Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-23T11:17:44.495Z Has data issue: false hasContentIssue false

The molecular structure of adrenergic and dopaminergic substances

Published online by Cambridge University Press:  17 March 2009

Johan Giesecke
Affiliation:
Department of Medical Biophysics, Karolinska Institutet, S-104 01 Stockholm, Sweden
Hans Hebert
Affiliation:
Department of Medical Biophysics, Karolinska Institutet, S-104 01 Stockholm, Sweden

Extract

At the end of the last century it was established that the different nerve cells along a neuronal path do not come into direct physical contact with one another, but that there are narrow gaps between them, called synapses (Sherrington, 1897; Ramón y Cajal, 1906). Elliot (1905) made the basic experimental observation that the propagation of nerve impulses across a synapse might be mediated by specific chemical agents (see Fig. i). Such substances are now called neurotransmitters, and some 20 different compounds putatively responsible for synaptic transmission in different parts of the nervous system are known at present, e.g. a few recently isolated polypeptides. The most extensively studied transmitters are acetylcholine and the catecholamine group, consisting of dopamine (a), noradrenaline (b), and adrenaline (c).

Type
Research Article
Copyright
Copyright © Cambridge University Press 1979

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ahlquist, R. P. (1948). A study of the adrenotropic receptors. Am. J. Physiol. 153, 586595.CrossRefGoogle ScholarPubMed
Alexander, R. W., Davis, J. N. & Lefkowitz, R. J. (1975). Direct identification and characterisation of β-adrenergic receptors in rat brain. Nature, Lond. 258, 437440.CrossRefGoogle ScholarPubMed
Andersen, A. M. (1975 a). Structural studies of metabolic products of dopamine. III. Crystal and molecular structure of (—)-adrenaline. Acta chem. scand. B29, 239244.CrossRefGoogle ScholarPubMed
Andersen, A. M. (1975 b). Structural studies of metabolic products of dopamine. IV. Crystal and molecular structure of (—)-noradrenaline. Acta chem. scand. B29, 871876.CrossRefGoogle ScholarPubMed
Andersen, A. M. (1976). The crystal and molecular structure of (–)-phenylephrine. Acta chem. scand. B30, 193197.CrossRefGoogle Scholar
Andersen, A. M. (1977). The crystal and molecular structure of tyramine hemihydrate. Acta chem. scand. B31, 162166.CrossRefGoogle Scholar
Andersen, A. M., Mostad, A. & Rømming, CHR. (1972). The crystal and molecular structure of 5-hydroxydopamine hydrochloride. Acta chem. scand. 26, 26702680.CrossRefGoogle ScholarPubMed
Ariéns, E. J. (1967). The structure-activity relationship of β-adrenergic drugs and β-adrenergic blocking drugs. Ann. N.Y. Acad. Sci. 39, 606631.CrossRefGoogle Scholar
Atlas, D., Steer, M. L. & Levitzki, A. (1974). Stereospecific binding of propranolol and catecholamines to the β-adrenergic receptor. Proc. natn. Acad. Sci. U.S.A. 71, 42464248.CrossRefGoogle Scholar
Aurbach, G. D., Fedak, S. A., Woodward, C. J., Palmer, J. S., Hauser, D. & Troxler, F. (1974). β-Adrenergic receptor: Stereospecific interaction of iodinated β-blocking agent with high affinity site. Science, N.Y. 186, 12231225.Google ScholarPubMed
Baker, R. W., Chothia, C., Pauling, P. & Weber, H. P. (1972). Molecular structure of LSD. Science, N.Y. 178, 614615.CrossRefGoogle ScholarPubMed
Baker, R. W., Chothia, C., Pauling, P. & Weber, H. P. (1973). Molecular structures of hallucinogenic substances: Lysergic acid diethylamide, psilocybin, and 2,4,5-trimethoxyamphetamine. Mol. Pharmacol. 9, 2332.Google Scholar
Bannister, R. (1973). Brain's Clinical Neurology, p. 248. London: Oxford University Press.Google Scholar
Beale, J. P. (1972 a). DL-N-[2(4-Hydroxyphenyl)] 1-methyl-ethyl-2(3,5-dihydroxyphenyl)-2-hydroxy-ethylamine hydrobromide, Th1165a, C17H21NO4. HBr. Cryst. Struct. Commun. 1, 6770.Google Scholar
Beale, J. P. (1972 b). DL-N[2(4-Hydroxyphenyl)] I-methyl-ethyl-2(3,5- dihydroxyphenyl)-2-hydroxy-ethylamine hydrobromide, (Th1179), C17H21NO4.HBr. Cryst. Struct. Commun. 1, 223226.Google Scholar
