta 573, 552556.CrossRefGoogle ScholarPubMed
Berlin, R. D., Caron, J. M. & Oliver, J. M. (1979). Microtubules and the structure and function of cell surfaces. In Microtubules, ch. 10 (ed. Roberts, K. and Hyams, J. S.). New York: Academic Press.Google Scholar
Birrell, G. B. & Griffith, O. H. (1976). Cytochrome c induced lateral phase separation in a diphosphatidylglycerol-steroid spin-label model membrane. Biochemistry, N. Y. 15, 29252929.CrossRefGoogle Scholar
Blaurock, A. E. & Gamble, R. C. (1979). Small lecithin vesicles appear to be faceted below the thermal phase transition. J. Membrane Biol. 50, 187204.CrossRefGoogle Scholar
Boggs, J. M., Clement, I. R. & Moscarello, M. A. (1980) Similar effect of proteolipid apoproteins from human myelin (lipophilin) and bovine white matter on the lipid phase transition. Biochim. biophys. Acta 601, 134151.CrossRefGoogle ScholarPubMed
Boggs, J. M. & Moscarello, M. A. (1978 a). Structural organization of the human myelin membrane. Biochim. biophys. Acta 515, 121.CrossRefGoogle ScholarPubMed
Boggs, J. M. & Moscarello, M. A. (1978 b). Dependence of boundary lipid on fatty acid chain length in phosphatidylcholine vesicles containing a hydrophobic protein from myelin proteolipid. Biochemistry N.Y. 17, 57345739.CrossRefGoogle ScholarPubMed
Boggs, J. M., Wood, D. D., Moscarello, M. A. & Papahadjopoulos, D. (1977). Lipid phase separation induced by a hydrophobic protein in phosphatidylserine-phosphatidylcholine vesicles. Biochemistry, N.Y. 16, 23252329.CrossRefGoogle ScholarPubMed
Borochov, H. & Shinitzky, M. (1976). Vertical displacement of membrane proteins mediated by changes in microviscosity. Proc. natn. Acad. Sci. U.S.A. 73, 45264530.Google Scholar
Bos, P. J. & Doane, J. W. (1978). Molecular order versus conformational changes in the liquid-crystal phases. Phys. Rev. Lett. 40, 10301034.CrossRefGoogle Scholar
Bretscher, M. S. (1973). Membrane structure: some general principles. Science, N.Y. 181, 622629.CrossRefGoogle ScholarPubMed
Bretscher, M. S. (1976). Directed lipid flow in cell membranes. Nature, Lond. 260, 2123.CrossRefGoogle ScholarPubMed
Bretscher, M. S. & Raff, M. C. (1975). Mammalian plasma membranes, Nature, Lond. 258, 4349.CrossRefGoogle ScholarPubMed
Brotherus, J. R., Jost, P. C., Griffith, O. H., Keana, J. F. W. & Hokin, L. E. (1980). Charge selectivity at the lipid-protein interface of membranous Na, K-ATPase. Proc. natn. Acad. Sci. U.S.A. 77, 272276.CrossRefGoogle ScholarPubMed
Browning, J. L. & Seelig, J. (1980). Bilayers of phosphatidylserine: a deuterium and phosphorous nuclear magnetic resonance study. Biochemistry 19, 12621270.CrossRefGoogle ScholarPubMed
Brunner, J., Skrabal, P. & Hauser, H. (1976). Single bilayer vesicles prepared without sonication: physico-chemical properties. Biochim. biophys. Acta 455, 322331.Google Scholar
Büldt, G., Gally, H. U., Seelig, A., Seelig, J. & Zaccai, G. (1978). Neutron diffraction studies on selectively deuterated phospholipid bilayers. Nature, Lond. 271, 182184.CrossRefGoogle ScholarPubMed
Buxbaum, K. L. (1980). Measurement of the intrinsic affinity of red cell membranes for other membrane surfaces. PhD dissertation, Duke University.Google Scholar
Capaldi, R. A. (1974). A dynamic model of cell membranes. Scient. Am. 230 (3) 03, 2633.CrossRefGoogle ScholarPubMed
Carnie, S., Israelachvili, J. N. & Pailthorpe, B. A. (1979). Lipid packing and transbilayer asymmetries of mixed lipid vesicles. Biochim. biophys. Acta 554, 340357.Google Scholar
Chapman, D., GóMez-fernández, J. C. & Goni, F. M. (1979). Intrinsic protein-lipid interactions. FEBS Lett. 98, 211223.CrossRefGoogle ScholarPubMed
Charvolin, J., Manneville, P. & Deloche, B. (1973). Magnetic resonance of perdeuterated potassium laurate in oriented soap-water multilayers. Chem. Phys. Lett. 23, 345348.CrossRefGoogle Scholar
Chen, Y. S. & Hubbell, W. L. (1973). Temperature and light dependent structural changes in rhodopsin-lipid membranes. Expl Eye Res. 17, 517532.CrossRefGoogle ScholarPubMed
Cowley, A. C., Fuller, N. L., Rand, R. P. & Parsegian, V. A. (1978). Measurement of repulsive forces between charged phospholipid bilayers. Biochemistry, N.Y. 17, 31633168.CrossRefGoogle ScholarPubMed
Cullis, P. R. & De Kruijff, B. (1978). Polymorphic phase behaviour of lipid mixtures as detected by 31P NMR. Evidence that cholesterol may destabilise bilayer structure in membrane systems containing phosphatidylethanolamine. Biochim. biophys. Acta 507, 207218.CrossRefGoogle Scholar
