Hostname: page-component-599cfd5f84-cdgjw Total loading time: 0 Render date: 2025-01-07T07:08:28.151Z Has data issue: false hasContentIssue false

Molecular quantum mechanics in biology

Published online by Cambridge University Press:  17 March 2009

Inga Fischer-Hjalmars
Affiliation:
Institute of Theoretical Physics, Stockholm

Extract

Among the different fields of natural sciences, physics is concerned with the most basic properties of matter. It is possible to define the necessary physical concepts in a rather unique way and carry out experiments under well-controlled conditions. The interpretation of experiments is therefore comparatively easy. In chemistry the situation is more complicated and the interpretation becomes more ambiguous. Biology finally is characterized by its high degree of complexity, making the detailed analysis difficult. Since the problems of biology are so essential, it is very important to use every tool available to clarify the situation, state the problems as carefully as possible and approximate the solution from as many sides as are feasible. Therefore, not only the methods developed within biology but also those pertinent to chemistry and physics should be applied. For this reason also quantum mechanics may be able to contribute to the elucidation of biological problems.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1969

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Benesi, H. A. & Hildebrand, J. H. (1949). A spectrophotometric investigation of the interaction of iodine with aromatic hydrocarbons. J. Am. Chem. Soc. 71, 2703.CrossRefGoogle Scholar
Caughey, W. C., Deal, R. M., Weiss, C. & Gouterman, M. (1965). Electronic spectra of substituted metal deuteroporphyrins. J. molec. Spectrosc. 16, 451.Google Scholar
Clementi, E. (1967). Study of the electronic structure of molecules. IV. All-electron SCF wavefunction for the ground state of pyridine. J. chem. Phys. 46, 4731.Google Scholar
Clementi, E. (1968). Private communication. To be published.Google Scholar
Coulson, C. A. & Longuet-Higgins, H. C. (1947). The electronic structure of conjugated systems I. General theory. Proc. R. Soc. A 191, 39.Google Scholar
Dewar, M. J. S. & Thompson, C. C. (1966). π-Molecular complexes. III. A critique of charge-transfer, and stability constants for some TCNE-hydrocarbon complexes. Tetrahedron (Suppl.) 7, 97.CrossRefGoogle Scholar
Fischer-Hjalmars, I. (1965). Deduction of the zero differential overlap approximation from an orthogonal atomic orbital basis. J. chem. Phys. 42, 1962.Google Scholar
Fischer-Hjalmars, I. & Nag-Chaudhuri, J. (1968). Electronic structure and spectra of imidazole, purine and some amino-purines. To be published.Google Scholar
Fischer-Hjalmars, I. & Sundbom, M. (1968). Semi-empirical parameters in π-electron systems. III. Heteroatomic molecules containing nitrogen. Acta. chem. scand. 22, 607.Google Scholar
Fox, J. L., Laberge, S. P., Nishimoto, K. & Forster, L. S. (1967). Electronic structure of lumazines and isoalloxazines. Biochim. biophys. Acta 136, 544.Google Scholar
Fox, J. L., Nishimoto, K. & Forster, L. S. (1965). Self-consistent field calculations of isoalloxazine. Biochim. biophys. Acta 109, 626.CrossRefGoogle ScholarPubMed
Fukui, K., Morokuma, K. & Nagata, C. (1960a). A molecular orbital treatment of phosphate bonds of biochemical interest. I. Simple LCAO MO treatment. Bull. chem. Soc. Japan 33, 1214.CrossRefGoogle Scholar
Fukui, K., Nagata, C., Yonezawa, T., Inamoto, Y. & Imamura, A. (1960b). Electronic structure and carcinogenic activity of conjugated compounds, substituted aromatic hydrocarbons, hetero-aromatic compounds and azo compounds. Gann 51, 67.Google Scholar
Fukui, K., Nagata, C., Imamura, A. & Tagashira, Y. (1961). On the relation between electronic structure and carcinogenic activity of urethan (ethylcarbamate) and related compounds. Gann 52, 127.Google Scholar
Fukui, K., Imamura, A. & Nagata, C. (1963). A molecular orbital treatment of phosphate bonds of biochemical interest. II. Metal chelates of adenosine triphosphate. Bull. chem. Soc. Japan 36, 1451.Google Scholar
FuKui, K., Yonezawa, T. & Shingu, H. (1952). A molecular orbital theory of reactivity in aromatic hydrocarbons. J. chem. Phys. 20, 722.Google Scholar
Grabe, B. (1958). The electron distribution in some high energy phosphates and the transfer of energy from catabolism to anabolism. Expl Cell Res. 13, 588.CrossRefGoogle Scholar
