Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-09T18:15:58.635Z Has data issue: false hasContentIssue false

Microscopic imaging of cells

Published online by Cambridge University Press:  17 March 2009

Zvi Kam
Affiliation:
Polymer Research Department, Weizmann Institute of Science, Rehovot 76100, Israel

Extract

The microworld was revealed to investigators through a glass bead or a hanging water droplet long before optics was understood. The cellular structure of plants was well resolved by such simple magnifying glasses, van Leeuwenhoek, the Dutch merchant and amateur microscopist, was the first to report to the English Royal Society his observations of bacteria with his single-lens microscope in 1665.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abercrombie, M. & Dunn, G. A. (1975). Adhesion of fibroblasts to substratum during contact inhibition observed by interface reflection microscopy. Expl Cell Res. 92, 5762.CrossRefGoogle Scholar
Agard, D. A. (1984). Optical sectioning microscopy: cellular architecture in three dimension. A. Rev. Biophys. Bioeng. 13, 191219.CrossRefGoogle Scholar
Agard, D. A. & Sedat, J. W. (1980). Three-dimensional analysis of biological specimens using image processing techniques. Proc. Soc. Photo-opt. Instr. Eng. 264, 110117.Google Scholar
Agard, D. A. & Sedat, J. W. (1983). Three-dimensional architecture of a polytene nucleus. Nature. 302, 676681.CrossRefGoogle ScholarPubMed
Aguayo, J. B., Blackband, S. J., Schoeniger, J., Mattingly, M. A. & Hintermann, M. (1986). Nuclear magnetic resonance imaging of a single cell. Nature. 322, 190191.CrossRefGoogle ScholarPubMed
Akatov, V. S., Kudryavtsev, A. A. & Lezehner, E. I. (1980). The use of the frustrated total reflection effect for studying the adhesion to glass of mammalian cells. I. Results of theoretical analysis. Tsitologia. 22, 230233.Google Scholar
Albrecht-Buehler, G. (1977). The phagokinetic tracks of 3T3 cells. Cell 11, 395404.CrossRefGoogle Scholar
Albrecht-Buehler, G. (1978). The tracks of moving cells. Sci. Am. 238(4), 6876.CrossRefGoogle ScholarPubMed
Albrecht-Buehler, G. (1984). Movement of nucleus and centrosphere in 3T3 cells. In Cancer Cells. The Transformed Phenotype, vol. 1, pp. 8796. Cold Spring Harbor Laboratory.Google Scholar
Albrecht-Buehler, G. & Goldman, R. D. (1976). Microspike-mediated particle transport towards the cell body during early spreading of 3T3 cells. Expl Cell Res. 97, 329339.CrossRefGoogle Scholar
Allen, R. D. (1985). New observations on cell architecture and dynamics by video enhanced contrast optical microscopy. A. Rev. biophys. Chem. 14, 265290.CrossRefGoogle ScholarPubMed
Allen, R. D. & Allen, N. S. (1983). Video enhanced microscopy with a computer frame memory. J. Microsc. 129, 317.CrossRefGoogle ScholarPubMed
Allen, R. D., Allen, N. S. & Travis, J. L. (1981 b). Video-enhanced contrast, differential interference contrast (AVEC-DIC) microscopy: a new method capable of analyzing microtubule-related motility in the reticulopodial network of Allogromia laticollaria. Cell Motility 1, 291302.CrossRefGoogle Scholar
Allen, R. D., Brault, J. & Moore, R. D. (1963). A new method of polarization microscopic analysis. I. Scanning with a birefringence detection system. J. cell Biol. 18, 223235.CrossRefGoogle ScholarPubMed