Cullis, P. R. & De Kruijff, B. (1979). Lipid polymorphism and the functional roles of lipids in biological membranes. Biochim. biophys. Acta 559, 399420.CrossRefGoogle ScholarPubMed
Cullis, P. R. & Hope, M. J. (1980). The bilayer stabilizing role of sphingomyelin in the presence of cholesterol. Biochim. biophys. Acta 597, 533542.CrossRefGoogle ScholarPubMed
Curatolo, W., Sakura, J. D., Small, D. M. & Shipley, G. G. (1977). Protein-lipid interactions: recombinants of the proteolipid apoprotein of myelin with dimyristoyllecithin. Biochemistry, N.Y. 16, 23132319.CrossRefGoogle ScholarPubMed
Curatolo, W., Verma, S. P., Sakura, J. D., Small, D. M., Shipley, G. G. & Wallach, D. F. H. (1978). Structural effects of myelin proteolipid apoprotein on phospholipids: a Raman spectroscopic study. Biochemistry, N.Y. 17, 18021807.CrossRefGoogle ScholarPubMed
Danielli, J. F. & Davson, H. A. (1935). A contribution to the theory of permeability of thin films. J. cell comp. Physiol. 5, 495508.CrossRefGoogle Scholar
Davson, H. & Danielli, J. F. (1952). The Permeability of Natural Membranes, 2nd ed.London: Cambridge University Press.Google Scholar
De Kruijff, B. & Baken, P. (1978). Rapid transbilayer movement of phospholipids induced by an asymmetrical perturbation of the bilayer. Biochim. biophys. Acta 507, 3847.CrossRefGoogle ScholarPubMed
Deuling, H. J. & Helfrich, W. (1976). Red blood cell shapes as explained on the basis of curvature elasticity. Biophys. J. 16, 861868.CrossRefGoogle ScholarPubMed
Dickerson, R. E., Takano, T., Eisenberg, D., Kallai, O. B., Samson, L., Cooper, A. & Margoliash, E. (1971). Ferricytochrome c. J. biol. Chem. 246, 15111535.CrossRefGoogle ScholarPubMed
Doniach, S. (1979). A thermodynamic model for the monoclinic (ripple) phase of hydrated phospholipid bilayers. J. Chem. Phys. 70, 45874596.CrossRefGoogle Scholar
Duckwitz-Peterlein, G., Eilenberger, G. & Overath, P. (1977). Phospholipid exchange between bilayer membranes. Biochim. biophys. Acta 469, 311325.CrossRefGoogle ScholarPubMed
Eisenberg, M., Gresalfi, T., Riccio, T. & McLaughlin, S. (1979). Adsorption of monovalent cations to bilayer membranes containing negative phospholipids. Biochemistry, N.Y. 18, 52135223.CrossRefGoogle ScholarPubMed
Engelman, D. M. & Rothamn, J. E. (1972). The planar organization of lecithin-cholesterol bilayers. J. biol. Chem. 247, 36943697.Google Scholar
Evans, E. A. & Hochmuth, R. M. (1978).Mechano-chemical properties of membranes. In Current topics in membranes and transport, vol. X (ed. Kleinzeller, A. & Bronner, F.), pp. 164. New York: Academic Press.Google Scholar
Evans, E. A. & Skalak, R. (1979). Mechanics and Thermodynamics of Biomembranes. CRC Critical Revs. Bioeng. 3, 181330; 331418.Google ScholarPubMed
Favre, E., Baroin, A., Bienvenue, A. & Devaux, P. F. (1979). Spin-label studies of lipid–protein interactions in retinal rod outer segment membranes. Fluidity of the boundary layer. Biochemistry, N.Y. 18, 11561162.CrossRefGoogle ScholarPubMed
Finer, E. G. & Darke, A. (1974). Phospholipid hydration studied by deuteron magnetic resonance spectroscopy. Chem. Phys. Lipids 12, 116.Google Scholar
Finkelstein, A. (1976). Water and nonelectrolyte permeability of lipid bilayer membranes. J. gen. Physiol. 68, 127135.Google Scholar
Fisher, L. R. & Oakenfull, D. G. (1977). Micelles in aqueous solution. Chem. Soc. Revs. 6, 2542.CrossRefGoogle Scholar
Forsyth, P. A., MarčElja, S., Mitchell, D. J. & Ninham, B. W. (1977). Phase transition in charged lipid membranes. Biochim. biophys. Acta 469, 335344.CrossRefGoogle ScholarPubMed
Franke, W. W., Grund, C., Schmid, E. & Mandelkow, E. (1978). Paracrystalline arrays of membrane-to-membrane cross bridges associated with the inner surface of plasma membrane. J. Cell Biol. 77, 323328.CrossRefGoogle ScholarPubMed
Gorter, E. & Grendel, F. (1925). On bimolecular layers of lipoids on the chromocytes of the blood. J. exp. Med. 41, 439443.CrossRefGoogle ScholarPubMed
Green, D. E., Fry, M. & Blondin, G. A. (1980). Phospholipids as the molecular instruments of ion and solute transport in biological membranes. Proc. natn. Acad. Sci. U.S.A. 77, 257261.CrossRefGoogle ScholarPubMed
Green, D. E. & Perdue, J. F. (1966). Membranes as expressions of repeating units. Proc. natn. Acad. Sci. U.S.A. 55, 12951302.CrossRefGoogle ScholarPubMed
Griffith, O. H., Dehlinger, P. J. & Van, S. P. (1974). Shape of the hydrophobic barrier of phospholipid bilayers: evidence for water penetration in biological membranes. J. Membrane Biol. 15, 159192.Google Scholar
