Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2025-01-05T21:15:06.795Z Has data issue: false hasContentIssue false

New looks and outlooks on physical enzymology

Published online by Cambridge University Press:  17 March 2009

Manfred Eigen
Affiliation:
Max-Planck-Institut für physikalische Chemie, Göttingen

Extract

Our scientific age is characterized by the extension of our dimensions to the extreme. Radiotelescopes are searching for echoes from the depth of the universe, while electronmicroscopes and X-ray diffractometers make the atomic and molecular structure of matter visible.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1968

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Castellan, G. W. (1963). Calculation of the spectrum of chemical relaxation times for a general reaction mechanism. Ber. Bunsenges Phys. Chem. 67, 898.CrossRefGoogle Scholar
Chance, B. (1958, 1960). Several papers quoted in ref. 7, pp. 2ff., An Introduction to the Study of Enzymes, by Gutfreund, H. (1965). Oxford:Blackwell Scientific Publications.Google Scholar
Chance, B. et al. (1967). Kinetics of electron transfer reactions in biological systems. In Fast Reactions and Primary Processes in Chemical Kinetics, Nobel Symposium, no. 5. Stockholm: Almquist and Wiksell.Google Scholar
Eigen, M. & De Maeyer, L. (1955). Untersuchungen über die Kinetik der Neutralisation. Z. Elektrochem. 59, 986.Google Scholar
Eigen, M. & De Maeyer, L. (1963). Relaxation methods. In Technique of Organic Chemistry, vol. VIII, part II, pp. 895. Ed. Weissberger, A..Google Scholar
Eigen, M., Ilgenfritz, G. & Kirschner, K. (1968) to be published. Cf. also:Chemische Relaxation in starken elektrischen Feldern, thesis, by Georg Ilgenfritz (1966).Google Scholar
Eigen, M. & Schoen, J.Stoβspannungsverfahren zur Untersuchung sehr schnell verlaufender Ionenreaktionen in wässriger Lösung. Z. Elektrochem. 59, 483.Google Scholar
Gutfreund, H. (1965). An Introduction to the Study of Enzymes, pp. 30ff. Oxford: Blackwell Scientific Publications.Google Scholar
Havsteen, B. H. (1967). Kinetics of the two-step interaction of chymotrypsin with proflavin. J. biol. Chem. 242, 769.CrossRefGoogle ScholarPubMed
Hammes, G. G. & Schimmel, P. R. (1966). Chemical relaxation spectra:calculation of relaxation spectra for complex mechanisms. J. Phys.Chem. 70, 2319.CrossRefGoogle Scholar
Hess, G. P. (1967). Investigation of chymotrypsin-catalised reactions by flow and relaxation techniques, presented at the 154th National Meeting of the American Chemical Society at Chicago.Google Scholar
Huang, Ch.-H. (1968). To be published.Google Scholar
Ilgenfritz, G. & De Maeyer, L. (1968). To be published. Cf. also: Chemische Relaxation in starken elektrischen Feldern, thesis, Georg Ilgenfritz (1966).Google Scholar
Jost, A. (1966). Stosswellen in Flüssigkerten zur Untersuchung von Lösungsreaktionen. Ber. Bunsenges. Phys. Chem. 70, 1057. Cf. also: thesis, Alexander Jost, (1966).Google Scholar
Kirschner, K., Eigen, M., Bittman, R. & Voigt, B. (1966). The binding of nicotinamide-adenine dinucleotide to yeast D-glyceraldehyde-3 -phosphate dehydrogenase: temperature-jump relaxation studies on the mechanism of an allosteric enzyme. Proc. natn. Acad. Sci. U.S.A. 56, 1661.CrossRefGoogle ScholarPubMed
Kirschner, K. et al. (1968). To be published.Google Scholar
Koshland, D. E., Nemethy, G. & Filmer, D. (1966). Comparison of experimental binding data and theoretical models in proteins containing subunits. Biochem. 5, 365–95.CrossRefGoogle ScholarPubMed
Lindskog, S. (1963). Effects of pH and inhibitors on some properties related to metal binding in bovine carbonic anhydrase. J. Biol. Chem. 238, 945.CrossRefGoogle ScholarPubMed
Lineweaver, H. & Burk, D. (1934). The determination of enzyme dissociation constants. J. Am. Chem. Soc. 56, 658.CrossRefGoogle Scholar
McConn, J. & Hess, G. P. (1968). To be published.Google Scholar
Michaelis, L. & Menten, M. L. (1913). Die Kinetik der Invertinwirkung. Biochem. Z. 49, 333.Google Scholar
Monod, I., Wyman, J. & Changeux, P. (1965). On the nature of allosterictransitions: A plausible model.J. Mol. Biol. 12, 88118.Google Scholar
Schwarz, G. (1967). A basic approach to a general theory for cooperative intramolecular conformation changes of linear Biopolymers. Biopolymers 5, 321.CrossRefGoogle Scholar
Riepe, M. E. & Wang, J. (1967). Elucidation of the catalytic mechanism of carbonic anhydrase. J. Am. Chem. Soc. 89, 4229.Google Scholar