Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-09T18:15:34.926Z Has data issue: false hasContentIssue false

Molecular characteristics of biogenic monoamines and their analogs

Published online by Cambridge University Press:  17 March 2009

D. Carlström
Affiliation:
Department of Medical Physics, Karolinska Institutet, S-104 01 Stockholm, Sweden
R. Bergin
Affiliation:
Department of Medical Physics, Karolinska Institutet, S-104 01 Stockholm, Sweden
G. Falkenberg
Affiliation:
Department of Medical Physics, Karolinska Institutet, S-104 01 Stockholm, Sweden

Extract

Until recently there has been very limited information concerning the molecular geometry and conformation of biogenic monoamines and this lack of knowledge has seriously hampered efforts to unravel the structure—function relationships at the molecular level. Nevertheless, several theories have been proposed regarding interaction between the monoamines and their receptor sites. This is especially true for the neurohumoral transmitters dopamine, noradrenaline (norepinephrine) and serotonin (5-hydroxytryptamine), the target areas of which seem to be specific not only in the sense of chemical structure but also from the steric point of view. The well-known differences in biological activity due to chiralty illustrate the importance of the three-dimensional architecture of the molecules and indicate also the presence of stereospecific receptor sites. A detailed knowledge of the conformation of the biogenic monoamines would not only elucidate the requirements upon a natural or synthetic monoamine for proper function but also give indirect information about the geometry of the receptor sites.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1973

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adams, M. J., Hodgkin, D. C. & Reaburn, U. A. (1970). Crystal structure of a complex of mercury (II) chloride and histidine hydrochloride. J. Chem. Soc. p. 2632.CrossRefGoogle Scholar
Ahlquist, R. P. (1948). A study of the adrenotropic receptors. Am. J. Physiol. 153, 586.Google Scholar
Andersen, A. M., Mostad, A. & Rømming, C. (1972). The crystal and molecular structure of 5-hydroxydopamine hydrochloride. Acta chem. stand. 26, 2670.CrossRefGoogle ScholarPubMed
Arai, G., Coppola, J. & Jeffrey, G. A. (1960). The structure of ibogaine. Acta crystallogr. 13, 553.CrossRefGoogle Scholar
Ayyar, R. R. & Chandrasekharan, R. (1967). Crystal structure of L-tryptophan hydrobromide. Curr. Sci. 36, 139.Google Scholar
Bailey, N. A., Harrison, P. M. & Mason, R. (1968). The structure of a bis-(+)-pseudoephedrine complex of copper (II). Chem. Commun. p. 559.Google Scholar
Baker, R. W., Chothia, C., Pauling, P. & Weber, H. P. (1971). Personal communication.Google Scholar
Baker, R. W., Chothia, C., Pauling, P. & Weber, H. P. (1972). Molecular structure of LSD. Science, N.Y. 178, 614.Google Scholar
Barger, G. & Dale, H. H. (1910). Chemical structure and sympathomimetic action of amines. J. Physiol., Lond. 41, 19.CrossRefGoogle ScholarPubMed
Bennett, I., Davidson, A. G. H., Harding, M. M. & Morelle, I. (1970). The crystal structure of DL-histidrne hydrochloride dihydrate. Acta crystallogr. B 26, 1722.CrossRefGoogle Scholar
Bergin, R. (1971 a). The molecular structure of some sympathomimetic amines and related substances. Thesis, Stockholm: Tryckeri Balder AB.Google Scholar
Bergin, R. (1971 b). The structure of the catecholamines. III. The crystal structure of adrenalone hydrochloride monohydrate. Acta crystallogr. B27, 2139.Google Scholar
Bergin, R. (1971 c). Refinement of the structure of (-)-ephedrine hydrochloride. Acta crystallogr. B27, 381.CrossRefGoogle Scholar