Grinnel, F., Tobleman, M. Q. & Hackenbrock, C. R. (1975). The distribution and mobility of anionic sites on the surfaces of baby hamster kidney cells. J. Cell Biol. 66, 470479.CrossRefGoogle Scholar
Gruen, D. (1980). A statistical mechanical model of the lipid bilayer above its phase transition. Biochim. biophys. Acta 595 161183.Google Scholar
Hackenbrock, C. R. & Miller, K. J. (1975). The distribution of anionic sites on the surfaces of mitochondrial membranes. J. Cell Biol. 6, 615630.CrossRefGoogle Scholar
Hall, D. G. & Pethica, B. A. (1967). Thermodynamics of micelle formation. In Nonionic Surfactants, ch. 16 (ed. Schick, M. J.). New York: Marcel Dekker.Google Scholar
Haran, N. & Shporer, M. (1977). Proton magnetic resonance study of cholesterol transfer between egg yolk lecithin vesicles. Biochim. biophys. Acta 465, 1118.CrossRefGoogle ScholarPubMed
Harlos, K. (1978). Pretransitions in the hydrocarbon chains of phosphatidylethanolamines. A wide angle X-ray diffraction study. Biochim. biophys. Acta 511, 348355.CrossRefGoogle Scholar
Hartmann, W., Galla, H.-J. & Sackmann, E. (1977). Direct evidence of charge-induced lipid domain structure in model membranes. FEBS Lett. 78, 169172.CrossRefGoogle ScholarPubMed
Hauser, H., Pascher, I. & Sundell, S. (1980 a). Conformation of phospholipids. Crystal structure of a lysophosphatidyicholine analogue. J. molec. Biol. 137, 249264.CrossRefGoogle Scholar
Hauser, H., Guyer, W., Pascher, I., Skrabal, P. & Sundell, S. (1980 b). Polar group conformation of phosphatidylcholine. Effect of solvent and aggregation. Biochemistry, N.Y. 19, 366373.CrossRefGoogle ScholarPubMed
Hauser, H., Oldani, D. & Phillips, M. C. (1973). Mechanism of ion escape from phosphatidylcholine and phosphatidylserine single bilayer vesicles. Biochemistry, N.Y. 12, 45074517.CrossRefGoogle ScholarPubMed
Helfrich, W. (1973). Elastic properties of lipid bilayers: theory and possible experiments. Z. Naturf. 28c, 693703.CrossRefGoogle ScholarPubMed
Helfrich, W. (1974). Blocked lipid exchange in bilayers and its possible influence on the shape of vesicles. Z. Naturf. 29c, 510515.CrossRefGoogle Scholar
Henderson, R. (1977). The purple membrane from Halobacterium Halobium A. Rev. Biophys. Bioeng. 6, 87109.CrossRefGoogle ScholarPubMed
Henderson, R., Capaldi, R. A. & Leigh, J. S. (1977). Arrangement of cytochrome oxidase molecules in two-dimensional vesicle crystals. J. molec. Biol. 112, 631648.CrossRefGoogle ScholarPubMed
Hermann, R. B. (1975). Theory of hydrophobic bonding. J. Phys. Chem. 79, 163169.CrossRefGoogle Scholar
Hesketh, T. R., Smith, G. A., Houslay, M. D., Mcgill, K. A., Birdsall, N. J. M., Metcalfe, J. C. & Warren, G. B. (1976). Annular lipids determine the ATPase activity of a calcium transport protein complexed with dipalmitoyllecithin. Biochemistry, N.Y. 15 41454151.CrossRefGoogle ScholarPubMed
Hill, T. L. (1963, 1964). Thermodynamics of small systems, vol. I, 2. Benjamin, W. A., New York.Google Scholar
Hitchcock, P. B., Mason, R., Thomas, K. M. & Shipley, G. G. (1974). Structural chemistry of 1,2 Dilauroyl-DL-phosphatidylethanolamine: molecular conformation and intermolecular packing of phospholipids. Proc. natn. Acad. Sci. U.S.A. 71, 30363040.CrossRefGoogle ScholarPubMed
Höchli, M. & Hackenbrock, C. R. (1979). Lateral translational diffusion of cytochrome c oxidase in the mitochondrial energy-transducing membrane. Proc. natn. Acad. Sci. U.S.A. 76, 12361240.CrossRefGoogle ScholarPubMed
Hoi, Sang U., Saier, M. H. & Ellisman, M. H. (1979). Tight junction formation is closely linked to the polar redistribution of intramembraneous particles in aggregating MDCK epithelia. Expl Cell Res. 122, 384390.Google Scholar
Hui, S. W., Cowden, M., Papahadjopoulos, D. & Parsons, D. F. (1975). Electron diffraction study of hydrated phospholipid single bilayers Biochim. biophys. Acta 382, 265275.CrossRefGoogle ScholarPubMed
Hui, S. W. & Parsons, D. F. (1975). Direct observation of domains in wet lipid bilayers. Science, N.Y. 190, 383384.CrossRefGoogle ScholarPubMed
Israelachvili, J. N. (1973). Theoretical considerations on the asymmetric distribution of charged phospholipid molecules on the inner and outer layers of curved bilayer membranes. Biochim. biophys. Acta 323, 659663.CrossRefGoogle ScholarPubMed
Israelachvili, J. N. (1977). Refinement of the fluid-mosaic model of membrane structure. Biochim. biophys. Acta 469, 221225.CrossRefGoogle ScholarPubMed