Beale, J. P.(1972 c). DL- 1-(3, 5-Dihydroxyphenyl)-2-(isopropylamino)ethanol sulphate hemiethanolate (alupent, orciprenaline), C11H17NO3. ½H2SO4. ½C2H5OH. Cryst. Struct. Commun. 1, 297300.Google Scholar
Beale, J. P. & Grainer, C. T. (1972). DL-N-t−Butyl−2(4−hydroxy−3. hydroxymethylphenyl)2-hydroxyethylamine, (salbutamol, Ah.3365), C13H21NO3. Cryst. Struct. Commun. 1, 7174.Google Scholar
Belleau, B. (1967). Stereochemistry of adrenergic receptors: Newer concepts on the molecular mechanism of action of catecholamines and antiadrenergic drugs at the receptor level. Ann. N.Y. Acad. Sci. 139,580605.CrossRefGoogle ScholarPubMed
Bergin, R. (1971 a). The Molecular Structure of Some Sympathomimetic Amines and Related Substances. Stockholm: Tryckeri Balder AB.Google Scholar
Bergin, R. (1971 b). Refinement of the structure of (—)-ephedrine hydrochloride. Acta crystallogr. B27, 381386.CrossRefGoogle Scholar
Bergin, R. & Carlström, D. (1971). The crystal and molecular structure of amphetamine sulphate. Acta crystallogr. 1327, 21462152.CrossRefGoogle Scholar
Berthelsen, S. & Pettinger, W. A. (1977). A functional basis for classification of z-adrenergic receptors. Life Sci. 21, 595606.CrossRefGoogle ScholarPubMed
Biel, J. H. (1970). Amphetamine and Related Compounds (ed. Costa, E. and Garattini, S.). New York: Raven Press.Google Scholar
Bijvoet, J. M., Peerdeman, A. F. & Van Bommel, A. J. (1951). Determination of the absolute configuration of optically active compounds by means of X-rays. Nature, Lond. 168, 271272.CrossRefGoogle Scholar
Brittain, R. T., Jack, D. & Ritchie, A. C. (1970). Recent β-adrenoreceptor stimulants. Advances Drug Res. 5, 197253.Google ScholarPubMed
Brown, E. M., Hauser, D., Toxler, F. & Aurbach, G. D. (1976 a). β-Adrenergic receptor interactions. Characterization of iodohydroxybenzylpindolol as a specific ligand. J. biol. Chem. 251, 12321238.CrossRefGoogle ScholarPubMed
Brown, E. M., Rodbard, D., Fedak, S. A., Woodward, C. J. & Aurbach, G. D. (1976 b). β-Adrenergic receptor interactions. Direct comparison of receptor interaction and biological activity. J. biol. Chem. 251, 12391246.CrossRefGoogle ScholarPubMed
Brown, G. M. &Hall, L. H. (1977). The molecular structures and absolute configurations of the hydrobromides of the aporphine alkaloids leucoxine and isoboldine. Acta crystallogr. 1333, 20512057.CrossRefGoogle Scholar
Brown, J. H. & Makman, M. H. (1972). Stimulation by dopamine of adenylate cyclase in retinal homogenates and of cAMP formation in intact retina. Proc. natn. Acad. Sci. U.S.A. 69, 539543.CrossRefGoogle Scholar
Bucourt, R. & Hainaut, D. (1965). Calcul des géométries et des énergies conformationelles du cyclohexane, du cyclohexène et de quelques systèmes bicycliques. Bull. Soc. Chim. France, pp. 13661378.Google Scholar
Burt, D. R., Creese, I. & Snyder, S. H. (1976). Properties of 3H-haloperid of and ‘H-dopamine binding associated with dopamine receptors in call brain membranes. Mol. Pharmacol. 12, 800812.Google Scholar
Burt, D. R., Enna, S. J., Creese, I. & Snyder, S. H. (1975). Dopamine receptor binding in the corpus striatum of mammalian brain. Proc. natn. Acad. Sci. U.S.A. 72, 46554659.CrossRefGoogle ScholarPubMed
Bustard, T. M. & Egan, R. S.The conformation of dopamine hydrochloride. Tetrahedron Lett. 27, 44574469.CrossRefGoogle Scholar
Caillet, J., Claviere, P. & Pullman, B. (1976). On the conformational varieties of adrenaline: The free molecule and the molecule in the crystal. Acta crystallogr. B32, 27402745.CrossRefGoogle Scholar
Cannon, J. G., Smith, R. V., Modiri, A., Sood, S. P., Borgman, R. J., Aleem, M. A. & Long, J. P. (1972). Centrally acting emetics. Preparation and pharmacology of 10-hydroxy-i i-methoxy-aporphine. In vitro enzymatic methylation of apomorphine. J. Med. Chem. 15, 273276.Google Scholar
Carino, M. A. & Horita, A. (1977). Rapid development of tolerance upon central injection of LSD. Life Sci. 20, 4956.CrossRefGoogle ScholarPubMed
Carlsson, A. & Lindqvist, M. (1963). Effect of chlorpromazine or haloperidol on formation of 3-methoxy-tyramine and normetanephrine in mouse brain. Acta Pharmac. 20, 140144.CrossRefGoogle ScholarPubMed
