Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-08T23:49:05.895Z Has data issue: false hasContentIssue false

Phenomena at the advancing ice–liquid interface: solutes, particles and biological cells

Published online by Cambridge University Press:  17 March 2009

Christoph Körber
Affiliation:
Helmholtz-Institut für Biomedizinische Technik an der Rheinisch-West fälischen Technischen Hochschule Aachen, D-5100 Aachen, West-Germany.

Summary

Ice formation in aqueous solutions and suspensions involves a number of significant changes and processes in the residual liquid. The resulting effects were described concerning the redistribution of dissolved salts, the behaviour of gaseous solutes and bubble formation, the rejection and entrapment of secondphase particles. This set of conditions is also experienced by biological cells subjected to freezing. The influences of ice formation in that respect and their relevance for cryopreservation were considered as well.

A model of transient heat conduction and solute diffusion with a planar ice front, propagating through a system of finite length was found to be in good agreement with measured salt concentration profiles. The spacing of the subsequently developing columnar solidification pattern was of the same order of magnitude as the pertubation wavelengths predicted from the stability criterion. Non-planar solidification of binary salt solutions was described by a pure heat transfer model under the assumption of local thermodynamic equilibrium.

The rejection of gaseous solutes and the resulting gas concentration profile ahead of a planar ice front has been estimated by means of a test bubble method, yielding a distribution coefficient of 0·05 for oxygen. The nucleation of gas bubbles has been observed to occur at slightly less than 20-fold supersaturation. The subsequent radial growth of the bubbles obeys a square-root time dependence as expected from a diffusion controlled model until the still expanding bubbles become engulfed by the advancing ice-liquid interface. The maximum bubble radii decrease for increasing ice front velocities.

The transition between repulsion and entrapment of spherical latex particles by an advancing planar ice-front has been characterized by a critical value of the velocity of the solidification interface. The critical velocity is inversely proportional to the particle radius as suggested by models assuming an undisturbed ice front. The increase of the critical velocity for increasing thermal gradients shows good agreement with a theoretically predicted square-root type of dependence. Critical velocities have also been measured for yeast and red blood cells.

The effect of freezing on biological cells has been analyzed for human lymphocytes and erythrocytes. The reduction of cell volume observed during non-planar freezing agrees reasonably well with shrinkage curves calculated from a water transport model. The probability of intracellular ice formation has been characterized by threshold cooling rates above which the amount of water remaining within the cell is sufficient for crystallization. The cooling rate dependence of viability exhibits largely different maxima for lymphocytes and erythrocytes at about 30 and 4700 K/min, respectively. The decrease of viability above these values has been attributed to the damaging effect of intracellular ice formation.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Absolom, D. R., Eom, K., Vargha-Butler, E. I., Hamza, H. A. & Neumann, A. W. (1986). Surface properties of coal particles in aqueous media II. Adhesion of coal particles to polymeric substrates. Colloids and Surfaces 17, 143157.CrossRefGoogle Scholar
Asahina, E. (1961). Intracellular freezing and frost resistance in egg-cells of the sea-urchin. Nature 191, 12631265.CrossRefGoogle ScholarPubMed
Ashwood-Smith, M. J. & Farrant, J. (1980). Low Temperature Preservation in Biology and Medicine. Tunbridge Wells, UK: Pitman.Google Scholar
Aubourg, P. F. (1978). Interaction of second-phase particles with a crystal growing from the melt. Ph.D. Thesis, Mech. Engng., M.I.T., Cambridge.Google Scholar
Bank, H. & Mazur, P. (1973). Visualisation of freezing damage. J. Cell Biol. 57, 729742.CrossRefGoogle ScholarPubMed
Bari, S. A. & Hallett, J. (1974). Nucleation and growth of bubbles at an ice–water interface. J. Glaciology 13, 489520.Google Scholar
Blander, M. & Katz, J. L. (1975). Bubble nucleation in liquids. J. AIChE 21, 833848.CrossRefGoogle Scholar
Bolling, G. F. & Cissé, J. (1971). A theory for the interaction of particles with a solidifying front, J. Cryst. Growth 10, 5666.Google Scholar
Bolling, G. F. & Tiller, W. A. (1960). Growth from the melt: II. Cellular interface morphology, J. appl. Phys. 31, 20402045.Google Scholar
Boutron, P. & Kaufmann, A. (1978). Stability of the amorphous state in the system water-glycerol-dimethylsulfoxide. Cryobiology 15, 93108.CrossRefGoogle Scholar
Brody, H. D. & Flemings, M. C. (1966). Solute redistribution in dendritic solidification. Trans, metall. Soc., A.I.M.E. 236, 615623.Google Scholar