Allen, R. D., David, G. B. & Nomarski, G. (1969). The Zeiss-Nomarski differential interference equipment for transmitted light microscopy. Z. wiss. Mikrosk. 69, 193221.Google ScholarPubMed
Allen, R. D., Metuzals, J., Tasaki, I., Brady, S. J. & Gilbert, S. P. (1982). Fast axonal transport in squid giant axon. Science. 218, 11271129.CrossRefGoogle ScholarPubMed
Allen, R. D., Travis, J. L., Allen, N. S. & Yilmaz, H. (1981 a). Video-enhanced polarization (AVEC-POL) microscopy: a new method applied to the detection of birefringence in the motile reticulopodial network of Allogromia laticollaris. Cell Motility 1, 275289.CrossRefGoogle Scholar
Allen, R. D., Weiss, D. G., Hayden, J. H., Brown, D. T., Fujiwake, H. & Simpson, M. (1985). Gliding movement of and bidirectional transport along single native microtubules from squid axoplasm: evidence for an active role of microtubules in cytoplasmic transport. J. cell Biol. 100, 17361752.CrossRefGoogle ScholarPubMed
Amato, P. A., Unanue, E. R. & Taylor, D. L. (1982). Distribution of Actin in Spreading Macrophages: A comparative study on living and fixed cells. J. cell Biol. 96, 750761.CrossRefGoogle Scholar
Andrews, A. R., Rogers, J. D., Swanson, J. J. & Paolini, P. J. (1986). Visualization of the 3-D orientation of sarcomeres in isolated cardiac myocytes using digital image processing. Biophys. J. 49, 91a, Abstract M-Pos 79.Google Scholar
Arndt-Jovin, D. J., Latt, S. A., Striker, G. & Jovin, T. M. (1979). Fluorescene decay analysis in solution and in a microscope of DNA and chromosomes stained with quinacrine. J. Histochem. Cytochem. 27, 8795.CrossRefGoogle Scholar
Arndt-Jovin, D. J., Robert-Nicoud, M., Baurschmidt, P. & Jovin, T. M. (1985). Immunofluorescence localization of Z-DNA in chromosomes: quantitation by scanning microphotometry and computer assisted image analysis. J. cell Biol. 101, 14221433.CrossRefGoogle ScholarPubMed
Arndt-Jovin, D. J., Robert-Nicoud, M., Kaufman, S. J. & Jovin, T. M. (1985). Fluorescence digital imaging microscopy in cell biology. Science. 230, 247256.CrossRefGoogle ScholarPubMed
Arndt-Jovin, D. J., Robert-Nicoud, M., Zarling, D. A., Greider, C, Weimer, E. & Jovin, T. M. (1983). Left-handed Z-DNA in bands of acid-fixed polytene chromosomes. Proc. natn. Acad. Sci. U.S.A. 80, 43444348.CrossRefGoogle ScholarPubMed
Ash, E. A. (1980). Scanned Image Microscopy. New York: Academic Press.Google Scholar
Aubin, J. (1979). Autofluorescence of viable cultured mammalian cells. J. Histochem. Cytochem. 27, 3643.CrossRefGoogle ScholarPubMed
Avnur, Z. & Gieger, B. (1981). The removal of extracellular fibronectin from areas of cell-substrate contact. Cell. 25, 121132.CrossRefGoogle ScholarPubMed
Axelrod, D. (1979). Carbocyanine dye orientation in red cell membrane studied by microscopic fluorescence polarization. Biophys. J. 26, 557574.CrossRefGoogle ScholarPubMed
Axelrod, D. (1981 a). Zero-cost modification of bright field microscopes for imaging phase gradient on cells: Schlieren optics. Cell Biophys. 3, 167173.CrossRefGoogle ScholarPubMed
Axelrod, D. (1981 b). Cell-substrate contacts illuminated by total internal reflection fluorescence. J. cell Biol. 89, 141145.CrossRefGoogle ScholarPubMed
Axelrod, D., Burghardt, T. P. & Thompson, N. L. (1984). Total internal reflection fluorescence. A. Rev. Biophys. Bioeng. 13, 247268.CrossRefGoogle ScholarPubMed