Bergin, R. & Carlström, D. (1968). The structure of the catecholamines. II. The crystal structure of dopamine hydrochloride. Acta crystallogr. B 24, 1506.Google Scholar
Bergin, R. & Carlström, D. (1971). The crystal and molecular structure of amphetamine sulphate. Acta crystallogr. B 27, 2146.Google Scholar
Burger, A., Bernabé, M. & Collins, P. W. (1970). 2-(4-imidazolyle)cyclo-propylamine. J. Med. Chem. 13, 33.Google Scholar
Bye, E., Mostad, A. & Rømming, C. (1971). The crystal structure of D, L-tryptophan formate. Acta chem. scand. 25, 364.Google Scholar
Candlin, R. & Harding, M. M. (1967). The crystal structure of bis(histidino) cadmium dihydrate. J. chem. Soc. p. 421.Google Scholar
Candlin, R. & Harding, M. M. (1970). Crystal and molecular structure of D-histidino-L-histidinocobalt (II) dihydrate. J. chem. Soc. p. 384.Google Scholar
Carlström, D. (1973). The structure of the catecholamines. IV. The crystal structure of (-)-adrenaline hydrogen (+)-tartrate. Acta crystallogr. B 29, 161.Google Scholar
Carlström, D. & Bergin, R. (1967). The structure of the catecholamines. I. The crystal structure of noradrenaline hydrochloride. Acta crystallogr. 23, 313.Google Scholar
Casy, A. F., Ison, R. R. & Ham, N. S. (1970). The conformation of histamine in solution: 1H nuclear magnetic resonance study. Chern. Commun. p. 1343.CrossRefGoogle Scholar
Chothia, C. & Pauling, P. (1969). On the conformations of hallucinogenic molecules and their correlation. Proc. natn Acad. Sci. U.S.A. 63, 1063.Google Scholar
Cody, V., Duax, W. L. & Norton, D. A. (1972). Molecular conformation of the thyroxine analogue 3, 5-diido-L-thyronine N-methylacetamide complex (1: 1). Acta crystallogr. B 28, 2244.Google Scholar
Coubeils, J.-L., Courrière, P. & Pullman, B. (1971). Recherches quantiques sur la conformation et la structure électronique de l'histamine. C. r. hebd. Séanc. Acad. Sci., Paris. 272, 1813.Google Scholar
Courrière, P., Coubeils, J.-L. & Pullman, B. (1971). Recherches quantique sur la conformation et la structure électronique de la sérotonine. C. r. hebd. Séanc Acad. Sci., Paris. 272, 1697.Google Scholar
Donohue, J. & Caron, A. (1964). Refinement of the crystal structure of histidine hydrochloride monohydrate. Acta crystallogr. 17, 1178.CrossRefGoogle Scholar
Donohue, J., Lavine, L. R. & Rollett, J. S. (1956). The crystal structure of histidine hydrochloride monohydrate. Acta crystallogr., 9, 655.CrossRefGoogle Scholar
Easson, L. H. & Stedman, E. (1933). Studies on the relationship between chemical constitution and physiological action. V. Molecular dissymmetry and physiological activity. Biochem. J. 27, 1257.Google Scholar
Edington, P. (1970). Ph.D. Thesis, Edinburgh University. Cit. from Madden et al. (1972 b).Google Scholar
Ehrenpreis, S., Fleisch, J. H. & Mittag, T. W. (1969). Approaches to the molecular nature of pharmacological receptors. Pharmac. Rev. 21, 131.Google Scholar
Eliel, E. L. (1962). Stereochemistry of Carbon Compounds. New York: McGraw-Hill.Google Scholar
Ernst, A. M. (1969). The role of biogenic amines in the extra-pyramidal system. Acta physiol. pharmac. néerl. 15, 141.Google ScholarPubMed
Erspamer, V. & Asero, B. (1952). Identification of enteramine, the specific hormone of the enterochromaffin cell system, as 5 -hydroxytryptamine. Nature (Lond) 169, 800.Google Scholar
Falkenberg, G. (1972 a). The molecular structure of some psychoactive indolealkylamines and related substances. Thesis, Stockholm: Tryckeri Balder AB.Google Scholar
Falkenberg, G. (1972 b). The crystal and molecular structure of (N, N)dimethyltryptamine. Acta crystallogr. B 28, 3075.Google Scholar