Bronstein, V. L., Itkin, Y. A. & Ishkov, G. S. (1981). Rejection and capture of cells by ice crystals in freezing aqueous solutions, J. Cryst. Growth 52, 345349.CrossRefGoogle Scholar
Brower, W. E., Freund, M. K., Baudino, M. D. & Ringwald, C. (1981). Hypothesis of survival of spermatozoa via encapsulation during plane front freezing. Cryobiology 18, 277291.Google Scholar
Callow, R. A. & McGrath, J. J. (1985). Thermodynamic modeling and cryomicroscopy of cell-size, unilamellar, and paucilamellar liposomes. Cryobiology 22, 251267.CrossRefGoogle ScholarPubMed
Carslaw, H. S. & Jaeger, J. C. (1959). Conduction of Heat in Solids. Oxford: Clarendon.Google Scholar
Carte, A. E. (1961). Air bubbles in ice. Proc. phys. Soc. Lond. 77, 757768.CrossRefGoogle Scholar
Chen, J. H. & Rubinsky, B. (1983). Morphological stability analysis on a solid–liquid interface during solidification of binary alloys. ASME, paper No. 83, HT-24.Google Scholar
Chen, K. H. & Wilcox, W. R. (1977). Anomalous influence of body force on trapping of foreign particles during solidification. J. Cryst. Growth 40, 214220.Google Scholar
Chernov, A. A. & Bronstein, V. L. (1978). A macroscopic particle ahead of the solidification front of a dilute solution of an electrolyte. Soviet Phys. Crystallogr. 23, 48.Google Scholar
Chernov, A. A., Temkin, D. E. & Mel'Nikova, A. M. (1976). Theory of the capture of solid inclusions during the growth of crystals from the melt. Soviet Phys. Crystallogr. 21, 369374.Google Scholar
Chernov, A. A., Temkin, D. E. & Mel'Nikova, A. M. (1977). The influence of the thermal conductivity of a macroparticle on its capture by a crystal growing from a melt. Soviet Phys. Crystallogr. 22, 656658.Google Scholar
Chick, M. C., Connick, W. & Thorpe, B. W. (1970). Microscope observations of TNT crystallization. J. Cryst. Growth 7, 317326.CrossRefGoogle Scholar
Cissé, J. & Bolling, G. F. (1971). A study for the trapping and rejection of insoluble particles during the freezing of water. J. Cryst. Growth 10, 6776.CrossRefGoogle Scholar
Cole, R. (1974). Boiling nucleation. Adv. Heat Transfer 10, 85166.CrossRefGoogle Scholar
Cosman, M. D. (1983). Effects of cooling rate and supercooling on the formation of ice in a cell population. Ph.D. Thesis, Mech. Engng. Dept., M.I.T., Cambridge.Google Scholar
Crank, J. (1956). The Mathematics of Diffusion. Clarendon, Oxford.Google Scholar
Dankberg, F. & Persidsky, M. D. (1976). A test of granulocyte membrane integrity and phagocytic function. Cryobiology 13, 430432.Google Scholar
D'Ans, J. & Lax, E. (1967). Taschenbuch für Chemiker und Physiker. Berlin: Springer.Google Scholar
Delves, R. T. (1966 a). The theory of the stability of the solid–liquid interface under constitutional supercooling (I). Physica Status Solidi 16, 621632.Google Scholar
Delves, R. T. (1966 b). The theory of the stability of the solid–liquid interface under constitutional supercooling (II). Physica Status Solidi 17, 119130.CrossRefGoogle Scholar
Dietz, T. E., Diller, K. R. & Aggarval, J. K. (1984). Automated computer evaluation of time varying cryomicroscopical images. Cryobiology 21, 200208.CrossRefGoogle ScholarPubMed
Diller, K. R. (1975). Intracellular freezing: effect of extracellular supercooling. Cryobiology 12, 480485.Google Scholar
Diller, K. R. (1979). Intracellular freezing of glycerolized red cells. Cryobiology 16, 123131.Google Scholar
Diller, K. R. (1982). Quantitative low temperature optical microscopy of biological systems. J. Microsc. 126, 928.CrossRefGoogle ScholarPubMed
Diller, K. R., Cravalho, E. G. & Huggins, C. E. (1972). Intracellular freezing in biomaterials. Cryobiology 9, 429440.CrossRefGoogle ScholarPubMed
Diller, K. R., Hayes, L. J., & Crawford, M. E. (1985). Variation in thermal history during freezing with the pattern of latent heat evolution. AIChE Symp. Series No. 245. 81, 234239.Google Scholar
Diller, K. R. & Lynch, M. E. (1983). An irreversible thermodynamic analysis of cell freezing in the presence of membrane permeable additives: I. Numerical model and transient cell volume data. Cryo-Lett. 4, 295308.Google Scholar
Diller, K. R. & Lynch, M. E. (1984 a). An irreversible thermodynamic analysis of cell freezing in the presence of membrane permeable additives: II. Transient electrolyte and additive concentrations. Cryo-Lett. 5, 117130.Google Scholar
Diller, K. R. & Lynch, M. E. (1984 a). An irreversible thermodynamic analysis of cell freezing in the presence of membrane permeable additives: III. Transient water and additive fluxes. Cryo-Lett. 5, 131144.Google Scholar
Dorsey, N. E. (1968). Properties of Ordinary Water Substance. New York: Hafner.Google Scholar
Douzou, P. (1977). Cryobiochemistry. London: Academic Press.Google Scholar
Dowgert, M. F. & Steponkus, P. L. (1983). Effect of cold acclimation on intracellular ice formation in isolated protoplasts. Pl. Physiol. 72, 978988.CrossRefGoogle ScholarPubMed
Drost-Hansen, W. (1988). The state of water in living cells. In Cell Volume Control (ed. Gilles, R., Kleinzeller, A. & Bolis, L.). New York: Academic Press. (In the Press).Google Scholar