Israelachvili, J. N. (1978). The packing of lipids and proteins in membranes. In Light Transducing Membranes: Structure, Function and Evolution (ed. Deamer, D. W.), pp. 91107. New York: Academic Press.Google Scholar
Israelachvili, J. N. & Mitchell, D. J. (1975). A model for the packing of lipids in bilayer membranes. Biochim. biophys. Acta 389, 1319.CrossRefGoogle Scholar
Israelachvili, J. N., Mitchell, D. J. & Ninham, B. W. (1976). Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers. J. Chem. Soc. Faraday Trans II 72, 15251568.CrossRefGoogle Scholar
Israelachvili, J. N., Mitchell, D. J. & Ninham, B. W. (1977). Theory of self- assembly of lipid bilayers and vesicles. Biochim. biophys. Acta 470, 185201.CrossRefGoogle ScholarPubMed
Israelachvili, J. N. & Ninham, B. W. (1977). Intermolecular forces – the long and short of it. J. Colloid Interface Sci. 58, 1425.CrossRefGoogle Scholar
Jacobs, R. E., Hudson, B. & Andersen, H. C. (1975). A theory of the chain melting phase transition of aqueous phospholipid dispersions. Proc. natn. Acad. Sci, U.S.A. 72, 39933997.Google Scholar
Jacobson, K. & Papahadjopoulos, D. (1975). Phase transition and phase separation in phospholipid membranes induced by changes in temperature, pH, and concentration of bivalent cations. Biochemistry, N.Y. 14, 152161.CrossRefGoogle ScholarPubMed
Jähnig, F. (1979). Structural order of lipids and protiens in membranes: evaluation of fluorescence anisotropy data. Proc. natn. Acad. Sci. U.S.A. 76, 63616365.CrossRefGoogle Scholar
Jähnig, F., Harlos, K., Vogel, H. & Ejbl, H. (1979). Electrostatic interactions at charged lipid membranes. Electrostatically induced tilt. Biochemistry, N.Y. 18, 14591468.CrossRefGoogle ScholarPubMed
Janiak, M. J., Small, D. M. & Shipley, G. G. (1976). Nature of the thermal pretransition of synthetic phospholipids: Dimyristoyl- and Dipalmitoyllecithin. Biochemistry, N. Y. 15, 45754580.CrossRefGoogle ScholarPubMed
Jost, P. C., Griffith, O. H., Capaldi, R. A. & Vanderkooi, G. (1973). Evidence for boundary lipid in membranes. Proc. natn. Acad. Sci. U.S.A. 70, 480484.CrossRefGoogle ScholarPubMed
Jost, P. C. & Griffith, O. H. (1980). The lipid-protein interface in biological membranes. Ann. N.Y. Acad. Sci. 391405.CrossRefGoogle ScholarPubMed
Kader, J. C. (1977). Exchange of phospholipids between membranes. In Cell Surface Reviews (ed. Poste, G. & Nicolson, G. L.), vol. 3, pp. 127204Amsterdam: North Holland.Google Scholar
Kang, S. Y., Gutowsky, H. S., Hsung, J. C., Jacobs, R., King, T. E., Rice, D. & Oldfield, E. (1979). Nuclear magnetic resonance investigation of the cytochrome oxidase – phospholipid interaction: a new model for boundary lipid. Biochemistry, N. Y. 18, 32573267.CrossRefGoogle ScholarPubMed
Kimelberg, H. K. (1976). Protein-liposome interactions and their relevance to the structure and function of cell membranes. Mol. & Cell. Biochem. 10, 171190.CrossRefGoogle Scholar
Kimelberg, H. K. & Papahadjopoulos, D. (1971). Phospholipid-protein interactions: membrane permeability correlated with monolayer ‘penetration’. Biochim. biophys. Acta 233, 805809.CrossRefGoogle ScholarPubMed
Kitagawa, T., Inoue, K. & Nojima, S. (1976). Properties of liposomal membranes containing lysolecithin. J. Biochem. 79, 11231133.CrossRefGoogle ScholarPubMed
Kleeman, W. & McConnell, H. M. (1976). Interactions of proteins and cholesterol with lipids in bilayer membranes. Biochim. biophys. Acta 419, 206222.CrossRefGoogle Scholar
Kremer, J. M. H., Esker, M. W. J., Pathmamanoharan, C. & Wiersema, P. H. (1977). Vesicles of variable diameter prepared by a modified injection method. Biochemistry, N.Y. 16, 39323935.CrossRefGoogle ScholarPubMed
Kwok, R., Evans, E. A. & Hochmuth, R. M. (1980). Elastic area compressibility modulus and thermal area expansivity of large phospholipid bilayer vesicles. Am. Soc. Biol. Chem. meeting, 1980.Google Scholar
Ladbrooke, B. D. & Chapman, D. (1969). Thermal analysis of lipids, proteins and biological membranes. A review and summary of some recent studies. Chem. Phys. Lipids 3, 304367.CrossRefGoogle ScholarPubMed
Lee, A. G.Functional properties of biological membranes: a physical-chemical approach. Prog. Biophys. & Molec. Biol. 29, 356.CrossRefGoogle Scholar
Lee, A. O. (1977). Lipid phase transitions and phase diagrams. II. Mixtures involving lipids. Biochim. biophys. Acta 472, 285344.CrossRefGoogle Scholar
Lee, Y. & Chan, S. I. (1977). Effect of lysolecithin on the structure and permeability of lecithin bilayer vesicles. Biochemistry, N. Y. 16, 13031309CrossRefGoogle ScholarPubMed