Carlström, D. (1973). The structure of the catecholamines. IV. The crystal structure of (—)-adrenaline hydrogen (+)-tartrate. Acta crystallogr. B29, 161167.CrossRefGoogle Scholar
Carlström, D. (1975). The structure of N, N-dimethyl-2-phenyl-cyclo- propylamine hydrochloride. Acta crystallogr. B31, 21852188.CrossRefGoogle Scholar
Carlström, D. (1976). The crystal structure of 3'-(β-methyl-aminoethyl)- spiro(cyclopentane- i, i '-indene) hydrochloride. Acta crystallogr. B32, 24602463.CrossRefGoogle Scholar
Carlström, D. & Bergin, R. (1967). The structure of the catecholamines. I. The crystal structure of noradrenaline hydrochloride. Acta crystallogr. 23, 313319.CrossRefGoogle ScholarPubMed
Carlström, D. & Hacksell, I.The crystal structure of phenmetrazine hydrochloride. Acta crystallogr. B30, 24772480.CrossRefGoogle Scholar
Carlström, D., Bergin, R. & Falkenberg, G. (1973). Molecular characteristics of biogenic monoamines and their analogs. Q. Rev. Biophys. 6, 257310.CrossRefGoogle ScholarPubMed
Caron, M. G., Beaulieu, M., Raymond, V., Gagnè, B., Drouin, J., Lefkovitz, R. J. & Labrie, F. (1978). Dopamine receptors in the anterior pituitary gland. J. biol. Chem. 253, 22442253.CrossRefGoogle ScholarPubMed
Changeux, J. P. (1975). Handbook of Psychopharmacology, vol. 6 (ed. Iversen, L. L. et al. ), pp. 235301. New York: Plenum Press.Google Scholar
Closse, A. & Hauser, D. (1976). Dihydroergotamine binding to rat brain membranes. Life Sci. 19, 18511864.CrossRefGoogle ScholarPubMed
Connell, P. H. (1958). Amphetamine Psychosis. London: Oxford University Press.Google Scholar
Costall, B., Naylor, R. J., Cannon, J. G. & Lee, T. (1977). Differential activation by some 2-aminotetralin derivatives of the receptor mechanisms in the nucleus accumbens of rat which mediate hyperactivity and stereotyped biting. Eur. J. Pharmacol. 41, 307309.CrossRefGoogle ScholarPubMed
Crasse, I., Burt, D. R. & Snyder, S. H. (1976). Dopamine receptor binding predicts clinical and pharmacological potencies of antischizophrenic drugs. Science, N.Y. 192, 481483.CrossRefGoogle Scholar
Cushny, A. R. (1926). Biological Relations of Optically Isomeric Substances. Baltimore, Maryland: Williams and Wilkins.Google Scholar
Daly, J. W. (1975). Cyclic adenosine 3′,5′-monophosphate role in the physiology and pharmacology of the central nervous system. Biochem. Pharmac. 24, 159164.CrossRefGoogle ScholarPubMed
Dengler, H. J., Michaelson, I. A., Spiegel, H. B. & Titus, E. O. (1962). The uptake of labelled norepinephrine by isolated brain and other tissues of the cat. Int. J. Neuro-pharmacol. 1, 2338.Google Scholar
Domenicano, A., Vaciago, A. & Coulson, C. (1975). Molecular geometry of substituted benzene derivatives. I. On the nature of the ring deformations induced by substitution. Acta crystallogr. B31, 221234.CrossRefGoogle Scholar
Easson, L. H. & Steadman, E. (1933). Studies on the relationship between chemical constitution and physiological action. V. Molecular dissymetry and physiological activity. Biochem. J. 27, 12571266.CrossRefGoogle Scholar
Ehrenpreis, S., Fleisch, J. H. & Mittag, T. W. (1969). Approaches to the molecular nature of pharmacological receptors. Pharmac. Rev. 21, 131181.Google Scholar
Eliel, E. L. (1962). Stereochemistry of Carbon Compounds. New York: McGraw-Hill.Google Scholar
Elliot, T. R. (1905). The actions of adrenaline. J. Physiol. Lond. 31, 401467.CrossRefGoogle Scholar
Ernst, S. R. & Cagle, F. W. Jr (1973). Mescaline hydrobromide. Acta crystallogr. B29, 15431546.CrossRefGoogle Scholar
Fischer, J. J. & Jost, M. C. (1969). Nuclear magnetic resonance studies of drug-receptor interactions. Mol. Pharmacol. 5, 420424.Google ScholarPubMed
Foresti, Serantoni E., Sabatino, P., Riva, Di Sanseverino L. & Sheldrick, G. M. (1977).1,6-Dimethyl-8β-[(benzyloxy-carbonyl)-aminomethyl]- ioα-ergoline, ‘Lyserdol’. Acta crystallogr. B33, 28992902.Google Scholar
Gabrielsen, M. V. & Sørensen, A. M. (1974). The crystal structure of (± )-erythro–2- (2, 5-dimethoxyphenyl) -2-hydroxy- I - methylethylammonium chloride. Acta chem. scand. A28, 11621166.CrossRefGoogle Scholar
Gahlin, K. & Sparf, B. (1978). Differences in post-synaptic α-adrenoceptor populations between isolated cat urethra and various other isolated tissues. Acta Pharmac. 43(11), 4855.CrossRefGoogle Scholar