Dye, J. E. & Hobbs, P. V. (1968). The influence of environmental parameters on the freezing and fragmentation of suspended water drops. J. atmos. Sci. 25, 8296.Google Scholar
Eigen, M. & DeMayer, L. (1958). Self-dissociation and protonic charge transport in water and ice. Proc. Roy. Soc. Lond. A 247, 505533.Google Scholar
Elliot, C. M. & Ockendon, J. R. (1982). Weak and Variational Methods for Moving Boundary Problems. Boston: Pitman.Google Scholar
Englich, S., Körber, C., Schwindke, P. & Rau, G. (1986). Correlation between intracellular nucleation temperatures and cell damage of human lymphocytes in the presence of various concentrations of dimethylsulfoxide determined by cryomicroscopy. Cryo-Lett. 7, 1322.Google Scholar
Epstein, P. S. & Plesset, M. S. (1950). On the stability of gas bubbles in liquid gas solutions. J. chem. Phys. 18, 15051509.CrossRefGoogle Scholar
Fahy, G. M. (1981). Simplified calculation of cell water content during freezing and thawing in non-ideal solutions of cryoprotective agents and its possible application to the study of ‘solution effects’ injury. Cryobiology 18, 473482.CrossRefGoogle Scholar
Fang, L. J., Cheung, F. B., Linehan, J. H. & Pedersen, D. R. (1984). Selective freezing of a dilute salt solution on a cold ice surface. J. Heat Transfer 105, 385393.Google Scholar
Fennema, O., Powrie, W. D. & Marth, E. H. (1973). Low Temperature Preservation of Foods and Living Matter. New York: Marcel Dekker.Google Scholar
Flemings, M. C. (1982). Segregation and structure in rapidly solidified cast metals. In Metallurgical Treatises (ed. Tien, J. K. & Elliot, J. F.), pp. 291300. Met. Soc. AIME.Google Scholar
Franks, F. (19721982). Water – A Comprehensive Treatise, vols. 1–7. New York: Plenum.Google Scholar
Franks, F. (1985). Biophysics and Biochemistry at Low Temperatures. Cambridge: Cambridge University Press.Google Scholar
Franks, F. & Bray, M. (1980). Mechanism of ice nucleation in undercooled plant cells. Cryo-Lett. 1, 221226.Google Scholar
Franks, F. & Mathias, S. F. (1982). Biophysics of Water. Chichester: J. Wiley.Google Scholar
Franks, F., Mathias, S. F., Galfre, P., Webster, D. & Brown, D. (1983). Ice nucleation and freezing in undercooled cells. Cryobiology 20, 298309.CrossRefGoogle ScholarPubMed
Geguzin, Y. E. & Dzuba, A. S. (1981). Crystallization of a gas-saturated melt. J. Cryst. Growth 52, 337344.CrossRefGoogle Scholar
Geiser, T. & Scheiwe, M. W. (1981). Design of freezing containers for submerging into LN2: the temperature field and its influence on the recovery of hydroxyethyl starch preserved red blood cells. Cryo-Lett. 2, 291300.Google Scholar
Glicksman, M. E. (1984). Free dendritic growth. Mater. Sci. Engng. 65, 4556.CrossRefGoogle Scholar
Gmelin, L. (1974). Handbuch der anorganischen Chemi (Band 1, 1. Sauerstoff). Berlin: Springer.Google Scholar
Grange, B. W., Viskanta, R. & Stevenson, H. (1976). Diffusion of heat and solute during freezing of salt solutions. Int. J. Heat Mass Transfer 19, 373384.Google Scholar
Griffith, J. B., Cox, C. S., Beadle, D. J., Hunt, C. J. & Reid, D. S. (1979). Changes in cell size during cooling, warming and post-thawing periods of the freeze-thaw cycle. Cryobiology 16, 141151.CrossRefGoogle Scholar
Gross, G. W. (1968). Some effects of trace inorganics on the ice–water system. Adv. Chem. Ser. 73, 2797.CrossRefGoogle Scholar
Grout, B. W. W. & Morris, G. J. (1987). The Effects of Low Temperatures on Biological Materials. London: Edward Arnold.Google Scholar
Gupta, K. C. (1975). The mechanism of cryohemolysis: by direct observation with the cryomicroscope and the electron microscope. Cryobiology 12, 417426.CrossRefGoogle ScholarPubMed
Hardy, S. C. & Coriell, S. R. (1969). Morphological stability of cylindrical ice crystals. J. Cryst. Growth 5, 329337.Google Scholar
Hardy, S. C. & Coriell, S. R. (1973). Surface tension and interface kinetics of ice crystals freezing and melting in sodium chloride solutions. J. Cryst. Growth 20, 292300.Google Scholar
Harrison, J. D. & Tiller, W. A. (1963). Controlled freezing of water. In Ice and Snow (ed. Kingerey, W. D.), pp. 215225. Cambridge: M.I.T. Press.Google Scholar
Hartmann, U. (1987). Wärmetechnische Aspekte des Tiefgefrierens in der Biotechnologie. Doctoral Dissertation, Fak. Maschinenwesen, RWTH Aachen.Google Scholar
Heckly, R. & Quay, J. (1983). Adventitious chemistry at reduced water activity: free radicals and polyhydroxy agents. Cryobiology 20, 613624.CrossRefGoogle ScholarPubMed
Hempling, H. G. (1973). Heats of activation of exosmotic flow across the membrane of leucocytes and leucemic cells. J. cell Physiol. 1, 19.CrossRefGoogle Scholar
Hempling, H. G. (1974). Permeability of the human leucocyte and leucemic cell to water. Southern Medical J. 67, 951958.CrossRefGoogle Scholar
Hildebrandt, J. H. & Scott, R. L. (1964). The Solubility of Non-Electrolytes. New York: Reinhold.Google Scholar
Himmelblau, D. M. (1964). Diffusion of dissolved gases in liquids. Chem. Rev. 64, 527550.CrossRefGoogle Scholar