Axelrod, D., Thompson, N. L. & Burghardt, T. (1983). Total internal reflection fluorescence microscopy. J. Microsc. 129, 1928.CrossRefGoogle Scholar
Axelrod, D., Wight, A., Webb, W. W. & Horowitz, A. (1978). Influence of membrane lipids on acetylcholine receptor and lipid probe diffusion in cultured myotube membrane. Biochemistry. 17, 36043609.CrossRefGoogle ScholarPubMed
Bailet, J., Attinger, A., Fisher, A. & Feder, R. (1982). Evaluation of the gas puff Z-pinch as an X-ray lithography and microscopy source. Appl. Phys. Lett. 40, 3344.CrossRefGoogle Scholar
Barak, L. S. & Webb, W. W. (1981). Fluorescent low density lipoprotein for observation of dynamics of individual receptor complexes on cultured human fibroblasts. J. cell Biol. 90, 595604.CrossRefGoogle ScholarPubMed
Barak, L. S. & Webb, W. W. (1982). Diffusion of low density lipoprotein–receptor complex on human fibroblasts. J. cell Biol. 95, 846852.CrossRefGoogle ScholarPubMed
Baro, A. M., Miranda, R., Alaman, J., Garcia, N., Binnig, O., Rohrer, H., Gerber, Ch. & Carrascosa, J. L. (1985). Determination of surface topography of biological specimens at high resolution by scanning tunnelling microscopy. Nature. 315, 253254.CrossRefGoogle ScholarPubMed
Bartels, P. H., Buchroeder, R. A., Hillman, D. W., Jonas, J. A., Kessler, D., Shoemaker, R. M., Shach, R. V., Towner, D. & Vukobratovich, D. (1985). Ultrafast laser scanner microscope. Anal. Quant. Cytol. 3, 5560.Google Scholar
Bauman, J. G. J., Wiegant, J., Van Duiju, G., Luben, N. H., Sondermeijer, P. J. A., Henning, W. & Kubli, E. (1981). Rapid and high resolution hybridization of polytene chromosomes using fluorochrome-labelled RNA. Chromosoma. 84, 118.CrossRefGoogle Scholar
Beese, L., Feder, R. & Sayre, D. (1985). Contact X-ray microscopy: a new technique for imaging cellular fine structure. Biophys. Disc. Nov., pp. 245252.Google Scholar
Bennett, H. S. (1950). The microscopical investigation of biological materials with polarised light. In McClung's Handbook of Microscopical Technique, 3rd edn. (ed. Jones, R. McClung), pp. 591677. New York: Hoeber Inc.Google Scholar
Benson, D. M., Bryan, J., Plant, A. L., Gotto, A. M. Jr., & Smith, L. C. (1985). Digital imaging fluorescence microscopy: spatial heterogeniety of photobleaching rate constants in individual cells. J. cell Biol. 100, 13091323.CrossRefGoogle Scholar
Benson, D. M., Knopp, J. A. & Longmuir, I. S. (1980). Intracellular oxygen measurements of mouse liver cells using quantitative video-fluorescence microscopy. Biochem. biophys. Acta. 591, 187197.Google Scholar
Benson, R., Meyer, R. A., Zaruba, M. & McKhann, G. (1979). Cellular autofluorescence. Is it due to flavins? J. Histochem. Cytochem. 27, 4448.CrossRefGoogle ScholarPubMed
Bereiter-Hahn, J., Fox, C. H. & Thorel, B. (1979). Quantitative reflection contrast microscopy of living cells. J. cell Biol. 82, 767779.CrossRefGoogle ScholarPubMed
Berne, B. J. & Pecora, R. (1976). Dynamic -Light-Scattering. New York: John Wiley & Sons.Google Scholar
Berns, G. S. & Berns, M. W. (1982). Computer-based tracking of living cells. Expl Cell Res. 142, 103109.CrossRefGoogle ScholarPubMed