George, J. M., Kier, L. B. & Hoyland, J. R. (1971). Theoretical considerations of alpha and beta adrenergic activity. Mol. Pharmacol. 7, 328336.Google ScholarPubMed
Giesecke, J. (1973). The crystal and molecular structure of apomorphine hydrochloride hydrate. Acta crystallogr. B29, 17851791.CrossRefGoogle Scholar
Giesecke, J. (1976). The structure of the catecholamines. V. The crystal and molecular structure of epinine hydrobromide. Acta crystallogr. B32, 23372340.CrossRefGoogle Scholar
Giesecke, J. (1979 a). The crystal structure of N, N-dipropyl-5-hydroxy-z-aminotetralin hydrochloride. (Accepted for publication in Acta crystallogr.)Google Scholar
Giesecke, J. (1979 b). Refinement of the structure of dopamine hydrochloride. (Accepted for pub'ication in Acta crystallogr.)Google Scholar
Ginos, J. F., Cotzias, G. C., Tolosa, E., Tang, L. C. & Lamonte, A. J. (1975). Cholinergic effects of molecular segments of apomorphine and dopaminergic effects of N, N–dialkylated dopamines. J. Med. Chem. 18, 11941200.CrossRefGoogle Scholar
Glowinski, J. & Axelrod, J. (1964). Inhibition of uptake of tritiated nor-adrenaline in the intact rat brain by imipramine and structurally related compounds. Nature, Lond. 204, 13181319.CrossRefGoogle ScholarPubMed
Godwin-Austen, R. B., Tomlinson, E. B., Frears, C. C. & Kok, H. W. L. (1969). Effects of l-dopa in Parkinson's disease. Lancet 11, 165168.CrossRefGoogle Scholar
Goldberg, L. I., Sonneville, P. F. & McNay, J. L. (1968). An investigation of the structural requirements for dopamine-like renal vasodilation: Phenethylamines and apomorphine. J. Pharmac. exp. Ther. 163, 188197.Google ScholarPubMed
Greenberg, D. A. & Snyder, S. H. (1977). Selective labelling of α-noradrenergic receptors in rat brain with [3H]dihydroergokryptine. Life Sci. 20, 927932.CrossRefGoogle ScholarPubMed
Grennberg, D. A. & Snyder, S. H. (1978). Pharmacological properties of [3H]dihydroergokryptine binding sites associated with alpha noradrenergic receptors in rat brain membranes. Mol. Pharmacol. 14, 3849.Google Scholar
Greenberg, D. A., U'Prichard, D. C. & Snyder, S. H. (1976). Alphanoradrenergic receptor binding in mammalian brain: Differential labelling of agonist and antagonist states. Life Sci. 19, 6976.CrossRefGoogle ScholarPubMed
Grunwald, G. L., Ruth, J. A., Kroboth, T. R., Kamdar, B. V., Patil, P. N. & Salman, K. N. (1976). Conformationally defined adrenergic agents. I. Potentiation of levarterenol in rat vas deferens by endo- and exo-2-aminobenzobicyclo(2,2,2)octenes, conformationally defined analogs of amphetamine. J. Pharm. Sci. 6, 920923.CrossRefGoogle Scholar
Grunewald, G. L., Walters, D. E., Flynn, D. L., Atwood, S. D., Creese, M. W., Frenz, B. A. & Troup, J. M. (1978). (± )-2-exo- and endo-methylamino- 1,2,3,4-tetrahydro-1,4-ethanonaphthalene hydrochlorides. Acta crystallogr. B34, 34623465.CrossRefGoogle Scholar
Hall, G. G., Miller, C. J. & Schnuelle, G. W. (1975). Conformation energies and electronic structure of phenethylamine and amphetamine. J. theor. Biol. 53, 475480.CrossRefGoogle ScholarPubMed
Hay, D. G., Leng, F. J., Mackay, M. F. & Ternai, B. (1977). Absolute crystal structure of (—) -NN-dimethylamphetamine methiodide. J. Cryst. Molec. Struct. 7, 5967.CrossRefGoogle Scholar
Hearn, R. A. & Bugg, C. E. (1972). The crystal structure of (—)-ephedrine dihydrogen phosphate. Acta crystallogr. B28, 36623667.CrossRefGoogle Scholar
Hearn, R. A., Freeman, G. R. & Bugg, C. E. (1973). Conformational and phosphate binding properties of phenylethanolamines. Crystal structure of ephedrine monohydrogen phosphate monohydrate. J. Am. chem. Soc. 95, 71507154.CrossRefGoogle ScholarPubMed
Hebert, H. (1978 a). The crystal structure and the absolute configuration of (+)-amphetamine dihydrogen phosphate. Acta crystallogr. B34, 611615.CrossRefGoogle Scholar
Hebert, H. (1978 b). The structure of 2-methylamino-1-(spiro [cyclopentane1, I′-indene]-3′-yl)ethanol hydrochloride. Acta crystallogr. B34, 31283131.CrossRefGoogle Scholar
Hebert, H. (1979 a). The crystal structure and the absolute configuration of (—)-dihydroergotamine methane-sulfonate monohydrate. (Accepted for publication in Acta crystallogr.)CrossRefGoogle Scholar