Falkenberg, G. (1972 c). The crystal and molecular structure of bufotenine (5-hydroxy-(N, N)-dimethyltryptamine). Acta crystallogr. B 28, 3219.CrossRefGoogle Scholar
Falkenberg, G. & Carlström, D. (1971). The crystal and molecular structure of 5-methoxy-(N, N)-dimethyltryptamine hydrochloride. Acta crystallogr. B 27, 411.Google Scholar
Fennessey, J. P. & Nowacki, W. (1970). The crystal and molecular structure of yohimbane hydrobromide. Z. Kristallogr. Kristallgeom. 131, 342.Google Scholar
Franks, W. A. & Van Der Helm, D. (1970). The crystal and molecular structure of the dimeric copper (II) chelate of glycyl-L-leucyl-L-tyrosine. Acta crystallogr. B 27, 1299.Google Scholar
Fraser, K. A. & Harding, M. M. (1967). The crystal and molecular structure of bis(histidino) nickel (II) monohydrate. J. chem. Soc. p. 415.CrossRefGoogle Scholar
Fries, D. C. & Sundaralingam, M. (1971). Molecular structures of amino acids and peptides III. The molecular structure and conformation of potassium L-tyrosine-O-sulphate dihydrate. Acta crystallogr. B27, 401.CrossRefGoogle Scholar
Gaddum, J. H. & Hameed, K. A. (1954). Drugs which antagonize 5-hydroxy- tryptamine. Br. J. Pharmac. Chemother. 9, 240.Google Scholar
George, J. M., Kier, L. B. & Hoyland, J. R. (1971). Theoretical considerations of alpha and beta adrenergic activity. Mol. Pharmacol. 7, 328.Google Scholar
Gessner, P. K. (1970). Pharmacological studies of 5-methoxy-(N, N)dimethyltryptamine, LSD and other hallucinogens. In Psychotomiinetic drugs (ed. Efron, D. H.), pp. 105–18. New York: Raven Press.Google Scholar
Giesecke, J. (1973). The crystal structure of apomorphine hydrochloride. Acta crystallogr. (In the Press.)Google Scholar
Gill, E. W. (1965). Drug receptor interactions. In Progress in Medicinal Chemistry (ed. Ellis, G. P. and West, G. B.), pp. 3985. London: Butterworth.Google Scholar
Green, J. P., Kang, S. & Margolis, S. (1971). Molecular characteristics of histamine and 5-hydroxytryptamine pertinent to binding. Mem. Soc. Endocr. 19, 727.Google Scholar
Green, J. P. & Malrieu, J. P. (1965). Quantum chemical studies of charge-transfer complexes of indoles. Proc. natn Acad. Sci. U.S.A. 54, 659.Google Scholar
Greenberg, M. J. (1960). Structure–activity relationship of tryptamine analogues on the heart of Venus mercenaria. Br. J. Pharmac. Chemother. 15, 375.Google Scholar
Hahn, T. (1957). Structural characteristics of amino acids and carboxylic acids. Z. Kristallogr. Kristallgeom. 109, 438.Google Scholar
Hamilton, J. A. & Steinrauf, L. K. (1967). Crystallographic studies of iodine-containing amino acids. I. Di-iodo-L-tyrosine dihydrate. Acta crystallogr. 23, 817.Google Scholar
Hanson, A. W. (1964). The crystal structures of the I: I complexes of skatole and indole with s-trinitrobenzene. Acta crystallogr. 17, 559.Google Scholar
Harding, M. M. & Cole, S. J. (1963). The crystal structure of di(histidino)zinc pentahydrate. Acta crystallogr. 16, 643.Google Scholar
Harding, M. M. & Long, H. A. (1968). Crystal and molecular structure of bis(L-histidino) cobalt (II) monohydrate. J. chem. Soc. p. 2554.Google Scholar
Hearn, R. A. & Bugg, C. E. (1972). The crystal structure of (-)-ephedrine dihydrogen phosphate. Acta crystallogr. B28, 3662.Google Scholar
Van Der helm, D., Lawson, M. B. & Enwall, E. L. (1971). The crystal structure of bis(L-phenylalaninato) copper (II). Acta crystallogr. B27, 2411.CrossRefGoogle Scholar
Hofmann, A., Heim, R., Brack, A. & Kobel, H. (1958). Psilocybin ein psychotroper Wirkstoff aus dem mexikanischen Rauschpilz Psilocybe mexicana Heim. Experientia 14, 107.CrossRefGoogle Scholar