Grabe, B. (1958). Electron distribution in some high energy phosphates and transfer of energy from catabolism to anabolism. Biochirn. biophys. Acta 30, 560.CrossRefGoogle ScholarPubMed
Grabe, B. (1959). A quantum mechanical calculation of the electron distribution in carboxyl-phosphate and some related molecules. Arvik Fysik 15, 207.Google Scholar
Grabe, B. (1960). Calculation of energy levels and electron distribution in reduced and oxidized forms of diphosphopyridine nucleotide and of flavine. Arkiv Fysik 17, 97.Google Scholar
Grabe, B. (1964). Quantum mechanical calculations on the isoalloxazine part of flavine. Biopolymers Symposia I, 283.Google Scholar
Grahn, R. (1962). Stability of the hydronium ion, , studied by theoretical methods. Arkiv Fysik 12, 13.Google Scholar
Hill, T. L. & Morales, M. F. (1951). On ‘high energy phosphate bonds’ of biochemical interest. J. Am. Chem. Soc. 73, 1656.CrossRefGoogle Scholar
Hirschfelder, J. O. (1966). A forecast for theoretical chemistry. J. chem. Education 43, 457.CrossRefGoogle Scholar
Hoffmann, R. (1963). An extended Hückel theory. I. Hydrocarbons. J. chem. Phys. 39, 1397.Google Scholar
Hoffmann, T. A. & Ladik, J. (1964). Quantum mechanical considerations on some properties of DNA. Adv. chem. Phys. 7, 84.Google Scholar
Hückel, E. (1931). Quantentheoretische Beitrage zurn Benzolproblem. I. Die Elektronenkonfiguration des Benzols und verwandter Verbindungen. Z. Physik 70, 204.Google Scholar
Isenberg, I., Baird, S.L. & Szent-Györcyi, A. (1961). A note on the interaction of DPNH and FMN. Proc. natn. Acad. Sci. U.S.A. 47, 245.Google Scholar
Isenberg, I. & Szent-Györgyi, A. (1959). On charge transfer complexes between substances of biochemical interest. Proc. natn. Acad. Sci. U.S.A. 45, 1229.Google Scholar
Kalckar, H. M. (1941). The function of phosphate in cellular assimilation. Chem. Rev. 28, 71.Google Scholar
Kierkegaard, P., Norrestam, R., Werner, P.-E., Ehrenberg, A., Eriksson, L. E. G. & Muller, F. (1967). X-ray structure studies in some flavin derivatives. Chem. Comm. 1967, p. 288.Google Scholar
Kotani, M. (1968). Paramagnetic properties and electronic structure of iron in heme proteins. Adv. quant. Chem. 4, 227.Google Scholar
Lennard-Jones, J. E. (1929). The electronic structure of some diatomic molecules. Trans. Faraday Soc. 25, 668.CrossRefGoogle Scholar
Löwdin, P.-O. (1965). Quantum genetics and the aperiodic solid. Some aspects on the biological problems of heredity, mutations, aging, and tumors in view of the quantum theory of the DNA molecule. Adv. quant. Chem. 2, 213.Google Scholar
Lunell, S. & Sperber, G. (1967). Study of the hydrogen bonding in the adenine—thymine, adenine—cytosine, and guanine–thymine base pairs. J. chem. Phys. 46, 2119.Google Scholar
Mantione, M.-J. (1968). Les forces de van der Waals—London dans les complexes dits de transfert de charge. In Molecular Associations in Biology, p. 411. Ed. Pullman, B., NewYork and London: Academic Press.Google Scholar
Mulliken, R. S. (1950). Structures of complexes formed by halogen molecules with aromatic and with oxygenated solvents. J. Am. Chem. Soc. 72, 600.Google Scholar
Mulliken, R. S. (1952). Molecular compounds and their spectra. II. J. Am. Chem. Soc. 74, 811.Google Scholar
Mulliken, R. S. (1955) Electronic population analysis of LCAO-MO molecular wave functions. I. J. chem. Phys. 23, 1833.Google Scholar
Oesper, P. (1950). Sources of the high energy content in energy-rich phosphates. Archs Biochem. 27, 255.Google Scholar
Pariser, R. & Parr, R. G.A semi-empirical theory of the electronic spectra and electronic structure of complex unsaturated molecules: I, II. J. chem. Phys. 21, 466, 767.Google Scholar
Pereira, J. F. & Tollin, G. (1967). Molecular complexes of fiavins: a comparison of flavin-indole and flavin-phenol interactions. Biochim. biophys. Acta 143, 79.Google Scholar
Platt, J. R.Classification and assignments of ultraviolet spectra of conjugated organic molecules. J. opt. Soc. Am. 43, 252.CrossRefGoogle Scholar
Pople, J. A. (1953). Electronic interaction in unsaturated hydrocarbons. Trans. Faraday Soc. 49, 1375.Google Scholar
Pople, J. A., Santry, D. P. & Segal, G. A. (1965). Approximate self-consistent molecular orbital theory. I. Invariant procedures. J. chem. Phys. 43, S 129.Google Scholar