Hobbs, P. V. (1974). Ice Physics. Oxford: Clarendon.Google Scholar
Hoekstra, P. & Miller, R. D. (1967). On the mobility of water molecules in the transition layer between ice and a solid surface. J. Colloid Interface Sci. 25, 166173.CrossRefGoogle Scholar
Hua, T. C., Cravalho, E. G. & Jiang, L. (1982). The temperature difference across the cell membrane during freezing and its effect on water transport. Cryo-Lett. 3, 255264.Google Scholar
Hubel, A., Körber, C., Cravalho, E. G. & Rau, G. (1988). Transient electrical potentials measured during the uni-directional freezing of NaCl/H2O solutions. J. Cryst. Growth. 87, 6978.CrossRefGoogle Scholar
Ivantsov, G. P. (1947). (In Russian, cited by Langer (1980)). Dokl. Akad. Nauk. USSR 58, 567569.Google Scholar
Jackson, K. A. & Hunt, J. D. (1965), Transparent compounds that freeze like metals. Acta metall. 13, 12121215.CrossRefGoogle Scholar
Jansen, R. & Sahm, P. R. (1984). Solidification under microgravity. Mater. Sci. Engng. 65, 199212.Google Scholar
Jochem, M. (1985). Untersuchungen zum Wärmetransport zwischen Blutbeuteln und plattenförmigen Kühlflächen beim Tiefgefrieren von Zellsuspensionen. Diplom-Thesis, Fak. Maschinenwesen, RWTH Aachen.Google Scholar
Jones, D. R. H. (1972). The temperature gradient microscope stage: a versatile aid in teaching solidification phenomena. Metals Mater. 6, 312313.Google Scholar
Kaukler, W. F. (1984). Hot stage and sample cell design for the solidification of transparent materials with and without forced convection. Rev. scient. Instrum. 55, 16431647.Google Scholar
Kehtarnavaz, H. & Bayazitoglu, Y. (1985). Solidification of binary mixture in a finite planar medium: saline water. Trans. ASME 107, 964966.CrossRefGoogle Scholar
Knight, C. A. (1967). The contact angle of water on ice. J. Colloid Interface Sci. 25, 280284.CrossRefGoogle Scholar
Knox, J. M. & Diller, K. R. (1978). Volumetric changes induced in living cells during freezing and thawing. In Advances in Biomedical Engineering (ed. Eberhard, R. C. and Burnstein, A. H.), pp. 199210. New York: ASME.Google Scholar
Körber, C. (1981). Das Gefrieren wäßiriger Lösungen in biologischen Substanzen. Doctoral Dissertation, Math. Naturwiss. Fakultät, RWTH Aachen.Google Scholar
Körber, C., Englich, S., Schwindke, P., Scheiwe, M. W., Rau, G., Hubel, A. & Cravalho, E. G. (1986). Low temperature light microscopy and its application to study freezing in aqueous solutions and biological cell suspensions, J. Microsc. 141, 263276.Google Scholar
Körber, C. & Rau, G. (1988). Ice crystal growth in aqueous solutions. In Biophysics of Organ Preservation (ed. Pegg, D. E., Karow, A. M. and Toler, J. C.), New York: Plenum, (in the Press).Google Scholar
Körber, C., Rau, G., Cosman, M. D. & Cravalho, E. G. (1985 a). Interaction of particles and a moving ice–liquid interface, J. Cryst. Growth 63, 649662.Google Scholar
Körber, C. & Scheiwe, M. W. (1983). Observations on the non-planar freezing of aqueous salt solutions. J. Cryst. Growth 61, 307316.CrossRefGoogle Scholar
Körber, C., Scheiwe, M. W. & Wollhöver, K. (1983). Solute polarization during planar freezing of aqueous salt solutions. Int. J. Heat Mass Transfer 26, 12411253.Google Scholar
Körber, C., Scheiwe, M. W. & Wollhöver, K. (1984). A cryomicroscope for the analysis of solute polarization during freezing. Cryobiology 21, 6880.Google Scholar
Körber, C., Wollhöver, K. & Scheiwe, M. W. (1981 a). The redistribution of solute in front of the advancing ice-liquid interface. In Refrigeration Science and Technology; Cryosurgery and Medical Applications of Refrigeration – Current Situation and Perspectives, (ed. International Institute of Refrigeration), pp. 161170. Paris: I.I.R.Google Scholar
Körber, C., Wollhöver, K. & Scheiwe, M. W. (1981 b). Cellular growth of ice crystals in suspension media of biological interest. In 1981 Advances in Bioengineering (ed. Viano, D. C.), pp. 127129. New York: ASME.Google Scholar
Körber, C., Wollhöver, K. & Scheiwe, M. W. (1985 b). The freezing of biological cells in aqueous solutions containing a polymeric cryo-protectant. In Properties of Water in Foods (ed. Simatos, D. and Multon, J. C.), pp. 511529. Dordrecht: M. Nijhoff.Google Scholar
Körber, C., Wollhöver, K. & Scheiwe, M. W. (1985 c). The loss of intracellular water during freezing in presence of hydroxyethyl starch. In Water and Ions in Biological Systems (ed. Vasilescu, V., Pullmann, B., Packer, L. and Leahu, L.), pp. 715722. London: Plenum.Google Scholar
Kotler, G. R. & Tiller, W. A. (1968). Stability of the needle crystal. J. Cryst. Growth 2, 287307.CrossRefGoogle Scholar
Kourosh, S. & Diller, K. R. (1984). A unidirectional temperature gradient stage for solidification studies in aqueous solutions J. Microsc. 135, 3948.Google Scholar
Kruuv, J., Brailsford, L. L., Glofcheski, D. J. & Lepock, J. R. (1985). Effect of dissolved gases on freeze-thaw survival of mammalian cells. Cryo-Lett. 6, 233238.Google Scholar
