Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2025-01-03T19:02:43.707Z Has data issue: false hasContentIssue false

NMR studies of enzymatic rates in vitro and in vivo by magnetization transfer

Published online by Cambridge University Press:  17 March 2009

J. R. Alger
Affiliation:
Department of Molecular Biophysics and Biochemistry, Yale University, New Haven CT 06511
R. G. Shulman
Affiliation:
Department of Molecular Biophysics and Biochemistry, Yale University, New Haven CT 06511

Extract

Magnetization transfer techniques are specialized NMR experiments which can measure the rate of chemical reactions while concentrations of products and reactants are maintained constant. These techniques are being used to measure the rates of enzyme catalysed reactions in a variety of living systems and in vitro. The magnetization transfer measurements in vivo of the ATP synthetase and the creatine kinase reactions have been particularly useful in describing rates of major energy transducing reactions involving ATP and phosphocreatine. As a result, a wide range of biomedicai scientists are becoming aware of the potentials of these techniques. The purpose of this review is thus threefold: first, to present a concise, conceptual review of the underlying principles for these non-specialists; secondly, to review the important biochemical applications of the method which have appeared, and thirdly, to discuss potential applications and limitations of the method.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alger, J. R. (1979) Development of dynamic NMR pulse techniques and applications to membrane permeation and peptide bond rotation kinetics. Dissertation, Yale University, New Haven, CT.Google Scholar
Alger, J. R., Den Hollander, J. A. & Shulman, R. G. (1982) In vivo phosphorous-31 NMR saturation transfer studies of ATPase kinetics in S. cerevisiae. Biochemistry 21, 29572963.CrossRefGoogle Scholar
Alger, J. R. & Prestegard, J. H. (1977) Investigation of peptide bond isomerization by magnetization transfer NMR. J. magn. Reson. 27, 127141.Google Scholar
Alger, J. R. & Prestegard, J. H. (1979) NMR study of acetic acid permeation of large unilamellar membranes. Biophys. J. 28, 113.CrossRefGoogle Scholar
Balaban, R. S. & Ferretti, J. A. (1983) Rates of enzyme-catalyzed exchange determined by two dimensional NMR: A study of glucose- 6-phosphate anomerization and isomerization. Proc. natn. Acad. Sci. U.S.A. 80, 12411245.CrossRefGoogle ScholarPubMed
Bessman, S. P. & Geiger, P. J. (1981) Transport of energy in muscle: The phosphorylcreatine shuttle. Science, N.Y. 211, 448452.CrossRefGoogle ScholarPubMed
Brown, T. R., Gadian, D. G., Garlick, P. B., Radda, G. K., Seeley, P. J., & Styles, P. (1978) Creatine kinase activities in skeletal and cardiac muscle measured by saturation transfer NMR. Frontiers of Biological Energetics 2, 13411349.CrossRefGoogle Scholar
Brown, T. R. & Ogawa, S. (1977) 31P nuclear magnetic resonance kinetic measurements on adenylate kinase. Proc. natn. Acad. Sci. U.S.A. 74, 36273631.CrossRefGoogle Scholar
Brown, T. R., Ugurbil, K. & Shulman, R. G. (1977) 31P nuclear magnetic resonance measurements of ATPase kinetics in aerobic Escherichia coli cells. Proc. natn. Acad. Sci. U.S.A. 74, 55515553.CrossRefGoogle ScholarPubMed
Campbell, I. D., Dobson, C. M., Ratcliffe, R. G. & Williams, R. J. P. (1978) Fourier transform NMR pulse methods for the measurement of slow exchange rates. J. magn. Reson. 29, 397417.Google Scholar
Cheshnovsky, D. & Navon, G. (1978) NMR saturation transfer studies of the catalysis of the reversible hydration of acetylaldehyde by carbonic anhydrase. Jerusalem Sym. Quant. Chem. Biochem. 11, 261271.CrossRefGoogle Scholar
Cheshnovsky, D. & Navon, G. (1980) NMR studies of carbonic anhydrase catalyzed reversible hydration of acetaldehyde by the saturation transfer method. Biochemistry 19, 18661873.CrossRefGoogle ScholarPubMed
Dahlquist, F. W., Longmuir, K. J. & DuVernet, R. B. (1975) Direct observation of chemical exchange by a selective pulse NMR technique. J. magn. Reson. 17, 406410.Google Scholar
Farrar, R. & Becker, E. D. (1971) Pulse and Fourier Transform NMR Introduction to Theory and Methods, New York: Academic Press.Google Scholar
Faller, J. W. (1973) Spin saturation labeling In Determination of Organic Structures by Physical Methods (ed. Nachod, F. C. and Zucherman, J. J.). New York: Academic Press.Google Scholar
Forsén, S. & Hoffman, R. A. (1963) Study of moderately rapid chemical exchange reactions by means of nuclear magnetic double resonance. J. chem. Phys. 39, 2892.CrossRefGoogle Scholar
Gadian, D. G. (1982) Nuclear Magnetic Resonance and Its Applications to Living Systems. Oxford: Clarendon Press.Google Scholar
Gadian, D. G., Radda, G. K., Brown, T. R., Chance, E. M., Dawson, M. J. & Wilkie, D. R. (1981) The activity of creatine kinase in frog skeletal muscle studied by saturation-transfer nuclear magnetic resonance. Biochem. J. 194, 215228.CrossRefGoogle ScholarPubMed