Hebert, H. (1979 b). The crystal structure of phenylpropanolamine hydrochloride. (Accepted for publication in Acta crystallogr.)Google Scholar
Hornykiewicz, O. (1966). Dopamine (3-hydroxy-tyramine) and brain function. Pharmac. Rev. 18, 925964.Google Scholar
International Tables for X-ray Crystallography (1962). Vol III. Birmingham: Kynoch Press.Google Scholar
Ison, R. R., Partington, P. & Roberts, G. C. K. (1973). The conformation of catecholamines and related compounds in solution. Mol. Pharmacol. 9, 756765.Google ScholarPubMed
Iversen, L. L.(1965). Inhibition of norepinephrine uptake by drugs. J. Pharm. Pharmac. 17, 6264.CrossRefGoogle ScholarPubMed
Kakiuchi, S. & Rall, T. W. (1968). The influence of chemical agents on the accumulation of adenosine 3′,5′-phosphate in slices of rabbit cerebellum. Mol. Pharmacol. 4, 367378.Google Scholar
Karlin, A. (1974). The acetylcholine receptor: Progress report. Life Sci. 14, 13851415.CrossRefGoogle ScholarPubMed
Kebabian, J. W. & Calne, D. B. (1979). Multiple receptors for dopamine. Nature, Lond. 277, 9396.CrossRefGoogle ScholarPubMed
Kebabian, J. W., Petzgold, G. L. & Greengard, P. (1972). Dopaminesensitive adenylate cyclase in caudate nucleus of rat brain, and its similarity to the ‘dopamine receptor’. Proc. natn. Acad. Sci. U.S.A. 69, 21452149.CrossRefGoogle Scholar
Kennard, O., Giacovazzo, C., Horn, A. S., Mongiorgi, R. & Riva, Di Sanseverino L. (1974). Crystal and molecular structure of the psychotropic drug 2-(4-ethyl-2,5-dimethoxyphenyl)-I-methylethylamine, (4-ethyl-2,5-dimethoxyamphetamine). J. Chem. Soc., Perkin Trans. 11, 11601163.Google Scholar
Kier, L. B. (1968). The preferred conformations of ephedrine isomers and the nature of the alpha adrenergic receptor. J. Pharmac. exp. Ther. 164, 7581.Google ScholarPubMed
Kier, L. B. (1969). The preferred conformations of noradrenaline and a consideration of the α-adrenergic receptor. J. Pharm. Pharmac. 21, 9396.CrossRefGoogle Scholar
Kolderup, M., Mostad, A. & Rømming, Chr. (1972). The crystal structure of 6-hydroxydopamine hydrochloride. Acta chem. scand. 26, 483493.CrossRefGoogle Scholar
Komiskey, H. L., Bossart, J. F., Miller, D. D. & Patil, P. N. (1978). Conformation of dopamine at the dopamine receptor. Proc. natn. Acad. Sci. U.S.A. 75, 26412643.CrossRefGoogle ScholarPubMed
Lands, A. M., Arnold, A., McAuliff, J. P., Luduena, F. P. & Brown, T. G. (1967). Differentiation of receptor systems activated by sympathomimetic amines. Nature, Lond. 214, 597598.CrossRefGoogle ScholarPubMed
Lefkowitz, R. J., Limbird, L. E., Mukherjee, C. & Caron, M. G. (1976). The β-adrenergic receptor and adenylate cyclase. Biochim. biophys. Acta 457, 139.CrossRefGoogle ScholarPubMed
Lefkowitz, R. J., Mukherjee, C., Coverstone, M. & Caron, M. G. (1974). Stereospecific [2H](—)-alprenolol binding sites, β-adrenergic receptors and adenylate cyclase. Biochem. biophys. Res. Commun. 60, 703709.CrossRefGoogle ScholarPubMed
Levitzki, A. (1978). Catecholamine receptors. Rev. Physiol. Biochem. Pharmacol. 82, 126.CrossRefGoogle ScholarPubMed
Levitzki, A., Atlas, D. & Steer, M. L. (1974). The binding characteristics and number of β-adrenergic receptors on the turkey erythrocyte. Proc. natn. Acad. Sci. U.S.A. 71, 27732776.CrossRefGoogle ScholarPubMed
Levitzki, A., Sevilia, N., Atlas, D. & Steer, M. L. (1975). Ligand specificity and characteristics of the β-adrenergic receptor in turkey erythrocyte plasma membranes. J. molec. Biol. 97,3553.CrossRefGoogle ScholarPubMed
Limbird, L. & Lefkowitz, R. J. (1976). Adenylate cyclase-coupled beta adrenergic receptors: Effect of membrane lipid-perturbing agents on receptor binding and enzyme stimulation by catecholamines. Mol. Pharmacol. 12, 559567.Google ScholarPubMed
Limbird, L. E. & Lefkowitz, R. J. (1978). Agonist-induced increase in apparent β-adrenergic receptor size. Proc. natn. Acad. Sci. U.S.A. 75, 228232.CrossRefGoogle ScholarPubMed
McDermed, J. D., McKenzie, G. M. & Freeman, H. S. (1976). Synthesis and dopaminergic activity of (± )-, (+)-, and (—)-2-dipropylamino-5-hydroxy- 1,2,3,4-tetrahydronaphthalene. J. Med. Chem. 19, 547549.CrossRefGoogle Scholar