Kvajic, G., Brajovic, V. & Pounder, E. R. (1969). Rejection of impurities by growing ice from a melt. In Physics of Ice (ed. Riehl, N., Bullemer, B. and Engelhardt, H.), pp. 126137. New York: Plenum.Google Scholar
Landolt-Börnstein, (1962). Zahlenwerte und Funktionen. Berlin: Springer.Google Scholar
Langbein, D. (1981). The motion of particles ahead of a solidification front. In Intermolecular Forces (ed. Pullmann, B.), pp. 547562. Dordrecht: Reidel.Google Scholar
Langbein, D. (1984). Fremdteilchen an einer Erstarrungsfront. Metallurgica 38, 399402.Google Scholar
Langer, J. S. (1980). Instabilities and pattern formation in crystal growth. Rev. mod. Phys. 52, 128.Google Scholar
Langer, J. S. (1984). Dynamics of dendritic pattern formation. Mater. Sci. Engng. 65, 3744.CrossRefGoogle Scholar
Leibo, S. P. (1977 a). Preservation of mammalian cells and embryos by freezing. In Les Colloques de l'Institut National de la Santé de la Recherche Médicale, vol. 62, Cryoimmunologie (ed. Simatos, D., Strong, D. and Turc, J. M.), pp. 311334. Paris: INSERM.Google Scholar
Leibo, S. P. (1977 b). Fundamental cryobiology of mouse ova and embryos. In The Freezing of Mammalian Embryos (ed. Elliot, K. and Whelan, J.), pp. 6992. Amsterdam: Ciba Found. Symp. Elsevier Excerpta Medica.Google Scholar
Leibo, S. P., McGrath, J. J. & Cravalho, E. G. (1978). Microscopic observation of intracellular ice formation in unfertilized mouse ova as a function of cooling rate. Cryobiology 15, 257271.CrossRefGoogle ScholarPubMed
Levin, R. L. (1980). Generalized analytical solution for the freezing of a super-cooled aqueous solution in a finite domain. Int. J. Heat Mass Transfer 23, 951959.Google Scholar
Levin, R. L. (1981 a). The freezing of finite domain aqueous solutions: solute redistribution. Int. J. Heat Mass Transfer 24, 14431455.CrossRefGoogle Scholar
Levin, R. L. (1981 b). The heterogeneous freezing and thawing of aqueous solutions. ASME paper No. 81-WA/HT-37.Google Scholar
Levin, R. L. (1976). Effect of hydration of water content of human erythrocytes. Biophys. J. 16, 14111425.Google Scholar
Levin, R. L., Cravalho, E. G. & Huggins, C. E. (1977). Water-transport in a cluster of closely packed erythrocytes during cooling at subzero temperatures. Cryobiology 14, 549558.CrossRefGoogle Scholar
Levin, R. L., Cravalho, E. G. & Huggins, C. E. (1978). The concentration polarization effect in a multicomponent electrolyte solution – the human erythrocyte. J. theor. Biol. 71, 225254.CrossRefGoogle Scholar
Lipp, G., Körber, C., Englich, S., Hartmann, U. & Rau, G. (1987). Investigation of the behavior of dissolved gases during freezing. Cryobiology 24, 489503.Google Scholar
Lovelock, J. E. (1953). The hemolysis of human red blood cells by freezing and thawing. Biochim. biophys. Acta 10, 414426.Google Scholar
MacKenzie, A. P. (1977). Non-equilibrium freezing behavior of aqueous systems. Phil. Trans. R. Soc. Lond. B278, 167189.Google Scholar
Maeno, N. (1967). Air bubble formation in ice crystals. In Physics of Snow and Ice: International Conference on Low Temperature Science (ed. Oura, H.), pp. 207218. Sapporo: Institute of Low Temperature Science, Hokkaido University.Google Scholar
Maeno, N. & Kuroiwa, P. (1967). Metamorphism of air bubbles in a snow crystal. J. Glaciol. 6, 561564.Google Scholar
Magono, C. & Shiotsuki, Y. (1964). On the effect of air bubbles in ice on frictional charge separation. J. atmos. Sci. 21, 666670.2.0.CO;2>CrossRefGoogle Scholar
Mansoori, G. A. (1975). Kinetics of water loss from cells at subzero centigrade temperatures. Cryobiology 12, 3445.CrossRefGoogle ScholarPubMed
Matthes, G. & Hackensellner, H. A. (1982). Erhöhung der Kryoresistenz durch Antioxidanzien. Z. med. Labor.-Diagn. 23, 323331.Google Scholar
Mazur, P. (1963). Kinetics of water loss from cells at subzero temperatures and the likelihood of intracellular freezing. J. gen. Physiol. 47, 347369.Google Scholar
Mazur, P. (1965). Causes of injury in frozen and thawed cells. Fed. Proc. 24, 175182.Google Scholar
Mazur, P. (1966). Physical and chemical basis of injury in single-celled micro-organisms subjected to freezing and thawing. In Cryobiology (ed. Meryman, H. T.), pp. 214316. New York: Academic Press.Google Scholar
Mazur, P. (1977). The role of intracellular freezing in the death of cells cooled at supraoptimal rates. Cryobiology 14, 251272.Google Scholar
Mazur, P., Farrant, J., Leibo, S. P. & Chu, E. H. Y. (1969). Survival of hamster tissue culture cells after freezing and thawing. Cryobiology 6, 19.Google Scholar
Mazur, P., Leibo, S. P. & Chu, E. H. Y. (1972). A two-factor hypothesis of freezing injury. Expl. Cell Res. 71, 345355.CrossRefGoogle ScholarPubMed
Mazur, P., Rall, W. F. & Rigapoulos, N. (1981). Relative contributions of the fraction of unfrozen water and of salt concentration to the survival of slowly frozen human erythrocytes. Biophys. J. 36, 653675.CrossRefGoogle Scholar
Mazur, P. & Schmidt, J. J. (1968). Interaction of cooling velocity, temperature, and warming velocity on the survival of frozen and thawed yeast. Cryobiology 5, 117.Google Scholar