Le, Neveu D. M., Rand, R. P. & Parsegian, V. A. (1976). Measurement of forces between lecithin bilayers. Nature, Lond. 259, 601603.Google Scholar
Le, Neveu D. M., Rand, R. P., Parsegian, V. A. & Gingell, D. (1977). Measurement and modification of forces between lecithin bilayers. Biophys. J. 18, 209230.Google Scholar
Letellier, L., Moudden, H. & Schechter, E. (1977). Lipid and protein segregation in Escherichia coli membrane. Proc. natn. Acad. Sci. U.S.A. 74, 452456.CrossRefGoogle ScholarPubMed
Liebman, P. A. & Pugh, E. N. (1979). The control of phosphodiesterase in rod disk membranes: kinetics, possible mechanisms and significance for vision. Vision Res. 19, 375380.CrossRefGoogle ScholarPubMed
Linden, C. D., Wright, K. L., McConnell, H. M. & Fox, C. F. (1973). Lateral phase separation in membrane lipids and the mechanism of sugar transport in Escherichia coli. Proc. natn. Acad. Sci. U.S.A. 70, 22712275.CrossRefGoogle Scholar
Lodish, H. F. & Rothman, J. E. (1979). The assembly of cell membranes. Scient. Am. 240 (I), 01, 3853.CrossRefGoogle ScholarPubMed
Luna, E. J. & McConnell, H. M. (1978). Multiple phase equilibria in binary mixtures of phospholipids. Biochim. biophys. Acta 509, 462473.CrossRefGoogle ScholarPubMed
Luzzati, V. & Tardieu, A. (1974). Lipid phases: structure and structural transitions. A. Rev. phys. Chem. 25, 7994.CrossRefGoogle Scholar
Mabrey, S. & Sturtevant, J. M. (1976). Investigation of phase transitions of lipids and lipid mixtures by high sensitivity differential scanning calorimetry. Proc. natn. Acad. Sci. U.S.A. 73, 38623866.CrossRefGoogle Scholar
MacDonald, R. C. (1976). Energetics of permeation of thin lipid membranes by ions. Biochim. biophys. Acta 448, 193198.CrossRefGoogle ScholarPubMed
MacDonald, R. C., Simon, S. A. & Baer, E. (1976). Ionic influences on the phase transition of dipalmitoylphosphatidylserine. Biochemistry, N.Y. 15, 885891.Google Scholar
McIntosh, T. J. (1980). Difference in hydrocarbon chain tilt between hydrated phosphatidylethanolamine and phosphatidylcholine bilayers. Biophys. J. 29, 237246.CrossRefGoogle ScholarPubMed
McLaughlin, S. & Harari, H. (1974). Phospholipid flip-flop and the distribution of surface charges in excitable membranes. Biophys. J. 14, 200208.CrossRefGoogle ScholarPubMed
Marčelja, S. (1974 a). Chain ordering in liquid crystals. I. Even-odd effect. J. chem. Phys. 60, 35993604.CrossRefGoogle Scholar
Marčelja, S. (1974 b). Chain ordering in liquid crystals. II. Structure of bilayer membranes. Biochim. biophys. Acta 367, 165176.CrossRefGoogle ScholarPubMed
Marčelja, S. (1976). Lipid-mediated protein interaction in membranes. Biochim. biophys. Acta 455, 17.CrossRefGoogle ScholarPubMed
Marčelja, S. & Radić, N. (1976). Repulsion of interfaces due to boundary water. Chem. Phys. Lett. 42, 129130.CrossRefGoogle Scholar
Mitchell, D. J. & Ninham, B. W. (1980). Micelles, vesicles and microemulsions. J. Chem. Soc. Faraday Trans. II (in the press).Google Scholar
Nagle, J. F. (1973). Theory of biomembrane phase transitions. J. chem. Phys. 58, 252264.CrossRefGoogle Scholar
Nagle, J. F. (1975). Critical points for dimer models with 3/2-order transitions. Phys. Rev. Lett. 34, 11501153.Google Scholar
Nagle, J. F. (1980). Theory of lipid bilayer phase transitions. A. Rev. phys. Chem. (in the press, 1980).CrossRefGoogle Scholar
Nakai, I. & Kawasaki, Y. (1959). Studies of the mechanism determining the course of nerve fibres in tissue culture. I. The reaction of the growth cone to various obstructions. Z. Zellforsch. 51, 108122.Google Scholar
Nicolson, G. L. (1976). Transmembrane control of the receptors on normal and tumour cells. I. Cytoplasmic influence over cell surface components. Biochim. biophys. Acta 457, 57108.Google Scholar
Nicolson, G. L., Poste, G. & JI, T. H, (1977). The dynamics of cell membrane organization. In Cell Surface Reviews (ed. Poste, G. and Nicholson, G. L.), vol. 3, pp. 173. Amsterdam: North-Holland.Google Scholar
Ninham, B. W. (1980). Long-range vs. short-range forces. The present state of play. J. Phys. Chem. 84, 14231430.CrossRefGoogle Scholar
Ohnishi, S. & Ito, T. (1973). Clustering of lecithin molecules in phosphatidylserine membranes induced by calcium ion binding to phosphatidylserine. Biochem. biophys. Res. Commun. 51, 132138.Google Scholar
Oldani, D., Hauser, H., Nichols, B. W. & Phillips, M. C. (1975). Monolayer characteristics of some glycolipids at the air-water interface. Biochim. biophys. Acta 382, 19.Google Scholar