Berns, M. W., Aist, J., Edwards, J., Strahs, K., Girton, J., McNeil, P., Rattner, B., Kitzes, M., Hammer-Wilson, M., Liaw, L.-H., Siemens, A., Koonce, M., Peterson, S., Brenner, S., Burt, J., Walter, R., Bryant, P. J., Van Dyk, D., Coulombe, J., Cahill, T. & Berns, G. S. (1981). Laser microsurgery in cell and developmental biology. Science. 213, 505513.CrossRefGoogle ScholarPubMed
Berne, M. W., Chong, L. K., Hammer-Wilson, M., Miller, K. & Siemens, A. (1979). Genetic surgery by laser establishment of a clonal population of rat kangaroo cells (PTK2) with indirected deficiency in a chromosomal nucleolar organiser. Chromosoma. 73, 18.CrossRefGoogle Scholar
Berns, M. W., Siemens, A. E. & Walter, R. J. (1984). Mitochondrial fluorescence patterns in rhodamine 6G-stained myocardial cells in vitro. Cell Biophys. 6, 263277.CrossRefGoogle ScholarPubMed
Berns, M. W. & Walter, R. J. (1982). Laser microirradiation and computer video optical microscopy in cell analysis. Cell Analysis. 1, 3354.CrossRefGoogle Scholar
Betzig, E., Harootunian, A., Kratschmer, E., Lewis, A. & Isaacson, M. (1985). Nondestructive optical imaging of surfaces with 500 Å resolution. Bull. Amer. Phys. Soc. 30, 482.Google Scholar
Binnig, G. & Rohrer, H. (1982). Scanning tunneling microscopy. Helv. Phys. Acta. 55, 726735.Google Scholar
Binnig, G. & Rohrer, H. (1985). Scanning tunneling microscopy. Surface Science 152153. 1726.CrossRefGoogle Scholar
Binning, G., Rohrer, H., Gerber, C. & Weibel, E. (1982). Tunneling through a controllable vacuum gap. Appl. Phys. Lett. 40, 178179.CrossRefGoogle Scholar
Blumenfield, V. (1978). The physical aspects of energy transduction in biological systems. Q. Rev. Biophys. 11, 251308.CrossRefGoogle Scholar
Bock, G., Hilchenbach, M., Schauenstein, K. & Wick, G. (1985). Photometric analysis of antifading reagents for immunofluorescence with laser and conventional illumination sources. J. Histochem. Cytochem. 33, 699705.CrossRefGoogle ScholarPubMed
Borejdo, J., Assulin, O., Ando, J. & Putham, S. (1983). Cross bridge orientation in skeletal muscle measured by linear dichroism of an extrinsic chromophore. J. molec. Biol. 158, 391414.CrossRefGoogle Scholar
Borejdo, J. & Putnam, S. (1977). Polarization of fluorescence from single skinned glycerinated rabbit psoas fiber in rigor and relaxation. Biochim. biophys. Acta. 459, 578595.CrossRefGoogle Scholar
Borejdo, J., Putnam, S. & Morales, M. F. (1979). Fluctuations in polarized fluorescence: evidence that muscle cross bridges rotate repetitively during contraction. Proc. natn. Acad. Sci. U.S.A. 76, 63466350.CrossRefGoogle ScholarPubMed
Borle, A. & Snowdowne, K. (1982). Measurement of intracellular free calcium in monkey kidney cells with aequorin. Science. 217, 252254.CrossRefGoogle ScholarPubMed
Boyde, A. (1985). Stereoscopic images in confocal (Tandem scanning) microscopy. Science. 230, 12701272.CrossRefGoogle ScholarPubMed
Boyde, A., Petran, M. & Hadravsky, M. (1983). Tandem scanning reflected-light microscopy of internal features in whole bone and tooth samples. J. Microsc. 132, 17.CrossRefGoogle ScholarPubMed
Brady, S. T., Lasek, R. J. & Allen, R. D. (1982). Fast axonal transport in extruded axoplasm from squid giant axon. Science. 218, 11291131.CrossRefGoogle ScholarPubMed
Brady, S. T., Laser, R. J. & Allen, R. D. (1985). Video microscopy of fast axonal transport in extruded axoplasm: a new model for study of molecular mechanism. Cell Motility. 5, 81101.CrossRefGoogle Scholar