McNay, J. L. & Goldberg, L. I. (1966). Comparison of the effects of dopamine, isoproterenol, norepinephrine, and bradykinin on canine renal and femoral blood flow. J. Pharmac. exp. Ther. 151, 2331.Google ScholarPubMed
McPhail, A. T., Sim, G. A., Frey, A. J. & Ott, H. (1966). Fungal metabolites. Part V. X-ray determination of the structure and stereochemistry of new isomers of the ergot alkaloids of the peptide type. J. chem. Soc.(B), 377395.Google Scholar
Maguire, M. E., Van, Arsdale P. M. & Gilman, A. G. (1976). An agonist-specific effect of guanine nucleotides on binding to the beta adrenergic receptor. Mol. Pharmacol. 12, 335339.Google Scholar
Martin, I. L., Baker, G. B., Hamor, T. A., Jennings, W. B. & Paxton, K. (1978). X-ray crystallographic and nuclear magnetic resonance spectroscopic study of p−chlorophenylethylamine hydrochloride. Acta crystallogr. B34, 21762180.CrossRefGoogle Scholar
Mathew, M. & Palenik, G. J. (1971). The crystal structure of dl-isoproterenol sulfate dihydrate. J. Am. chem. Soc. 93, 497502.Google ScholarPubMed
Mathew, M. & Palenik, G. J. (1977). The crystal and molecular structures of (+)-pseudoephedrine and (+)-pseudoephedrine hydrochloride. Acta crystallogr. B33, 10161022.CrossRefGoogle Scholar
Melchiorre, C., Giardina, D., Brasili, L. & Belleau, B. (1978). Molecular properties of the adrenergic α-receptor. Il Farmaco, Ed. Sci. 33, 9991010.Google ScholarPubMed
Miller, R., Horn, A., Iversen, L. & Pinder, R. (1974). Effects of dopaminelike drugs on rat striatal adenylyl cyclase have implications for CNS dopamine receptor topography. Nature, Lond. 250, 238241.CrossRefGoogle ScholarPubMed
Mostad, A., Ottersen, T. & Rømming, Chr. (1971). On the structure of L-DOPA. Acta chem. scand. 25, 35493560.CrossRefGoogle ScholarPubMed
Mostad, A. & Rømming, Chr. (1974). Refinement of the crystal structure of l−DOPA hydrochloride and a comment on the structure of α-amino acids. Acta chem. scand. B28, 11611168.CrossRefGoogle Scholar
Nahorski, S. R. (1976). Association of high affinity stereospecific binding of 3H-propranolol to cerebral membranes with β-adrenoceptors. Nature, Lond. 259, 488489.CrossRefGoogle ScholarPubMed
Neumeyer, J. L., Granchelli, F. E., Fuxe, K., Ungerstedt, U. & Corrodi, H. (1974). Aporphines. II. Synthesis and dopaminergic activity of monohydroxyaporphines. J. Med. Chem. 17, 10901095.CrossRefGoogle Scholar
Neumeyer, J. L., McCarthy, M., Battista, S. P., Rosenberg, F. J. & Teiger, D. G. (1973). Aporphines. 9. Synthesis and pharmacological evaluation of 9,10-dihydroxy-aporphine, 1,2-dihydroxyaporphine, and I,2,9,10-tetrahydroxyaporphine. J. Med. Chem. 16, 12281233.CrossRefGoogle Scholar
Neville, G. A., Deslauriers, R., Blackburn, B. J. & Smith, I. C. P. (1971). Conformational studies of amphetamine and medicinally important derivatives by nuclear magnetic resonance spectroscopy. J. Med. Chem. 14, 717721.CrossRefGoogle ScholarPubMed
Nichols, D. E. (1976). Structural correlation between apomorphine and LSD: Involvement of dopamine as well as serotonin in the actions of hallucinogens. J. theor. Biol. 59, 167177.CrossRefGoogle ScholarPubMed
Nishikawa, M., Kanno, M., Kuriki, H., Sugihara, H., Motohashi, M., Itoh, K., Miyashita, O., Oka, Y. & Sanno, Y. (1975). Selective β-adrenoceptor activities of tetrahydronaphthalene derivatives. Life Sci. 16, 305314.CrossRefGoogle ScholarPubMed
Oberhänsli, W. E. (1971). Die Kristallstruktur des (—)-O-Methyllaurepukins. Helv. chim. Acta 54, 13891395.CrossRefGoogle Scholar
O'Donnell, S. R. & Wanstall, J. C. (1974). Potency and selectivity in vitro of compounds related to isoprenaline and orciprenaline on β-adrenoceptors in the guinea-pig. Br. J. Pharmac. 52, 407417.CrossRefGoogle ScholarPubMed
Ohki, M., Takenaka, A., Shimanouchi, H. & Sasada, Y. (1977). 3-(9-Adenyl)propionyltyramine dihydrate. Acta crystallogr. B33, 29562958.CrossRefGoogle Scholar
Patil, P. N., LaPidus, J. B. & Tye, A. (1970). Steric aspects of adrenergic drugs. J. Pharm. Sci. 59, 12051234.CrossRefGoogle ScholarPubMed
Patil, P. N., Miller, D. D. & Trendelenburg, U. (1975). Molecular geometry and adrenergic drug activity. Pharmac. Rev. 26, 323392.Google Scholar