McGrath, J. J. (1984). Cryomicroscopy of liposome systems as simple models to study cellular freezing response. Cryobiology 21, 8192.Google Scholar
McGrath, J. J. (1987). Cold shock: thermoelastic stress in chilled biological membranes. In Network Thermodynamics, Heat and Mass Transfer in Biotechnology (ed. Diller, K. R.), pp. 5766. Washington, D.C.: ASME.Google Scholar
McGrath, J. J., Cravalho, E. G. & Huggins, C. E. (1975). An experimental comparison of intracellular ice formation and freeze–thaw survival of HeLa S-3 cells. Cryobiology 12, 540550.CrossRefGoogle ScholarPubMed
Meryman, H. T. (1966). Cryobiology. New York: Academic Press.Google Scholar
Molisch, H. (1897). Untersuchungen über das Erfrieren von Pflanzen. Jena: Verlag G. Fischer.Google Scholar
Morris, G. J. (1981). Cryopreservation. Inst. of Terrestrial Ecology, Cambridge.Google Scholar
Morris, G. J. & Clarkev, A. (1981). Effects of Low Temperatures on Biological Membranes. New York: Academic Press.Google Scholar
Morris, G. J. & McGrath, J. J. (1981). Intracellular ice nucleation and gas bubble formation in spirogyra. Cryo-Lett. 2, 341352.Google Scholar
Müller-Krumbhaar, H. & Langer, J. S. (1981). Sidebranching instabilities in a two-dimensional model of dendritic solidification. Acta metall. 29, 145157.CrossRefGoogle Scholar
Mullins, W. W. & Sekerka, R. F. (1963). Morphological stability of a particle growing by diffusion or heat flow. J. appl. Phys. 34, 323329.CrossRefGoogle Scholar
Nei, T. (1973). Growth of ice crystals in frozen specimens. J. Microsc. 99, 227233.Google Scholar
Nei, T. (1976). Freezing injury to erythrocytes: I. Freezing patterns and post-thaw hemolysis. Cryobiology 13, 278294.Google Scholar
Neumann, A. W., Absolom, D. R., Francis, D. W., Omenyi, S. N., Spelt, J. K., Policova, Z., Thomson, C., Zingg, W. & Van Oss, C. J. (1983). Measurement of surface tensions of blood cells and proteins. Ann. N. Y. Acad. Sci. 416, 276298.CrossRefGoogle ScholarPubMed
Neumann, A. W., Szekely, J. & Rabenda, E. J. (1973). Thermodynamics of particle engulfment by solidifying melts. J. Colloid Interface Sci. 43, 727732.Google Scholar
Neumann, A. W., Vargha-Butler, E. I., Hamza, H. A. & Absolom, D. R. (1986). Surface properties of coal particles in aqueous media I. Solidification front measurements. Colloids and Surfaces 17, 131142.CrossRefGoogle Scholar
O'Callaghan, M. G. (1978). An analysis of the heat and mass transport during the freezing of biomaterials. Ph.D. Thesis, Mech. Engng. Dept., M.I.T., Cambridge.Google Scholar
O'Callaghan, M. G., Cravalho, E. G. & Huggins, C. E. (1980). Instability of the planar freeze front during solidification of an aqueous binary solution. J. Heat Transfer 102, 673677.Google Scholar
O'Callaghan, M. G., Cravalho, E. G. & Huggins, C. E. (1982 a). An analysis of the heat and solute transport during solidification of an aqueous binary solution – I. Basal plane region. Int. J. Heat Mass Transfer 25, 553561.CrossRefGoogle Scholar
O'Callaghan, M. G., Cravalho, E. G. & Huggins, C. E. (1982 b). An analysis of the heat and solute transport during solidification of an aqueous binary solution – II. Dendrite tip region. Int. J. Heat Mass Transfer 25, 563573.CrossRefGoogle Scholar
Ockendon, T. R. & Hodgkins, R. W. (1975). Moving Boundary Problems in Heat Flow and Diffusion. London: Oxford University Press.Google Scholar
Omenyi, S. N. & Neumann, A. W. (1976). Thermodynamic aspects of particle engulfment by solidifying melts. J. appl. Phys. 47, 39563962.Google Scholar
Omenyi, S. N., Smith, R. P. & Neumann, A. W. (1980). Determination of solid/melt interfacial tensions and of contact angles of small particles from the critical velocity of engulfing. J. Colloid Interface Sci. 75, 117125.CrossRefGoogle Scholar
Papanek, T. H. (1978). The water permeability of the human erythrocyte in the temperature range +25 °C to – 10 °C. Ph.D. Thesis, Mech. Engng. Dept., M.I.T., Cambridge.Google Scholar
Porsche, A. M., Körber, C., Englich, S., Hartmann, U. & Rau, G. (1986). Determination of the permeability of human lymphocytes with a microscope diffusion chamber. Cryobiology 23, 302316.CrossRefGoogle ScholarPubMed
Pötschke, J. (1988). Theory of the behavior of foreign particles at an advancing solid-liquid interface. J. Cryst. Growth (submitted).Google Scholar
Pötschke, J. & Rogge, V. (1986). The behavior of suspended particles at the solidification front of copper. Naturwiss. 73, 381383.CrossRefGoogle Scholar
Quinn, P. (1985). A lipid-phase separation model of low-temperature damage to biological membranes. Cryobiology 22, 128146.Google Scholar
Rall, W. F., Mazur, P. & McGrath, J. J. (1983). Depression of the ice-nucleation temperature of rapidly cooled mouse embryos by glycerol and dimethyl sulfoxide. Biophys. J. 41, 112.Google Scholar
Rall, W. F., Reid, D. S. & Farrant, J. (1980). Inocuous biological freezing during warming. Nature 286, 511514.Google Scholar
Rapatz, G. & Luyet, B. (1960). Microscopic observation on the development of the ice phase in the freezing of blood. Biodynamica 8, 195239.Google Scholar