Brakenhoff, G. J. (1979). Imaging modes in confocal scanning light microscopy. J. Microsc. 117, 233242.CrossRefGoogle Scholar
Brakenhoff, G. S., Blom, P. & Barends, P. J. (1979). Confocal scanning light microscopy with high aperture immersion lens. J. Microsc. 117, 219232.CrossRefGoogle Scholar
Brakenhoff, G. J., van der Voort, H. T. M., van Sprousen, E. A., Linnemans, W. A. M. & Nanninga, N. (1985). Three-dimensional chromatin distribution in neuroblastoma nuclei shown by confocal scanning laser microscopy. Nature. 317, 748749.CrossRefGoogle ScholarPubMed
Brigati, D. J., Myerson, D., Leary, J. J., Spalholz, B., Travis, S. Z., Fong, C. K. Y., Hsiung, G. D. & Ward, D. C. (1983). Detection of viral genom in cultured cells and paraffin embedded tissue sections using biotin-labelled hybridization probes. Virology. 126, 3250.CrossRefGoogle Scholar
Burghardt, T. P. & Thompson, N. L. (1984). Effect of planar dielectric interfaces on fluorescence emission and detection. Evanescent excitation with high-aperture collection. Biophys. J. 46, 729738.CrossRefGoogle ScholarPubMed
Burridge, K. & Feramisco, J. R. (1980). Microinjection and localization of a 130 K protein in living fibroblasts. Cell. 19, 587596.CrossRefGoogle Scholar
Byers, H. R. & Fujiwara, K. (1982). Stress fibers in cells in situ: immunofluorescence visualization with antiactin, antimyosin, and anti-alpha actinin. J. cell Biol. 93, 804811.CrossRefGoogle ScholarPubMed
Cassimeris, L. U., Wadsworth, P. & Salmon, E. D. (1986). Dynamics of microtubule depolymerization in monocytes. J. cell Biol. 102, 20232032.CrossRefGoogle ScholarPubMed
Castleman, K. R. (1979). Digital Image Processing. Englewood Cliffs, New Jersey: Prentice-Hall.Google Scholar
Chen, W. T., Hasegawa, E., Hasegawa, T., Weinstock, C. & Yamada, K. M. (1985). Development of cell surface linkage complexes in cultured fibroblasts. J. cell Biol. 100, 11031114.CrossRefGoogle ScholarPubMed
Cheng, P. C., Peng, H. B., Tan, K. H., McGowan, J. W., Feder, R. & Shinozaki, D. M. (1984). Soft X-ray contact microscopy and microchemical analysis of biological specimens. In Springer Series in Optical Sciences: X-Ray Microscopy (ed. Schmal, G. and Rudolph, D.), pp. 285293. New York: Springer-Verlag, Inc.Google Scholar
Cherry, R. J. (1979). Rotational and lateral diffusion of membrane proteins. Biochim. biophys. Acta 559, 298327.CrossRefGoogle ScholarPubMed
Chu, B. (1974). Laser Light Scattering. New York: Academic Press.Google Scholar
Cohen, L. B., Keynes, R. D. & Landowne, D. (1972). Changes in axon light-scattering that accompany the action potential: current dependent components. J. Physiol. 224, 727752.CrossRefGoogle ScholarPubMed
Cohen, R. L., Muirhead, K. A., Gill, J. E., Waggonner, A. S. & Horan, P. K. (1981). A cyanine dye distinguishes between cycling and non-cycling fibroblasts. Nature 290, 593595.CrossRefGoogle ScholarPubMed
Cohen, L. B., Salzberg, B. M., Davilla, H. V., Ross, W. N. & Landowne, D. (1974). Changes in axon fluorescence during activity: molecular probes of membrane potential. J. membr. Biol. 19, 136.CrossRefGoogle ScholarPubMed
Coletta, M., Hofrichter, J., Ferrone, F. A. & Eaton, W. A. (1982). Kinetics of sickle haemoglobin polymerization in single red cells. Nature 300, 194197.CrossRefGoogle ScholarPubMed