Papahadjopoulos, D. (1973). Phospholipids as model membranes: mono-layers bilayers and vesicles. In Form and Function of Phospholipids (ed. Ansell, G. B., Hawthorne, J. N. and Dawson, R. M. C.). BBA Library, vol. 3, ch. 7. Amsterdam: Elsevier.Google Scholar
Papatiadjopoulos, D. (1977). Effects of bivalent cations and proteins on thermotropic properties of phospholipid membranes. J. Colloid & Interface Sci. 8, 459470.CrossRefGoogle Scholar
Papahadjopoulos, D. & Miller, N. (1967). Phospholipid model membranes Biochim. biophys. Acta 135, 624638.CrossRefGoogle ScholarPubMed
Papahadjopoulos, D., Hui, S., Vail, W. J. & Poste, G. (1976). Studies on membrane fusion. Biochim. biophys. Acta 448, 245264.CrossRefGoogle ScholarPubMed
Papahadjopoulos, D., Vail, W. J., Jacobson, K. & Poste, G. (1975). Cochleate lipid cylinders: formation by fusion of unilamellar lipid vesicles. Biochim. Biophys. Acta 394, 483491.CrossRefGoogle ScholarPubMed
Parsegian, V. A., Fuller, N. & Rand, R. P. (1979). Measured work of deformation and repulsion of lecithin bilayers. Proc. natn. Acad. Sci. U.S.A. 76, 27502754.CrossRefGoogle ScholarPubMed
Parsegian, V. A. & Gingell, D. (1972). Some features of physical forces between biological cell membranes. J. Adhes. 4, 283306.Google Scholar
Pearson, R. H. & Pascher, I. (1979). The molecular structure of lecithin dihydrate. Nature, Lond. 281, 499501.Google Scholar
Peracchia, C. (1978). Calcium effects on gap junction structure and cell coupling. Nature, Lond. 271, 669671.CrossRefGoogle ScholarPubMed
Petrov, A. G., Seleznev, S. A. & Derzhanski, A. (1978). Principles and methods of liquid crystal physics applied to the structure and functions of biological membranes. Acta Physica Polonica A55, 385405.Google Scholar
Poste, G. & Nicolson, G. L. (1977). Dynamic aspects of cell surface organization. Cell Surface Reviews, vol. 3. Amsterdam: North-Holland.Google Scholar
Pullman, B. & Berthod, H. (1974). Quantum mechanical studies on the conformation of phospholipids. The conformational properties of the polar head. FEBS Lett. 44, 266269.CrossRefGoogle ScholarPubMed
Pullman, B., Berthod, H. & Gresh, N. (1975). Quantum mechanical studies on the conformation of phospholipids. The effect of water on the conformational properties of the polar head. FEBS Lett. 53, 199204.CrossRefGoogle Scholar
Quinn, P. J. & Williams, W. P. (1978). Plant lipids and their role in membrane function. Prog. Biophys. & molec. Biol. 34, 109173.Google Scholar
Ralston, E., Blumenthal, R., Weinstein, J. N., Sharrow, S. O. & Henkart, P. (1980). Lysophosphatidylcholine in liposomal membranes. Enhanced permeability but little effect on transfer of water-soluble fluorescent marker into human lymphocytes. Biochim. biophys. Acta 597, 543551.Google Scholar
Rand, R. P., Fuller, N. L. & Lis, L. J. (1979). Myelin swelling and measurement of forces between myelin membranes. Nature, Lond. 279, 258260.CrossRefGoogle ScholarPubMed
Rand, R. P., Tinker, D. O. & Fast, P. G. (1971). Polymorphism of phosphatidylethanolamines from two natural sources. Chem. Phys. Lipids 6, 333342.CrossRefGoogle ScholarPubMed
Rice, D. M., Meadows, M. D., Scheinman, A. O., Goñi, F. M., Gómez-Fernández, J. C., Moscarello, M. A., Chapman, D. & Oldfield, E. (1979). Protein-lipid interactions. A NMR study of sacroplasmic reticulum Ca2+, Mg2+-ATPase, lipophilin, and proteolipid apoproteinlecithin systems and a comparison with the effects of cholesterol. Biochemistry, N.Y. 18, 58935903.Google Scholar
Rice, D. & Oldfield, E. (1979). Deuterium nuclear magnetic resonance studies of the interaction between dimyristoylphosphatidylcholine and gramicidin A. Biochemistry, N. Y. 18, 32723279.CrossRefGoogle ScholarPubMed
Roberts, K. & Hyams, J. S. (1979). Microtubules. New York: Academic Press.Google Scholar
Robertson, J. D. (1964). In Cellular Membranes in Development (ed. Locke, M.), pp. 181. New York: Academic Press.Google Scholar
Roseman, M. A. & Thomson, T. E. (1980). Mechanism of the spontaneous transfer of phospholipids between bilayers. Biochemistry, N.Y. 19, 439444.CrossRefGoogle ScholarPubMed
Rothman, J. E. & Lenard, J. (1977). Membrane asymmetry. Science, N.Y. 195, 743753.CrossRefGoogle ScholarPubMed
Ruysschaert, J. M., Tenenbaum, A., Berliner, C. & Delmelle, M. (1977). Correlation between lateral lipid phase separation and immunological recognition in sensitized liposomes. FEBS Lett. 81, 406410.CrossRefGoogle ScholarPubMed