Holmstedt, B. & Lindgren, J.-E. (1967). Chemical constituents and pharmacology of South American snuffs. In Ethnopharmacological Search for Psychoactive Drugs (ed. Efron, D. H.), p. 339. Washington, D.C.: U.S. Government Printing Office.Google Scholar
Isenberg, I. & Szent-Györgyi, A. (1959). On charge-transfer complexes between substances of biochemical interest. Proc. natn Acad. Sci. U.S.A. 45, 1229.Google Scholar
Kang, S. & Cho, M.-H. (1971). Conformational analysis of 5-hydroxytryptamine and its cation: ψø-energy contour diagram by the INDO molecular orbital method. Theor. chim. acta 22, 176.CrossRefGoogle Scholar
Kang, S., Johnson, C. L. & Green, J. P. (1973). The conformation of 5-hydroxytryptamine. J. med. Chem. (In the Press.)Google Scholar
Karle, I. L., Britts, K. & Gum, P. (1964). Crystal and molecular structure of 3-indolylacetic acid. Acta crystallogr. 17, 496.Google Scholar
Karle, I. L., Dragonette, K. S. & Brenner, S. A. (1965). The crystal and molecular structure of the serotonin-creatinine sulphate complex. Acta crystallogr. 19, 713.CrossRefGoogle ScholarPubMed
Karle, I. L. & Karle, J. (1968). The crystal structure of the alkaloid resetpine, C33H40N2O9. Acta crystallogr. B24, 84.Google Scholar
Karreman, G., Isenbero, I. & Szent-Györgyi, A. (1959). On the mechanism of action of chlorpromazine. Science, N.Y. 130, 1191.CrossRefGoogle ScholarPubMed
Kier, L. B. (1968a). Molecular orbital calculations of the preferred conformations of histamine and a theory on its dual activity. J. Med. Chem. 11, 441.Google Scholar
Kier, L. B. (1968b). Preferred conformation of serotonin and a postulate on the nature of its receptor from molecular orbital calculations. J. pharm. Sci. 57 1188.CrossRefGoogle Scholar
Kier, L. B. (1968c). The preferred conformations of ephedrine isomers and the nature of the alpha adrenergic receptor. J. Pharmac. exp. Ther. 164, 75.Google Scholar
Kier, L. B. (1969). The preferred conformation of norepinephrine and a consideration of the α-adrenergic receptor. J. Pharm. Pharmac. 21, 93.Google Scholar
Kier, L. B. & Truitt, E. B. Jr (1970). The preferred conformation of dopamine from molecular orbital theory. J. Pharmac. exp. Ther. 174, 94.Google Scholar
Kistenmacher, T. J., Hunt, D. J. & Marsh, R. E. (1972). The crystal and molecular structure of L-N-acetylhistidine monohydrate: An application of direct methods to space group P I. Acta crystallogr. B 28, 3352.Google Scholar
Klyne, W. & Prelog, V. (1960). Description of steric relationships across single bonds. Experientia 16, 521.CrossRefGoogle Scholar
Kretsinger, R. H., Cotton, F. A. & Bryan, R. F. (1963). The crystal and molecular structure of di-(L-histidino)-zinc (II) dihydrate. Acta crystallogr. 16, 651.Google Scholar
Lukton, A. (1961). Participation of imidazole in intramolecular hydrogen bonding. Nature, Lond. 192, 422.Google Scholar
Madden, J. J., McGandy, E. L., Seeman, N. C., Harding, M. M. & Hoy, A. (1972 a). The crystal structure of the monoclinic form of L-histidine. Acta crystallogr. B28, 2382.Google Scholar
Madden, J. J., McGandy, E. L. & Seeman, N. C. (1972b). The crystal structure of the orthorhombic form of L-(+)-histidine. Acta crystallogr. B28, 2377.CrossRefGoogle Scholar
Mallikarjunan, M., Rao, S. T., Venkasetan, K. & Sarma, V. R. (1969) Crystal structure of- L-threonyl-L-phenylalanine-p- nitrobenzyl ester hydrobromide. Acta crystallogr. B25, 220.Google Scholar
Mandell, A. & Morgan, M. (1971). Indole(ethyl)amine N-methyltransferase in human brain. Nature (New Biol.) 230, 85.Google Scholar
Marsh, R. E. & Glusker, J. P. (1961). The crystal structure of glycylphenylalanylglycine. Acta crystallogr. 14, 1110.Google Scholar