Rapatz, G., Nath, J. & Luyet, B. (1963). Electron microscope study of erythrocytes in rapidly frozen mammalian blood. Biodynamica 9, 8394.Google Scholar
Rapatz, G., Sullivan, J. J. & Luyet, B. (1968). Preservation of erythrocytes in blood containing various cryoprotective agents, frozen at various rates and brought to a given final temperature. Cryobiology 5, 1825.Google Scholar
Rasmussen, D. H., Macaulay, M. H. & MacKenzie, A. P. (1975). Supercooling and nucleation of ice in single cells. Cryobiology 12, 328339.Google Scholar
Rasmussen, D. H. & MacKenzie, A. P. (1972). Effect of solute on ice-solution interfacial free energy; calculation from measured homogeneous nucleation temperatures. In Water Structure at the Water–Polymer Interface (ed. Jellinek, H. H. G.), pp. 126146. New York: Plenum.Google Scholar
Ravishankar, P. S., Dismikes, J. P. & Wilcox, W. R. (1985). Influence of ACRT on interface stability and particle trapping behavior in directional solidification of silicon. J. Cryst. Growth 71, 579586.Google Scholar
Rey, L. R. (1959). Conservation de la Vie par le Froid. Paris: Hermann.Google Scholar
Riehl, N., Bullemer, B. & Engelhardt, H. (1969). Physics of Ice. New York: Plenum.Google Scholar
Robinson, R. A. & Stokes, R. H. (1959). Electrolyte Solutions. London: Butterworth.Google Scholar
Rohatgi, P. K. & Adams, C. M. (1967). Dendritic solidification of aluminium-copper alloys. Trans, metall. Soc. AIME 239, 17371746.Google Scholar
Rohatgi, P. K., Adams, C. M., Brush, E. J. & Jain, S. M. (1974). Dendritic structures produced on solidification of multicomponent aqueous solutions. Mater. Sci. Engng. 13, 318.Google Scholar
Rotman, B. & Papermaster, B. W. (1966). Membrane properties of living mammalian cells as studied by enzymatic hydrolysis fluorogenic esters. Proc. Natn. Acad. Sci. USA 55, 134141.Google Scholar
Rubinsky, B. (1983). Solidification process in saline solutions. J. Cryst. Growth 63, 513522.Google Scholar
Rubinsky, B. & Cravalho, E. G. (1984). An analytical method to evaluate cooling rates during cryopreservation protocols for organs. Cryobiology 21, 303320.CrossRefGoogle ScholarPubMed
Rubinsky, B. & Ikeda, M. (1985). A cryomicroscope using directional solidification for the controlled freezing of biological material. Cryobiology 22, 5568.Google Scholar
Rubinstein, L. I. (1971). The Stefan Problem. Translations of Mathematical Monographs, Vol. 27. Providence: American Mathematical Society.Google Scholar
Rutter, J. W. & Chalmers, B. (1953). A prismatic substructure formed during solidification of metals. Can. J. Phys. 31, 1539.Google Scholar
Savitz, D., Sidel, V. W. & Solomon, A. K. (1964). Osmotic properties of human red cells. J. gen. physiol. 48, 7994.Google Scholar
Scheiwe, M. W. (1981). Zur Gefrierkonservierung lebender biologischer Zellen. Doctoral Dissertation, Fak. Maschinenwesen, RWTH Aachen.Google Scholar
Scheiwe, M. W. & Körber, C. (1982 a). Formation and melting of intracellular ice in lymphocytes. Cryo-Lett. 3, 265274.Google Scholar
Scheiwe, M. W. & Körber, C. (1982 b). Formation and melting of intracellular ice in granulocytes. Cryo-Lett. 3, 275284.Google Scholar
Scheiwe, M. W. & Körber, C. (1982 c). Thermally defined cryomicroscopy and some applications on human leukocytes. J. Microsc. 126, 2944.Google Scholar
Scheiwe, M. W. & Körber, C. (1983). Basic investigations on the freezing of human lymphocytes. Cryobiology 20, 257273.Google Scholar
Scheive, M. W. & Körber, C. (1984). Thermally defined cryomicroscopy and thermodynamic analysis in lymphocyte freezing. Cryobiology 21, 93105.Google Scholar
Scheiwe, M. W. & Körber, C. (1987). Quantitative cryomicroscope analysis of intracellular freezing of granulocytes without cryoadditive. Cryobiology 24, 473483.Google Scholar
Scheiwe, M. W., Nick, H. E. & Körber, C. (1982). An experimental study on the freezing of red blood cells with and without hydroxyethyl starch. Cryobiology 19, 461477.Google Scholar
Scheiwe, M. W. & Rau, G. (1981). Biokältetechnik: Verfahren der Gefrierkonservierung in der Medizin. Chem.-Ing.-Techn. 53, 787797.CrossRefGoogle Scholar
Schwartz, G. J. & Diller, K. R. (1984). Intracellular freezing of human granulocytes. Cryobiology 21, 654660.Google Scholar
Seidensticker, R. G. (1972). Partitioning of HCI in the water–ice system. J. chem. Phys. 56, 28532957.CrossRefGoogle Scholar
Silvares, O. M., Cravalho, E. G., Toscano, W. M. & Huggins, C. E. (1975). The thermodynamics of water transport form biological cells during freezing. J. Heat Transfer 97, 582588.Google Scholar
Smith, A. U. (1961). Biological Effects of Freezing and Supercooling. London: Arnold.Google Scholar
Smith, A. U., Polge, C. & Smiles, J. (1951). Microscopic observation of living cells during freezing and thawing. Royal Microscop. Soc. 71. 186195.CrossRefGoogle ScholarPubMed
Somboonsuk, K., Mason, J. T. & Trivedi, R. (1984). Interdendritic spacing, part I. Experimental studies Met. Trans. A 15, 967975.Google Scholar