Sandermann, H. (1978). Regulation of membrane enzymes by lipids. Biochim. biophys. Acta 515, 209237.CrossRefGoogle ScholarPubMed
Schatzberg, P. (1963). Solubilities of water in several normal alkanes from C7 to C16. J. Phys. Chem. 67, 776779.CrossRefGoogle Scholar
Schindler, H. & Seelig, J. (1975). Deuterium order parameters in relation to thermodynamic properties of a phospholipid bilayer. A statistical mechanical interpretation. Biochemistry, N. Y. 14, 22832287.CrossRefGoogle Scholar
Schneider, H., Lemasters, J. J., Höchli, M. & Hackenbrock, C. (1980). Fusion of liposomes with mitochondrial inner membranes. Proc. natn. Acad. Sci. U.S.A. 77, 442446.CrossRefGoogle ScholarPubMed
Schreier, S., Polnaszek, C. F. & Smith, I. C. P. (1978). Spin labels in membranes: problems in practice. Biochim. biophys. Acta 515, 375436.CrossRefGoogle ScholarPubMed
Seelig, J. & Browning, J. L. (1978). General features of phospholipid conformation in membranes. FEBS Lett. 92, 4144.CrossRefGoogle Scholar
Seelig, J. & Niederberger, W. (1974). Two pictures of a lipid bilayer. A comparison between deuterium label and spin-label experiments. Biochemistry, N.Y. 13, 15851588.CrossRefGoogle ScholarPubMed
Seelig, J. & Seelig, A. (1974). The dynamic structure of fatty acyl chains in a phospholipid bilayer measured by deuterium magnetic resonance. Biochemistry, N.Y. 13, 48394845.CrossRefGoogle Scholar
Seelig, A. & Seelig, J. (1978). Lipid-protein interaction in reconstituted cytochrome c oxidase/phospholipid membranes. Hoppe-Seyler's Z. Physiol. Chem. 359, 17471756.CrossRefGoogle ScholarPubMed
Seelig, J., Gally, H. U. & Wohlgemuth, R. (1977). Orientation and flexibility of the choline head group in phosphatidylcholine bilayers. Biochim. biophys. Acta 467, 109119.Google Scholar
Sheetz, M. P. & Singer, S. J. (1974) Biological membranes as bilayer couples. A molecular mechanism of drug-erythrocyte interactions. Proc. natn. Acad. Sci. U.S.A. 71, 44574461.CrossRefGoogle ScholarPubMed
Shimoyama, Y., Eriksson, L. E. G. & Ehrenberg, A. (1978). Molecular motion and order in oriented lipid multibilayer membranes evaluated by simulations of spin label ESR spectra. Biochim. biophys. Acta 508, 213235.CrossRefGoogle ScholarPubMed
Shimshick, E. J. & McConnell, H. M. (1973). Lateral phase separation in phospholipid membranes. Biochemistry, N.Y. 12, 23512360.CrossRefGoogle ScholarPubMed
Shinitzky, M. & Henkart, P. (1979). Fluidity of cell membranes – current concepts and trends. Int. Rev. Cytol. 60, 121147.CrossRefGoogle ScholarPubMed
Shukla, S. D., Berriman, J., Coleman, R., Finean, J. B. & Mitchell, R. H. (1978). Membrane protein segregation during release of microvesicles from human erythrocytes. FEBS Lett. 90, 289292.CrossRefGoogle ScholarPubMed
Silvius, J. R. & McElhaney, R. N. (1980). Membrane lipid physical state and modulation of the Na+, Mg2+-ATPase activity in Acholeplasma laidlawii B. Proc. natn. Acad. Sci. U.S.A. 77, 12551259.CrossRefGoogle ScholarPubMed
Singer, S. J. (1971). The molecular organization of biological membranes. In Structure and function of biological membranes (ed. Rothfleld, L. I.), pp. 145222. New York: Academic Press.Google Scholar
Singer, S. J. (1977). The proteins of membranes J. Colloid & Interface Sci. 58, 452458.CrossRefGoogle Scholar
Singer, S. J. & Nicolson, G. L. (1972). The fluid mosaic model of the structure of cell membranes. Science, N.Y. 175, 720731.CrossRefGoogle ScholarPubMed
Sjöstrand, F. S. & Barajas, L. (1970). A new model for mitochondrial membranes based on structural and on biochemical information. J. Ultrastruct. Res. 32, 293306.Google Scholar
Staehelin, L. A. & Arntzen, C. J. (1979). Effects of ions and gravity forces on the supramolecular organization and excitation energy distribution in chloroplast membranes. In Chlorophyll organization and energy transfer in photosynthesis. Ciba Foundation Symposium 61, 147175.Google Scholar
Stier, A. & Sackmann, E. (1973). Spin labels as enzyme substrates: Heterogeneous lipid distribution in liver microsomal membranes. Biochim. biophys. Acta 311, 400408.CrossRefGoogle ScholarPubMed
Stockton, G. W., Polnaszek, C. F., Tulloch, A. P., Hasan, F. & Smith, I. C. P. (1976). Molecular motion and order in single-bilayer vesicles and multilamellar dispersions of egg lecithin and lecithin-cholesterol mixtures. A deuterium magnetic resonance study of specifically labeled lipids.Biochemistry, N.Y. 15, 954966.CrossRefGoogle ScholarPubMed