Martin, W. R., Sloan, J. W., Christian, S. T. & Clements, T. H. (1972). Brain levels of tryptamine. Psychopharmacologia 24, 331.Google Scholar
McIsaac, W. M. (1961). A biochemical concept of mental disease. Post-grad. Med. J. 30, III.Google Scholar
Merril, C. R., Snyder, S. H. & Bradley, D. F. (1966). Inhibition of histamine methyltransferase by serotonin and chlorpromazine derivatives: Electronic aspects. Biochim. biophys. Acta 118, 316.Google Scholar
Mostad, A., Ottersen, T. & Rømming, C. (1971). On the structure of L-dopa. Acta chem. scand. 25, 3549.CrossRefGoogle ScholarPubMed
Neville, G. A., Deslauriers, R., Blackburn, B. J. & Smith, I. C. P. (1971). Conformational studies of amphetamine and medicinally important derivatives by nuclear magnetic resonance spectroscopy. J. Med. Chem. 14, 717.CrossRefGoogle ScholarPubMed
Oda, K. & Koyama, H. (1972). A refinement of the crystal structure of histidine hydrochloride monohydrate. Acta crystallogr. B 28, 639.Google Scholar
Paiva, T. B., Tominaga, M. & Paiva, A. C. M. (1970). Ionization of histamine, N-acetylhistamine, and their iodinated derivatives. J. Med. Chem. 13, 689.CrossRefGoogle ScholarPubMed
Pasternak, R. A. (1956). The crystal structure of glycyl-L-tryptophan dihydrate. Acta crystallogr. 9, 341.Google Scholar
Patil, P. N., Lapidus, J. B. & Tye, A. (1967). Steric aspects of adrenergic drugs. I. Comparative effects on DL isomers and desoxy derivatives. J. Pharmac. exp. Ther. 155, 1.Google Scholar
Patil, P. N., Lapidus, J. B., Campbell, D. & Tye, A. (1967). Steric aspects of adrenergic drugs. II. Effects of DL isomers and desoxy derivatives on the reserpine-pretreated vas deferens. J. Pharmac. exp. Ther. 155, 13.Google ScholarPubMed
Pauling, L. (1948). The Nature of the Chemical Bond, 2nd ed.Ithaca, New York: Cornell University Press.Google Scholar
Pieret, A. F., Durant, F., Griffé, M., Germain, G. & Debaerdemaeker, T. (1970). Structure cristalline de l'ester ethylique de la tyrosine. Acta crystallogr. B26, 2117.Google Scholar
Pletscher, A., Shore, P. A. & Brodie, B. B. (1955). Serotonin release as a possible mechanism of reserpine action. Science, N. Y. 122, 374.Google Scholar
Pullman, B., Coubeils, J.-L., Courrière, P. & Gervois, J.-P. (1972). Quantum mechanical study of the conformational properties of phenethylamines of biochemical and medical interest. J. med. Chem. 15, 17.Google Scholar
Quarles, W. G. (1971). X-ray structure investigation of some substituted indoles, and the X-ray crystal structure of I, Í -bishomocubane. Dissertation 71—9896, University of California, Berkeley.Google Scholar
Rapport, M. M., Green, A. A. & Page, I. H. (1948). Serum vasoconstrictor (serotonin). IV. Isolation and characterization. J. biol. Chem. 176, 1243.Google Scholar
Rérat, C. (1962). Structure cristalline du bichlorhydrate d'histamine. Bull. Soc.fr. Minér. cristallogr. 85, 153.Google Scholar
Ridley, H. E., Chatterjee, S. S., Moran, J. F. & Triggle, D. J. (1969). Studies on the cholinergic receptor. IV. The synthesis and muscarinic activity of 3,7-dimethyl-2,4-dioxo-7-azaspiro[3·4]octane. J. Med. Chem. 12, 931.Google Scholar
Rivier, L. & Lindgren, J.-E. (1972). ‘Ayahuasca’ the South American hallucinogenic drink an ethnobotanical and chemical investigation. Econ. Bot. 26, 101.Google Scholar
Robinson, J. B., Belleau, B. & Cox, B. (1969). 3-Acetoxyquinuclidine methiodide. Resolution, absolute configuration, and sterospecificity of interaction with the acetylcholine binding sites. J. med. chem. 12, 848.Google Scholar
Saavedra, J. M. & Axelrod, J. (1972). Psychotomimetic N.-methylated tryptamines: Formation in brain in vivo and in vitro. Science, N. Y. 175, 1365.Google Scholar