Coons, A. (1971). Introduction: the development of immunohistochemistry. Ann. N. Y. Acad. Sci. 177, 59.CrossRefGoogle Scholar
Corliss, D., West, S. S. & Golden, J. F. (1980). Calibration of a microspectrofluorometer in absolute units of radiation. Appl. Opt. 19, 32903294.CrossRefGoogle Scholar
Cosslett, V. E. & Nixon, W. C. (1952). An experimental X-ray shadow microscope. Proc. R. Soc. Land. B 140, 422431.Google ScholarPubMed
Cosslett, V. E. & Nixon, W. C. (1960). X-ray Microscopy. Cambridge, U.K.: Cambridge University Press.Google Scholar
Cox, I. J. (1984). Scanning optical fluorescence microscopy. J. Microsc. 133, 149154.CrossRefGoogle ScholarPubMed
Curtis, A. S. G. (1964). The mechanism of adhesion of cells to glass. A study by interference reflection microscopy. J. cell Biol. 20, 199215.CrossRefGoogle Scholar
Daily, B., Elson, E. L. & Zahalak, G. I. (1984). Cell poking. Determination of the elastic area compressibility modulus of the erythrocyte membrane. Biophys. J. 45, 671682.CrossRefGoogle ScholarPubMed
Danscher, G. (1981). Localization of gold in biological tissue. A photochemical method for light and electron microscopy. Histochemistry 71, 8188.CrossRefGoogle Scholar
Danscher, G. & Norgaard, J. (1983). Light microscopic visualization of colloidal gold on resin-embedded tisue. J. Histochem. Cytochem. 31, 13941398.CrossRefGoogle Scholar
Darzynkcewicz, Z., Traganos, F., Kapuscinsky, J., Staiano-Coico, L. & Melamed, M. (1984). Accessibility of DNA in situ to various fluorochromes: relationship to chromatin changes during erythroid differentiation of Friend leukemic cells. Cytometry 5, 355363.CrossRefGoogle Scholar
Davoust, J., Devaux, P. F. & Leger, L. (1982). Fringe pattern-photobleaching, a new method for the measurement of transport coefficients of biological macromolecules. EMBO J. 1, 12331238.CrossRefGoogle ScholarPubMed
De Brabander, M., Geuens, G., Nuydens, R., Moeremans, M. & De Mey, J. (1985). Probing microtubule-dependent intracellular motility with nanometer particle video ultramicroscopy (nanovid ultramicroscopy). Cytobios. 43, 273283.Google ScholarPubMed
De Laat, S. W., Van Der Saag, P. T., Elson, E. L. & Schlessinger, J. (1980). Lateral diffusion of membrane lipids and proteins during the cell cycle of neuroblastoma cells. Proc. natn. Acad. Set. U.S.A. 77, 15261528.CrossRefGoogle ScholarPubMed
DeMey, J., Lambert, A., Bajer, A., Moeremans, M. & De Brabander, M. (1982). Visualization of microtubules in interphase and mitotic plant cells of Haemanthus endosperm with the immuno-gold staining method. Proc. natn. Acad. Set. U.S.A. 79, 18981902.CrossRefGoogle Scholar
Dovichi, J. C., Martin, J. C., Jett, J. H., Trkula, M. & Keller, R. (1983). An approach to single molecule detection by laser induced fluorescence. Proc. SPIE – Int. Soc. Opt. Eur. 426, 7173.Google Scholar
Dvorak, J. A. & Stotler, W. (1971). A controlled-environment culture system for high resolution light microscopy. Expl Cell Res. 68, 144148.CrossRefGoogle ScholarPubMed
Edidin, M., Zagyansky, Y. & Lardner, T. J. (1976). Measurements of membrane protein lateral diffusion in single cells. Science 191, 466468.CrossRefGoogle ScholarPubMed
Edidin, M. & Zuniga, M. (1984). Lateral diffusion of wild-type and mutant Ld antigens in L cells. J. cell Biol. 99, 23332335.CrossRefGoogle ScholarPubMed