Pullman, A. (1945). Sur une relation entre les répartitions des charges électroniques et le pouvoir cancérogène d'une certaine classe d'hydrocarbures. Comptes rendus des séances de l'Academie des Sciences, Paris. 221, 140.Google Scholar
Pullman, A.Sur les facteurs conditionnant l'apparition de l'activité cancérogène dans les hydrocarbures aromatiques. Compt. rend. 236, 2318.Google Scholar
Pullman, A. (1954). Structure électronique et activité cancérogène des hydrocarbures aromatiques. Bull. Soc. chim. Fr. 1954, 595.Google Scholar
Pullman, A. (1964). The theory of chemical carcinogenesis and the problem of hydrocarbonprotein interactions. Biopolymers Symposia I, 47.Google Scholar
Pullman, A. & Berthod, H. (1968). On the electronic structure of the hydrogen-bond: formamide and its dimers. Theoret. chim. Acta (Bert.) 10, 461.CrossRefGoogle Scholar
Pullman, A. & Pullman, B. (1954). Sur les transformations métaboliques des hydrocarbures cancérogènes. Bull. Soc. chim. Fr. p. 1097.Google Scholar
Pullman, A. & Pullman, B. (1955). Electronic structure and carcinogenic activity of aromatic molecules. New developments. Adv. Cancer Res. 3, 117.Google Scholar
Pullman, A. & Pullman, B. (1959). Elements of a general theory of enzymatic hydrolysis. Proc. natn. Acad. Sci. U.S.A. 45, 1572.CrossRefGoogle ScholarPubMed
Pullman, A. & Pullman, B. (1966). Charge transfer complexes in biochemistry. In Quantum Theory of Atoms, Molecules and the Solid State, p. 345. Ed. Louml;wdin, P.-O.. New York and London: Academic Press.Google Scholar
Pullman, A. & Pullman, B. (1968). Aspects of the electronic structure of the purine and pyrimidine bases of the nucleic acids and of their interactions. Adv. quant. Chem. 4, 267.Google Scholar
Pullman, B. & Pullman, A. (1958). Electron-donor and -acceptor properties of biologically important purines, pyrimidines, pteridines, flavins, and aromatic amino acids. Proc. natn. Acad. Sci. U.S.A. 44, 1197.Google Scholar
Pullman, B. & Pullman, A. (1959). The electronic structure of the respiratory coenzymes. Proc. natn. Acad. Sci. U.S.A. 45, 136.Google Scholar
Pullman, B. & Pullman, A. (1960). Electronic structure of energy-rich phosphates. Radiation Res. (Suppl.) 2, 160.Google Scholar
Rein, R. & Harris, F. E. (1966). Studies of hydrogen-bonded systems. IV. Radiation-induced tunnelling and tautomeric equilibria in the guaninecytosine base pair. J. them. Phys. 45, 1797.Google Scholar
Rimington, C., Mason, S. F. & Kennard, O. (1958). Porphin. Spectrochim. Acta 12, 65.Google Scholar
Roos, B. (1967). A theoretical investigation of the electronic structure of the normal and excited states of copper dimethyl-glyoxime and its adducts with water and amines. Acta chem. scand. 21, 1855.Google Scholar
Sakurai, T. & Hosoya, H. (1966). Charge-transfer complexes of nicotinamide-adenine dinucleotide analogues and fiavin mononucleotide. Biochim. biophys. Acta 112, 459.CrossRefGoogle ScholarPubMed
Sevchenko, A. N., Solov'ev, K. N., Mashenkov, V. A. & Shkirman, S. F. (1966). Low-temperature polarization spectra of porphine derivatives. Soviet Phys. Dokl. 10, 778.Google Scholar
Skancke, A. & Skancke, P. N. (1968). SCF MO studies of some unsaturated cyclic hydrocarbons. Acta them. scand. 22, 175.CrossRefGoogle Scholar
Song, P.-S. (1968). Electronic structure and photochemistry of flavins. IV. σ-Electronic structure and the lowest triplet configuration of a flavin. J. phys. Chem. 72, 536.Google Scholar
Song, P.-S. & Kurtin, W. E. (1967). On triplet states of flavins. J. Am. Chem. Soc. 89, 4248.CrossRefGoogle ScholarPubMed
Sundbom, M. (1968). Semi-empirical molecular orbital studies of neutral porphin, PH2, the dianion P2− and the dication PH42+. Acta them. scand. 22, 1317.CrossRefGoogle Scholar
Szent-Györgyi, A. (1960). Introduction to a Submolecular Biology. New York: Academic Press.Google Scholar
Tollin, G. (1968). Molecular complexes of flavines. In Molecular Associations in Biology, p. 393. Ed. Pullman, B.. Academic Press.Google Scholar
Weiss, C., Kobayashi, H. & Gouterman, M. (1965). Spectra of porphyrins. III. Self-consistent molecular orbital calculations of porphyrin and related ring systems. J. molec. Spectrosc. 16, 415.Google Scholar
Weissbluth, M. & Maling, J. E. (1967). Interpretation of quadrupole splittings and isomer shifts in hemoglobin. J. chem. Phys. 47, 4166.Google Scholar
Zerner, M., Gouterman, M. & Kobayashi, H. (1966). Porphyrins. VIII. Extended Hückel calculations on iron complexes. Theoret. chim. Acta (Berl.) 6, 363.CrossRefGoogle Scholar