Spelt, J. K., Absolom, D. R., Zingg, W., Van Oss, C. J. & Neumann, A. W. (1982). Determination of the surface tension of biological cells using the freezing front technique. Cell Biophysics 4, 117131.Google Scholar
Stefan, J. (1889). Uber einige Probleme der Theorie der Wärmeleitung. Sitzungsber. Akad. der Wiss., Wien, Math. Naturwiss. Kl. 98, 616634.Google Scholar
Steponkus, P. L. & Dowgert, M. F. (1981). Gas bubble formation during intracellular formation. Cryo-Lett. 2, 4247.Google Scholar
Steponkus, P. L., Dowgert, M. F., Ferguson, J. R. & Levin, R. L. (1984 a). Cryomicroscopy of isolated plant protoplasts. Cryobiology 21, 209233.Google Scholar
Steponkus, P. L. & Evans, R. Y. (1982). Cryomicroscopy of isolated rye mesophyll cells. Cryo-Lett. 3, 101114.Google Scholar
Steponkus, P. L., Stout, D. G., Wolfe, J. & Lovelace, R. V. E. (1984 b). Freeze-induced electrical transients and cryoinjury. Cryo-Lett. 5, 343348.Google Scholar
Steponkus, P. L., Wolfe, J. & Dowgert, M. F. (1981). Stresses induced by contraction and expansion during a freeze-thaw cycle: a membrane perspective. In Effects of Low Temperatures on Biological Membranes (ed. Morris, G. F. and Clarke, A., pp. 307322. New York: Academic Press.Google Scholar
Swanger, L. A. & Rhines, W. C. (1972). On the necessary conditions for homogeneous nucleation of gas bubbles in liquids. J. Cryst. Growth 12, 323326.Google Scholar
Tayler, A. B. (1975). The mathematical formulation of Stefan problems. In Moving Boundary Problems in Heat Flow and Diffusion (ed. Ockendon, J. R. and Hodgkins, W. R.), pp. 120137. Oxford: Clarendon.Google Scholar
Temkin, D. E., Chernov, A. A. & Mel'Nikova, A. M. (1977). Capture of foreign particles by a crystal growing from a melt containing impurities. Soviet Phys. Crystallogr. 23, 1317.Google Scholar
Terwilliger, J. P. & Dizio, S. F. (1970). Salt rejection phenomena in the freezing of saline solutions. Chem. Engng. Sci. 25, 13311349.Google Scholar
Thomas, L. J. & Westwater, J. W. (1963). Microscopic study of solid–liquid interfaces during melting and freezing. Chem. Engng. Prog. Symp. Ser. 57, 155165.Google Scholar
Tiller, W. A., Jackson, K. A., Rutter, J. W. & Chalmers, B. (1953). The redistribution of solute atoms during the solidification of metals. Acta metall. 1, 428437.CrossRefGoogle Scholar
Toscano, W. M., Cravalho, E. G., Silvares, O. M. & Huggins, C. E. (1975). The thermodynamics of intracellular ice nucleation in the freezing of erythrocytes. J. Heat Transfer 97, 326332.Google Scholar
Trivedi, R. (1984). Interdendritic spacing, part II. A comparison of theory and experiment. Met. Trans. A 15, 977982.Google Scholar
Trivedi, R. (1985). Theory of dendritic growth under rapid solidification conditions. J. Cryst. Growth 73, 289303.Google Scholar
Trivedi, R. & Somboonsuk, K. (1984). Constrained dendritic growth and spacing Mater. Sci. Engng. 65, 6569.CrossRefGoogle Scholar
Uhlmann, D. R., Chalmers, B. & Jackson, K. A. (1964). Interaction between particles and a solid-liquid interface. J. appl. Phys. 35, 29862993.Google Scholar
Ungar, L. H. & Brown, R. A. (1984). Cellular interface morphologies in directional solidification. Phys. Rev. B 29, 13671380.Google Scholar
Vasconcellos, K. F. & Beech, J. (1975). The development of blowholes in the ice/water/carbon dioxide system. J. Cryst. Growth 28, 8592.Google Scholar
Vermuri, B. C., Diller, K. R. & Aggarval, J. K. (1984). A model for characterizing the motion of the solid–liquid interface in freezing solutions. Pattern Recognition 17, 313319.Google Scholar
Vermuri, B., Diller, K. R., Dawis, L. S. & Aggarval, J. K. (1983). Image analysis of solid-liquid interface morphology in freezing solutions. Pattern Recognition 16, 5161.Google Scholar
Viera, F. L., Sha'Afi, R. T. & Solomon, A. K. (1970). The state of water in human and dog red cell membranes. J. gen. Physiol. 55, 451466.Google Scholar
Ward, C. A., Balakrishnan, A. & Hooper, F. C. (1970). On the thermodynamics of nucleation in weak gas-liquid solutions. J. Basic Engng. D92, 695704.Google Scholar
Weast, R. C. (1979). CRC Handbook of Chemistry and Physics. Boca Raton: CRC Press.Google Scholar
Wiest, S. C. & Steponkus, P. L. (1979). The osmometric behavior of human erythrocytes. Cryobiology 16, 101104.Google Scholar
Wilcox, W. R. (1980). Force exerted on a single spherical particle by a freezing interface: theory. J. Colloid Interface Sci. 77, 213218.Google Scholar
Wilson, D. G., Solomon, A. D. & Boggs, P. T. (1978). Moving Boundary Problems. New York: Academic Press.Google Scholar
Wollhöver, K., Körber, C., Scheiwe, M. W. & Hartmann, U. (1985 a). Unidirectional freezing of binary aqueous solutions: an analysis of transient diffusion of heat and mass. Int. J. Heat Mass Transfer 28, 761769.Google Scholar
Wollhöver, K., Scheiwe, M. W., Hartmann, U. & Körber, C. (1985 b). On morphological stability of planar phase boundaries during unidirectional transient solidification of binary aqueous solutions. Int. J. Heat Mass Transfer 28, 897902.Google Scholar
Wolstenholme, G. E. W. & O'Connor, M. (1970). The Frozen Cell. London: Churchill.Google Scholar