Pauling, L. (1960). The Nature of the Chemical Bond, p. 325. Ithaca: Cornell University Press.Google Scholar
Paxton, K. & Hamor, T. A. (1977). The crystal and molecular structure of (± )-octopamine hydrochloride. Acta crystallogr. B33, 21432146.CrossRefGoogle Scholar
Pedersen, L., Hoskins, R. E. & Cable, H. (1971). The preferred conformation of noradrenaline. J. Pharm. Pharmac. 23, 216218.CrossRefGoogle ScholarPubMed
Peroutka, S. J., Greenberg, D. A., U'Prichard, D. C. & Snyder, S. H. (1978). Regional variations in alpha adrenergic receptor interactions of [3H]-dihydroergokryptine in calf brain: Implications for a two-site model of alpha receptor function. Mol. Pharmacol. 14, 403412.Google ScholarPubMed
Petrongolo, C., Tomasi, J., Macchia, B. & Macchia, F. (1974). Molecular orbital studies on the mechanism of drug-receptor interaction. 1. Adrenergic drugs. Conformation and reactivity of isoproterenol and 1-(p−nitrophenyl)-z-isopropylaminoethanol. J. Med. Chem. 17, 501507.CrossRefGoogle Scholar
Pfeiffer, C. C. (1956). Optical isomerism and pharmacological action, a generalization. Science, N.Y. 124, 29–3 1.CrossRefGoogle ScholarPubMed
Pieri, L., Keller, H. H., Burkard, W. & DaPrada, M. (1978). Effects of lisuride and LSD on cerebral monoamine systems and hallucinosis. Nature, Lond. 272, 278280.CrossRefGoogle ScholarPubMed
Pinder, R. M., Buxton, D. A. & Green, D. M. (1971). On the dopaminelike action of apomorphine. J. Pharm. Pharmac. 23, 995996.CrossRefGoogle ScholarPubMed
Portoghese, Ph. S. (1967). Stereochemical studies on medicinal agents. IV. Conformational analysis of ephedrine isomers and related compounds. J. Med. Chem. 10, 10571063.CrossRefGoogle ScholarPubMed
Pratesi, P. (1963). Chemical structure and biological activity of catecholamines. Pure & Appl. Chem. 6, 435449.CrossRefGoogle Scholar
Pullman, B., Coubeils, J. L., Courrière, Ph. & Gervois, J. P. (1972). Quantum mechanical study of the conformational properties of phenethylamines of biochemical and medicinal interest. J. Med. Chem. 15, 1723.CrossRefGoogle ScholarPubMed
Ramón, Y Cajal S. (1906). Structures et connexions des neurones. Les prix Nobel en 1906, Stockholm.Google Scholar
Rang, H. P. (1975). Acetyicholine receptors. Q. Rev. Biophys. 7, 283399.CrossRefGoogle Scholar
Robinson, G. A., Butcher, R. W. & Sutherland, E. W. (1971). Cyclic AMP, pp. 150151New York: Academic Press.Google ScholarPubMed
Ross, E. M. & Gilman, A. G. (1977). Reconstitution of catecholaminesensitive adenylate cyclase activity: Interaction of solubilized components with receptor-replete membranes. Proc. natn. Acad. Sci. U.S.A. 74, 37153719.CrossRefGoogle ScholarPubMed
Ruffolo, R. R., Fowble, J. W., Miller, D. D. & Patil, P. N. (1976). Binding of [3H]dihydroazapetine to alpha-adrenoreceptor-related proteins from rat vas deferens. Proc. natn. Acad. Sci. U.S.A. 73, 27302734.CrossRefGoogle ScholarPubMed
Ruffolo, R. R., Turowski, B. S. & Patil, P. N. (1978). Further biochemical characterization of [3H]dihydroazapetine binding to α-adrenoceptorrelated proteins from the rat vas deferens. J. Pharm. Pharmac. 30, 498502.CrossRefGoogle ScholarPubMed
Saari, W. S., King, S. W. & Lotti, V. J. (1973). Synthesis and biological activity of (6aS)-10,11-dihydroxy-aporphine, the optical antipode of apomorphine. J. Med. Chem. 16, 171172.CrossRefGoogle ScholarPubMed
Saari, W. S., King, S. W., Lotti, V. J. & Scriabine, A. (1974). Synthesis and biological activity of some aporphine derivatives related to apomorphine. J. Med. Chem. 17, 10861090.CrossRefGoogle ScholarPubMed
Schmidt, M. J. & Hill, L. E. (1977). Effects of ergots on adenylate cyclase activity in the corpus striatum and pituitary. Life Sci. 20, 789797.CrossRefGoogle ScholarPubMed
Schramm, M. & Selinger, Z. (1975). The function of cyclic AMP and calcium as alternative second messenger in parotid gland and pancreas. J. Cycl. Nucl. Res. 1, 181192.Google ScholarPubMed
Seeman, P., Chau-Wong, M., Tedesco, J. & Wong, K. (1975). Brain receptors for antipsychotic drugs and dopamine: direct binding assays. Proc. natn. Acad. Sci. U.S.A. 72, 43674380.CrossRefGoogle ScholarPubMed
