Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-03T18:06:49.307Z Has data issue: false hasContentIssue false

A new probe for reaction kinetics—the spectrum of scattered light

Published online by Cambridge University Press:  17 March 2009

Yin Yeh
Affiliation:
Lawrence Radiation Laboratory, University of California, Livermore, California 94550
R. N. Keeler
Affiliation:
Lawrence Radiation Laboratory, University of California, Livermore, California 94550

Extract

The rates of reaction and reaction mechanisms in biological systems are the controlling factors in the metabolism and life cycles of all living organisms. Nevertheless, very little is known today about the details of these processes, particularly in more complicated life forms. For example, addition of certain metallic ions to an enzymic matrix can cause gross changes in enzymic activity (Brewer & Weber, 1966); just how these ions specifically enter into enzymic reactions is a subject of intense interest. The nature of the kinetics of bonding in nucleic acids is also the subject of much research (Eigen, 1967).

Type
Research Article
Copyright
Copyright © Cambridge University Press 1969

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Berne, B. J., Deutch, J. W., Hynes, J. T. & Frisch, H. L. (1968). Light scattering from chemically reactive mixtures. J. chem. Phys. 49, 2864.CrossRefGoogle Scholar
Berne, B. J. & Pecora, R. (1969). Light scattering as a probe of fast reaction kinetics: the depolarized spectrum of Rayleigh scattered light from a chemically reacting medium. J. chem. Phys. 50, 783.CrossRefGoogle Scholar
Blum, L. & Salsburg, Z. W. (1968). Light scattering from a chemically reactive fluid. I. Spectral distribution. J. chem. Phys. 48, 2292.CrossRefGoogle Scholar
Born, M. & Wolf, E. (1965). Principles of Optics, third ed.New York: MacMillan Co.Google Scholar
Brewer, I. M. & Weber, G. (1966). The effect of magnesium on some physical properties of yeast enolase. J. biol. Chem. 241, 2550.CrossRefGoogle ScholarPubMed
Burke, J. J., Hammes, G. G. & Lewis, T. B. (1968). Ultrasonic attenuation measurements in poly-L-glutamic acid solutions. (Preprint.)Google Scholar
Cummins, H. Z., Carlson, F. D., Herbert, T. J. & Woods, G. (1969). Translational and rotational diffusion constants of TMV from Rayleigh linewidths. (Preprint.)Google Scholar
Cummins, H. Z. & Swinney, H. L. (1969). Light beating spectroscopy. In Progr. Optics, vol. VIII, Ed. Wolf, E.. Amsterdam: North Holand Publishing Co. In the Press.Google Scholar
Debye, P. (1944). Light scattering in solutions. J. appl. Phys. 15, 338.CrossRefGoogle Scholar
Doty, P. M., Zimm, B. H. & Mark, H. (1944). Some light scattering experiments with high polymer solutions. J. chem. Phys. 12, 144.CrossRefGoogle Scholar
Dubin, S. B., Lunacek, J. H. & Benedek, G. B. (1967). Observation of the spectrum of light scattered by solutions of biological molecules. Proc. natn. Acad. Sci. 57, 1164.CrossRefGoogle Scholar
Eberhardt, E. H. (1964). Multiplier phototubes for single electron counting. IEEE Trans. Nucl. Sci. (NS), II, 48.CrossRefGoogle Scholar
Eigen, M. & Maeyer, L. DE (1963). Relaxation spectroscopy. In Techniques of Organic Chemistry, vol. VIII, part I, p. 895: ‘Rates and Mechanism, of Reactions.’ Eds. Friess, S. L., Lewis, E. S., and Weissberger, A.. New York: Interscience Publishers.Google Scholar
Eigen, M. (1967). Kinetics of reaction control and information transfer in enzymes and nucleic acids. Fast Reactions and Primary Processes in Chemical Kinetics, Nobel Symposium 5, p. 333. Ed. Stig, Dlaesson. New York: Interscience Publishers.Google Scholar
Jacquinot, P. (1960). New Developments in Interference spectroscopy. In Reports in Progress Physics, vol. XXIII, p. 267. London: Institute of Physics and Physical Society.Google Scholar
Kornberg, A. (1961). Enzymatic Synthesis of DNA. New York: John Wiley and Sons, Inc.Google Scholar
Kurtze, G. & Tamm, K. (1953). Measurements of sound absorption in water and aqueous solutions of electrolytes, Acustica 3, 33.Google Scholar
Landau, L. & Lifshitz, E. (1951). The Classical Theory of Fields. Cambridge, Mass.: Addison-Wesley Press, Inc.Google Scholar
Pancholy, M. & Singal, S. P. (1964). Ultrasonic studies and chemical kinetics. Acustica 14, 174.Google Scholar
Pecora, R. (1964). Doppler shifts in light scattering from pure liquids and polymer solutions. J. chem. Phys. 40, 1604.CrossRefGoogle Scholar
Pecora, R. (1968 a). Spectral distribution of light scattered by monodispersed rigid rods. J. chem. Phys. 48, 4126.CrossRefGoogle Scholar
Pecora, R. (1968 b). Spectral distribution of light scattered from flexible-coil molecules. J. chem. Phys. 49, 1032.CrossRefGoogle Scholar
Schelkunoff, S. A. (1948). Applied Mathematics for Engineers and Scientists, p. 434. New York: van Nostrand and Co.Google Scholar
Schwarz, G. & Seelig, J. (1968). Kinetic properties and the electric field effect of the helix-coil tiansition of poly (λ-benzyl L-glutamate) determined from dielectric relaxation measurements. Biopolymers 6, 1263.CrossRefGoogle ScholarPubMed
Smithson, J. & Litovitz, T. A. (1956). Absorption of sound in manganous sulfate solutions. J. Acoust. Soc. Am. 28, 462.CrossRefGoogle Scholar
Spatz, H. Ch. & Baldwin, R. L. (1965). Study of the folding of the dAT copolymer by kinetic measurements of melting. J. molec. Biol. 11, 213.CrossRefGoogle ScholarPubMed
Takashima, S. (1966). Study of helix-coil transition of DNA by dielectric constant measurement. Biopolymtrs 4, 663.CrossRefGoogle ScholarPubMed
Weber, G. (1966). Polarization of the fluorescence in solutions. In Fluorescence and Phosphorescence Analysis. Ed. Hercules, D. M.. New York: Inter-science Publishers.Google Scholar
Yeh, Y. & Keeler, R. N. (1969). Experimental study of reaction kinetics by light scattering. I. The polarized Rayleigh component. J. chem. Phys. 51, 1120.CrossRefGoogle Scholar