Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-22T17:38:07.408Z Has data issue: false hasContentIssue false

Osmosis

Published online by Cambridge University Press:  17 March 2009

Adrian Hill
Affiliation:
The Physiological Laboratory, Cambridge, England

Extract

It has virtually become a truism that osmosis, and the inseparable array of related processes comprising ultrafiltration, diffusion, anomalous osmosis, etc., has found its final and lasting exposition to which anything can only be added by way of a few finishing touches. This view, as I shall attempt to show, is quite wrong, if for no other reason than that several of the different approaches to the problem are not complementary. We want two things: to gain an insight into the mechanisms operative in porous systems, and to derive equations which predict the flow rates from a minimal set of properties – if we can decide what these are.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1979

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anderson, J. L. & Malone, D. M. (1974). Mechanism of osmotic flow in porous membranes. Biophys. J. 14, 957.CrossRefGoogle ScholarPubMed
Axel, L. (1976). Flow limits of Kedem–Katchalsky equations for fluid flux. Bull. Math. Biol. 38, 671.CrossRefGoogle ScholarPubMed
Bresler, E. H. & Wendt, R. P. (1969 a). Onsager's reciprocal relation. An examination of its application to a simple membrane transport process. J. Phys. Chem. 73, 264.CrossRefGoogle Scholar
Bresler, E. H. & Wendt, R. P. (1969 b). Diffusive and convective flow across membranes. Irreversible thermodynamic approach. Science, N. Y. 163, 944.CrossRefGoogle Scholar
Dainty, J. (1965). Osmotic flow. Symp. Soc. exp. Biol. no. 19, p. 75.Google Scholar
Dainty, J. & Ginzburg, B. Z. (1963). Irreversible thermodynamics and frictional models of membrane processes, with particular reference to the cell membrane. J. theor. Biol. 5, 256.CrossRefGoogle ScholarPubMed
Durbin, R. P., Frank, H. & Solomon, A. K. (1956). Water flow through frog gastric mucosa. J. gen. Physiol. 39, 535.CrossRefGoogle ScholarPubMed
Essig, A. (1966). Isotope interaction and ‘abnormal’ flux ratios – a frictional model. J. theor. Biol. 13, 63.CrossRefGoogle Scholar
Ginzburg, B. Z. & Katchalsky, A. (1963). The frictional coefficients of the flows of non-electrolytes through artificial membranes. J. gen. Physiol. 47, 403.CrossRefGoogle ScholarPubMed
Hammel, H. T. & Scholander, P. F. (1976). Osmosis and Tensile Solvent. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Hill, A. E. (1972). Osmotic flow and solute reflection zones. J. theor. Biol. 36, 255.CrossRefGoogle ScholarPubMed
House, C. R. (1974). Water transport in Cells and Tissues, chap. 3. London: Arnold.Google Scholar
Katchalsky, A. (1961). Membrane permeability and the thermodynamics of irreversible processes. In Membrane Transport and Metabolism (ed. Kleinzeller, A. & Kotyk, A.), p. 69. London: Academic Press.Google Scholar
Katchalsky, A. & Curran, P. F. (1965). Nonequilibrium Thermodynamics in Biophysics. Cambridge, Mass.: Harvard University Press.CrossRefGoogle Scholar
Kedem, O. & Katchalsky, A. (1958). Thermodynamic analysis of the permeability of biological membranes to non-electrolytes. Biochim. biophys. Acta 27, 229.CrossRefGoogle ScholarPubMed
Kedem, O. & Katchalsky, A. (1961). A physical interpretation of the phenomenological coefficients of membrane permeability. J. gen. Physiol. 45, 143.CrossRefGoogle ScholarPubMed
Levitt, D. G. (1975). General continuum analysis of transport through pores. I. Proof of Onsager reciprocity postulate for uniform pore. Biophys. J. 15, 533.CrossRefGoogle Scholar
Manning, G. S. (1968). Binary diffusion and bulk flow through a potential energy profile: a kinetic basis for the thermodynamic equations of flow through membranes. J. chein. Phys. 49, 2668.CrossRefGoogle Scholar
Marshall, E. A. (1977). The osmotic flow of an electrolyte through a charged porous membrane. J. theor. Biol. 66, 107.CrossRefGoogle ScholarPubMed
Mauro, A. (1957). Nature of solvent transfer in osmosis. Science, N.Y. 126, 252.CrossRefGoogle ScholarPubMed
Mikulecky, D. C. (1972). A continuum mechanical approach to the flow equations for membrane transport. I. Water flow. Biophys. J. 12, 1642.CrossRefGoogle Scholar
Ray, P. M. (1960). On the theory of osmotic water movement. Pl. Physiol. 35, 783.CrossRefGoogle ScholarPubMed
Renkin, E. M. (1954). Filtration, diffusion and molecular sieving through porous cellulose membranes. J. gen. Physiol. 38, 225.Google ScholarPubMed
Schlögl, R. (1955). Zur Theorie der anomalen Osmose. Z. phys. Chem. 3, 73.CrossRefGoogle Scholar
Smit, J. A. M. & Staverman, A. J. (1970). Comments on ‘Onsager's reciprocal relation. An examination of its application to a simple process.’ J. phys. Chem. 74, 966.CrossRefGoogle Scholar
Spiegler, K. S. (1958). Transport processes in ionic membranes. Trans. Faraday Soc. 54, 1408.CrossRefGoogle Scholar
Stavermann, A. J. (1951). The theory of measurement of osmotic pressure. Recl. Trav, chim. Bays-Bas-Belg. 70, 344.CrossRefGoogle Scholar
Weinstein, J. N. & Caplan, S. R. (1968). Charge mosaic membranes: enhanced permeability and negative osmosis with a symmetrical salt. Science, N.Y. 161, 70.CrossRefGoogle ScholarPubMed
Wyman, C. E. & Kostin, M. D. (1973). Anomalous osmosis: solutions to the Nernst–Planck and Navier–Stokes equations. J. chem. Phys. 59, 3411.CrossRefGoogle Scholar