Seeman, P., Lee, T., Chau-Wong, M., Tedesco, J. & Wong, K. (1976). Dopamine receptors in human and calf brains, using 3H-apomorphine and an antipsychotic drug. Proc. natn. Acad. Sci. U.S.A. 73, 43544358.CrossRefGoogle Scholar
Sheppard, H. & Burghardt, C. R. (1974 a). The dopamine-sensitive adenylate cyclase of rat caudate nucleus. I. Comparison with the isoproterenol-sensitive adenylate cyclase of rat erythrocytes. Mol. Pharmacol. 1, 721726.Google Scholar
Sheppard, H. & Burghardt, C. R. (1974 b). Effect of tetrahydroisoquinoline derivatives on the adenylate cyclases of the caudate nucleus (dopaminetype) and erythrocyte (beta-type) of the rat. Res. Commun. Chem. Pathol. Pharmacol. 8, 527534.Google ScholarPubMed
Sherington, C. S. (1897). In Foster, M. (ed), A Text Book of Physiology (7th ed.), part III. London: Macmillan.Google Scholar
Tamura, K., Wakahara, A., Fujiwara, T. & Tomita, K. (1974). The crystal and molecular structure of tyramine hydrochloride. Bull. chem. Soc. Japan 47, 26822685.CrossRefGoogle Scholar
Titeler, M. & Seeman, P. (1978). Selective labelling of α-adrenergic receptors in caudate nucleus by [3H]dihydroergocryptine in the presence of spiperone-blocked dopamine receptors. Proc. natn. Acad. Sci. U.S.A. 75, 22492253.CrossRefGoogle ScholarPubMed
Tittler, M., Weinreich, P. & Seeman, P. (1977). New detection of brain dopamine receptors with 3H-dihydroergocryptine. Proc. natn. Acad. Sci. U.S.A. 74, 37503753.CrossRefGoogle ScholarPubMed
Triggle, D. J. (1971). Neurotransmitter-Receptor Interactions. London: Academic Press.Google Scholar
Triggle, D. J. & Triggle, C. R. (1976). Chemical Pharmacology of the Synapse. London: Academic Press.Google Scholar
Tsang, D. & Samarthji, L. (1978). Accumulation of cyclic adenosine 3′,5′-monophosphate in human cerebellar cortex slices: Effect of monoamine receptor agonists and antagonists. Brain Res. 140, 307313.CrossRefGoogle ScholarPubMed
Tsoucaris, D., De, Rango C., Tsoucaris, G., Zelwer, Ch., Parthasarathy, R. & Cole, F. E. (1973). 1(2-aminoethyl)-3,4,5-trimethoxy-benzene (mescaline) hydrochloride, C11H18C1NO3. Cryst. Struct. Comm. 2, 193196.Google Scholar
Ungerstedt, U. (1971). Stereotaxic mapping of the monoamine pathways in the rat brain. Acta physiol. scand. 82, suppl. 367, 148.CrossRefGoogle Scholar
U'Prichard, D.C., Bylund, D. B. & Snyder, S. H. (1978). (±)-[3H]epi nephrine and (—).-[3H]dihydroalprenolol binding to β- and β-nor-adrenergic receptors in biain, heart, and lung membranes. J. biol. Chem. 253, 50905102.CrossRefGoogle Scholar
U'Prichard, D. C., Greenberg, D. A. & Snyder, S. H. (1977). Binding characteristics of a radiolabelled agonist and antagonist at central nervous system alpha noradrenergic receptors. Mol. Pharmacol. 13, 454473.Google ScholarPubMed
U'Prichard, D. C. & Snyder, S. H. (1977). Differential labelling of α and β-noradrenergic receptors in calf cerebellum membranes with 3H-adrenaline. Nature, Lond. 270, 261263.CrossRefGoogle ScholarPubMed
Vanquelin, G., Geynet, Ph., Hanoune, J. & Strosberg, D. (1977). Isolation of adenylate cyclase-free, β-adrenergic receptor from turkey erythrocyte membranes by affinity chromatography. Proc. natn. Acad. Sci. U.S.A. 74, 37103714.CrossRefGoogle Scholar
Volkman, P. H., Kohli, J. D., Goldberg, L. I., Cannon, J. G. & Lee, T. (1977). Conformational requirements for dopamine-induced vasodilation. Proc. natn. Acad. Sci. U.S.A. 74, 36023606.CrossRefGoogle ScholarPubMed
Weintraub, H. J. R. & Hopfinger, A. J. (1973). Conformational analysis of some phenethylamine molecules. J. theor. Biol. 41, 5375.CrossRefGoogle ScholarPubMed
Williams, L. T. & Lefkowitz, R. J. (1976). Alpha-adrenergic receptor identification by [3H]dihydroergocryptine binding. Science, N.Y. 192, 791793.CrossRefGoogle ScholarPubMed
Williams, L. T., Mullikin, D. & Lefkowitz, R. (1976). Identification of α-adrenergic receptors in uterine smooth muscle membranes by [3H]di-hydroergocryptine binding. J. biol. Chem. 251, 69156923.CrossRefGoogle ScholarPubMed
Young, D. & Scoville, W. B. (1938). Paranoid psychosis in narcolepsy and possible danger. Med. Clins N. Am. 22, 637646.CrossRefGoogle Scholar