Stockton, G., Johnson, K. G., Butler, K. W., Tulloch, A. P., Boulanger, Y., Smith, I. C. P., Davis, J. H. & Bloom, M. (1977). Deuterium NMR study of lipid organization in Acholeplasma laidlawii membranes. Nature, Lond. 269, 267268.CrossRefGoogle Scholar
Sundaralingam, M. (1972). Molecular structures and conformations of the phospholipids and sphingomyelins. Ann. N.Y. Acad. Sci. 195, 324355.CrossRefGoogle ScholarPubMed
Tanford, C. (1972). Micelle shape and size. J. Phys. Chem. 76, 30203024.CrossRefGoogle Scholar
Tanford, C. (1973). The Hydrophobic Effect: formation of micelles and biological membranes. New York: John Wiley.Google Scholar
Tardjeu, A., Luzzati, V. & Reman, F. C. (1973). Structure and polymorphism of the hydrocarbon chains of lipids: A study of lecithin-water phases. J. molec. Biol. 75, 711733.Google Scholar
Taylor, J. A. G., Mingins, J. & Pethica, B. A. (1976). Phospholipid monolayers at the n-heptane/water interface. J. Chem. Soc. Faraday Trans. I, 72, 26942702.CrossRefGoogle Scholar
Taylor, J. A. G., Mingins, J., Pethica, B. A., Tan, B. Y. J. & Jackson, C. M. (1973). Phase changes and mosaic formation in single and mixed phospholipid monolayers at the oil-water interface. Biochim. biophys. Acta 323, 157160.CrossRefGoogle ScholarPubMed
Thilo, L. (1977). Kinetics of phospholipid exchange between bilayer membranes. Biochim. biophys. Acta 469, 326334.CrossRefGoogle ScholarPubMed
Timasheff, S. N. (1979). The in vitro assembly of microtubules from purified brain tubulin. TIBS, 03, 6165.CrossRefGoogle Scholar
Träuble, H., Teubner, M., Wooley, P. & Eibl, H. (1976). Electrostatic interactions at charged lipid membranes. I. Effects of pH and univalent cations on membrane structure. Biophys. Chem. 4, 319342.CrossRefGoogle Scholar
Tsong, T. Y. & Yang, C. S. (1978). Rapid conformational changes of cytochrome P-450: effect of dimyristoyl lecithin. Proc. natn. Acad. Sci. U.S.A. 75, 59555959.CrossRefGoogle ScholarPubMed
Van Dijck, P. W. M., De Kruijff, B., Van Deenen, L. L. M., De Gier, J. & Demel, R. A., (1976). The preference of cholesterol for phosphatidylcholine in mixed phosphatidylcholine-phosphatidylethanolamine bilayers. Biochim. biophys. Acta 455, 576587.CrossRefGoogle ScholarPubMed
Van Dijck, P. W. M., De Kruijff, B., Verkleij, A. J., Van Deenen, L L. M. & De Gier, J. (1978). Comparative studies on the effects of pH and Ca2+ on bilayers of various negatively charged phospholipids and their mixtures with phosphatidylcholine. Biochim biophys. Acta 512, 8496.CrossRefGoogle ScholarPubMed
Vaughan, D. J. & Keough, K. M. (1974). Changes in phase transitions of phosphatidylethanolamine – and phosphatidylcholine-water dispersions induced by small modifications in the headgroup and backbone regions. FEBS Lett. 47, 158161.Google Scholar
Vaz, N. A. P. & Doane, J. W. (1980). NMR measurements of chain ordering in some liquid-crystalline lamellar phases. Phys. Rev. A (in the press, 1980).Google Scholar
Vaz, N. A. P., Doane, J. W. & Neubert, M. E. (1979). Polymorphism in a lamellar liquid-crystal bilayer system. Phys. Rev. Lett. 42, 14061409.CrossRefGoogle Scholar
Vik, S. B. & Capaldi, R. A. (1977). Lipid requirements for cytochrome c oxidase activity. Biochemistry, N. Y. 16, 57555759.CrossRefGoogle ScholarPubMed
Warren, G. B., Houslay, M. D., Metcalfe, J. C. & Birdsall, N. J. M. (1975). Cholesterol is excluded from the phospholipid annulus surrounding an active calcium transport protein. Nature, Lond. 255, 684687.CrossRefGoogle ScholarPubMed
Weiss, R. L., Goodenough, D. A. & Goodenough, U. W. (1977). Membrane differentiations at sites specialized for cell fusion. J. Cell. Biol. 72, 144160.Google Scholar
Wennerström, H. (1979). The relation between micelle size and shape and the stability of liquid crystalline phases in surfactant systems. J. Colloid & Interface Sci. 68, 589590.CrossRefGoogle Scholar
Wennerström, H. & Lindman, B.Micelles. Physical chemistry of surfactant association. Physics Reports 52, 186.CrossRefGoogle Scholar
Wieslander, A., Christiansson, A., Rilfors, L. & Lindblom, G. (1980). Lipid bilayer stability in membranes. Regulation of lipid composition in Acholeplasma laidlawii as governed by molecular shape. Biochemistry, (in the press).Google Scholar
Wu, S. H.-W. & McConnell, H. M. (1975). Phase separations in phospholipid membranes. Biochemistry, N. Y. 14, 847854.CrossRefGoogle Scholar
Zakai, N., Kulka, R. G. & Loyter, A. (1977). Membrane ultrastructural changes during calcium phosphate-induced fusion of human erythrocyte ghosts. Proc. natn. Acad. Sci. U.S.A. 74, 24172421.CrossRefGoogle ScholarPubMed