Gupta, R. K. & Redfield, A. G. (1970 a). Double nuclear magnetic resonance observation of electron exchange between ferri- and ferro- cytochromes. Science, N.Y. 169, 12041205.CrossRefGoogle Scholar
Gupta, R. K. & Redfield, A. G. (1970 b). NMR double resonance study of azidoferricytochrome C. Biochem. Biophys. Res. Commun. 41, 273.CrossRefGoogle ScholarPubMed
Jeener, J., Meier, B. H., Bachman, P. & Ernst, R. R. (1979) Investigation of exchange processes by two-dimensional NMR spectroscopy. J. chem. Phys. 71, 45464553CrossRefGoogle Scholar
Led, J. J. & Gesmar, H. (1982) The applicability of the magnetization transfer NMR technique to determine chemical exchange rates in extreme cases. The importance of complementary cases. J. magn. Reson. 49, 444453.Google Scholar
Led, J. J., Neesgaard, E. & Johansen, J. T. (1982) Carbon dioxide hydration activity and metal-substrate distances of manganese (II) human carbonic anahydrase B determined by 13C magnetization transfer NMR. FEBS Lett. 147, 7480.CrossRefGoogle Scholar
McConnell, H. M. (1958) Reaction rates by nuclear magnetic resonance. J. chem. Phys. 28, 430431.CrossRefGoogle Scholar
McConnell, H. M., Thompson, D. D. (1957) Molecular transfer of nonequilibrium nuclear spin magnetization. J. chem. Phys. 26, 958.CrossRefGoogle Scholar
Mann, B. E. (1977) The application of the Forsen Hoffman spin-saturation transfer method of measuring rates of exchange to the 13C NMR spectrum of N, N-dimethylformadine. J. magn. Reson. 725, 9194.Google Scholar
Matthews, P. M., Bland, J. L., Gadian, D. G. & Radda, G. K. (1981) The steady-state rate of ATP synthesis in the perfused rat heart measured by 31P NMR saturation transfer. Biochem. biophys. Res. Comm. 103, 10521059.CrossRefGoogle ScholarPubMed
Matthews, P. M., Bland, J. L., Gadian, D. G. & Radda, G. K. (1982) A 31P NMR saturation transfer study of the regulation of creatine kinase. Biochem. biophys. Acta 721, 312320.CrossRefGoogle ScholarPubMed
Meier, B. H. & Ernst, R. R. (1979) Elucidation of chemical exchange networks by two-dimensional NMR spectroscopy: the heptamethyl-benzenonium ion. J. Am. chem. Soc. 101, 64416442.CrossRefGoogle Scholar
Meyer, R. A., Kushmerick, M. J. & Brown, T. R. (1982) Application of 31P NMR spectroscopy to the study of striated muscle metabolism. Am. J. Physiol. 242, C1–C11.CrossRefGoogle Scholar
Morris, G. A. & Freeman, R. (1978) Selective excitation in Fourier transform nuclear magnetic resonance. J. magn. Reson. 29, 433462.Google Scholar
Nageswara Rao, B. D. (1979) Phosphorous-31 NMR of enzyme-bound substrates of kinases in NMR and Biochemistry Symposium in Honor of Mildred Cohn (ed. Opella, S. J. and Lu, P.), pp. 371387. New York: Dekker.Google Scholar
Nunnally, R. L. & Hollis, D. P. (1979) ATP compartmentation in living hearts: A phosphorous NMR saturation transfer study. Biochemistry 18, 36423654.CrossRefGoogle Scholar
Otvos, J. D., Alger, J. R., Colemen, J. E. & Armitage, I. M. (1979) 31P NMR of alkaline phosphatase saturation transfer and metal phosphorous coupling. J. biol. Chem. 254, 17781780.CrossRefGoogle ScholarPubMed
Patterson, A. Jr., & Ettinger, R. (1960) Nuclear magnetic resonance studies of the carbon dioxide-water equilibrium. Z. Elektrochem. 64, 98110.Google Scholar
Perrin, C. L. & Johnston, E. R. (1979) Saturation transfer studies of three-site exchange kinetics. J. magn. Reson. 33, 619626.Google Scholar
Prichard, J. W., Alger, J. R., Behar, K. L., Petroff, O. A. & Shulman, R. G. (1983) Cerebral metabolic studies in vivo by 31P NMR. Proc. natn. Acad. Sci. U.S.A. 80, 27482751.Google ScholarPubMed
Saks, V. A., Rosenshtraukh, L. V., Smirnov, V. N. & Chazov, E. I. (1978) The role of creatine phosphokinase in cellular function and metabolism. Can J. Physiol. Pharmac. 56, 691706.CrossRefGoogle Scholar
Shoemaker, D. P. & Garland, C. W. (1962) Experiments in Physical Chemistry, chapter 2, pp. 1735. New York: McGraw-Hill.Google Scholar
Shoubridge, E. A., Briggs, R. W. & Radda, G. K. (1982) 31P NMR Saturation transfer measurements of the steady state rates of creatine kinase and ATP synthetase in the rat brain. FEBS Lett. 140, 288292.CrossRefGoogle ScholarPubMed
Smith, M. B., Briggs, R. W., Shoubridge, E. A. & Radda, G. K. (1983 a). Manuscript in preparation. (R.W.Briggs, personal communication.)Google Scholar
Smith, M. B., Briggs, R. W., Styles, P. & Radda, G. K. (1983 b). Manuscript in preparation. (R. W. Briggs, personal communication.)Google Scholar
Thulborn, K. R., Briggs, R. W. & Radda, G. K. (1981) In vivo enzyme kinetics of arginine kinase of Carcinus crab by NMR saturation transfer. Biochem. Soc. Trans, 9, 282P.CrossRefGoogle Scholar
Vasavada, K. V., Kaplan, J. I. & Nageswara Rao, B. D. (1980) Density matrix theory of ABC A′B′ + C′ chemical exchange: Application to 31P NMR spectra of interconverting enzyme-bound reactants and products of phosphoryl transfer enzymes. J. magn. Reson. 41, 467482.Google Scholar