Sabesan, M. N. & Venkatesan, K. (1971). Crystal structure of L-prolyl-Lphenylalanine-O-inethoxy hydrobromide. Z. Kristallogr. Kristallgeom. 134, 230.Google Scholar
Shulgin, A. T. (1970). Pharmacological studies of 5-methoxy-(N, N)- dimethyltryptamine, LSD and other hallucinogens. In Psychotomimetic drugs (ed. Efron, D. H.), p. 119. New York: Raven Press.Google Scholar
Smythies, J. R. (1971). The chemical nature of the receptor site. Int. Rev. Neurobiol. 13, 181.Google Scholar
Smythies, J. R., Benjngton, F. & Morin, R. D. (1970). Specification of a possible serotonin receptor site in the brain. Neurosci. Res. Progr. Bull. 8, 117.Google Scholar
Snyder, S. H. & Merril, C. R. (1965). A relationship between the hallucinogenic activity of drugs and their electronic configuration. Proc. natn Acad. Sci. U.S.A. 54, 258.Google Scholar
Snyder, S. H. & Richelson, E. (1968). Psychedelic drugs: Steric factors that predict psychotrophic activity. Proc. natn Acad. Sci. U.S.A. 60, 206.Google Scholar
Srinivasan, R. (1959). The crystal structure of L-tyrosine hydrohalides II. L-Tyrosinc hydrochloride. Proc. Indian Acad. Sci. A 50, 19.Google Scholar
Stoll, W. A. (1947). Lysergsaure-diäthylarnid, em Phantastikum aus der Mutterkorngruppe. Schweizer Arch. Neurol. Psychiat. 60, 279.Google Scholar
Szent-Györgyi, A. (1960). An Introduction to a Submolecular Biology. New York: Academic Press.Google Scholar
Takigawa, T., Ashida, T., Sasada, Y. & Kakudo, M. (1966). The crystal structures of L-tryptophan hydrochloride and hydrobromide. Bull. Chem. Soc. Japan 39, 2369.CrossRefGoogle ScholarPubMed
Thewalt, U. & Bugg, C. E. (1972a). The crystal and molecular structure of serotonin picrate monohydrate. Acta crystallogr. B 28, 82.Google Scholar
Thewalt, U. & Bugg, C. E. (1972b). The crystal structure of 6-histaminopurine dihydrate. Acta crystallogr. B28, 1767.Google Scholar
Tomita, K. (1972). Personal communication.Google Scholar
Triggle, D. J. (1971). Neurotransmitter—receptor Interactions. London: Academic Press.Google Scholar
Tsoucarls, G. (1961). Etude de la structure de quelques composés de l'ammonium quarternaire. I. Structure du chlorhydrate de β-phényléthylamine. Acta crystallogr. 14, 909.Google Scholar
Tye, A., Patil, P. N. & Lapidus, J. B. (1967). Steric aspects of adrenergic drugs. III. Sensitization by cocaine to isomers of sympathomimetic amines. J. Pharmac. exp. Ther. 155, 24.Google Scholar
Vajnštejn, B. K. & Gurskaja, G. V. (1964). X-ray structure determination of phenylalanine hydrochloride. Dokl. Akad. Nauk. SSSR 156, 312.Google Scholar
Veidis, M. V. & Palenik, G. J. (1969). Conformation and histamine activity. J. Chem. Soc. 196.Google Scholar
Veidis, M. V., Palenik, G. J., Schaffrin, R. & Trotter, J. (1969). Crystal structure of histamine diphosphate monohydrate. J. Chem. Soc. p. 2659.Google Scholar
Wakahara, A., Fujiwara, T. & Tomita, K. (1970 a). X-ray structure determination of tryptamine hydrochloride. Tetrahedron Lett. 57, 4999.Google Scholar
Wakahara, A., Kido, M., Fujiwara, T. & Tomita, K. (1970 b). The crystal and molecular structure of 5-hydroxy-D, L-tryptophan. Tetrahedron Lett. 34, 3003.Google Scholar
Wei, C. H., Doherty, D. & Einstein, J. R. (1972). The crystal and molecular structures of two isostructural N-(haloacetyl)-L-phenylalanyl-L-phenylalanine ethyl esters, C22H25XN2O4. Acta crystallogr. B 28, 907.Google Scholar
Will, G. (1969). Die Kritallstruktur von Imidazol, C3N2H4, bei Zimmertemperatur. Z. Kristallogr. Kristallgeom. 129, 211.Google Scholar
Woolley, D. W. & Shaw, E. (1954). A biochemical and pharmacological suggestion about certain mental disorders. Proc. Natn Acad. Sci. U.S.A. 40, 228.Google Scholar