Edwards, C. A. & O'Brien, W. D. Jr. (1985). Speed of sound in mammalian tendon threads using various reference media. IEEE Trans. Sonics Ultrasonics SU 32, 351354.CrossRefGoogle Scholar
Edwards, J. S., Chen, S.-W. & Berns, M. W. (1981). Cereal sensory development following laser microlesions of embryonic apical cells in acheta domesticus. J. Neurosci. 1, 250258.CrossRefGoogle Scholar
Egger, M. D. & Petran, M. (1967). New reflected-light microscope for viewing unstained brain and ganglion cells. Science 157, 305307.CrossRefGoogle ScholarPubMed
Ellis, G. W. (1978). In ICN-UCLA Symposium on Molecular and Cellular Biology, Cell Reproduction, vol. 12 (ed. Dirksen, E. R., Prescott, D. M. and Fox, C. F.), p. 465. New York: Academic Press.Google Scholar
Elson, E. (1987). Fluorescence correlation spectroscopy and photobleaching recovery. (in press).Google Scholar
Elson, E. L. & Reidler, J. A. (1979). Analysis of cell surface interaction by measurements of lateral mobility. J. Supramol. Struc. 12, 481489.CrossRefGoogle ScholarPubMed
Engstrom, A. (1946). Quantitative micro- and histochemical elementary analysis by Roentgen absorption spectrography. Acta Radiol. Suppl. 63, 1106.Google Scholar
Erhardt, A., Zinser, G., Komitowski, D. & Bille, J. (1985). Reconstructing 3-D light-microscopic images by digital image processing. Appl. Opt. 24, 194200.CrossRefGoogle ScholarPubMed
Fay, F. S. & Fogarty, K. (1983). Computerized 3-dimensional immunocytochemistry in single cells. J. cell Biol. 97, 294a.Google Scholar
Feder, R., Banton, V., Sayre, D., Costa, J., Baldini, M. & Byung, K. (1985). Direct imaging of live human platelets by flash x-ray microscopy. Science 227, 6364.CrossRefGoogle ScholarPubMed
Feder, R., Costa, J., Chaudhari, P. & Sayre, D. (1981). Improved detail in biological soft X-ray microscopy: study of blood platelets. Science (Wash., D.C.) 212, 13981400.CrossRefGoogle ScholarPubMed
Felder, S. (1984). Mechanics and molecular dynamics of fibroblast locomotion. Ph.D. Thesis, Washington University St Louis, MO.Google Scholar
Feramisco, J. (1979). Microinjection of fluorescently labelled α-actinin into living fibroblasts. Proc. natn. Acad. Sci. U.S.A. 76, 39673971.CrossRefGoogle ScholarPubMed
Fernandez, S. M. & Berlin, R. D. (1976). Cell surface distribution of lectin receptors determined by resonance energy transfer. Nature 264, 411415.CrossRefGoogle ScholarPubMed
Forer, A. (1966). Local reduction of spindle fiber birefringence in living Nephrotoma Suturalis (Loew) spermatocytes, induced by ultraviolet microbeam irradiation. J. cell Biol. 25, 95117.CrossRefGoogle Scholar
Fujiwara, K. & Pollard, T. (1980). Techniques for localizing contractile proteins with fluorescent antibodies. In Current Topics in Developmental Biology, vol. 14, part 2 (ed. Friedlander, M.), pp. 271296. Academic Press, NY.Google Scholar
Gawlitta, W., Stockem, W., Wehland, J. & Weber, K. (1980). Organization and spatial arrangement of fluorescein-labeled native actin microinjected into normal locomoting and experimentally influenced amoeba proteus. Cell Tiss. Res. 206, 181191.CrossRefGoogle ScholarPubMed
Gay, P. (1967). An Introduction to Crystal Optics. New York: Longmans.Google Scholar
Geiger, B. (1979). A 130 K protein from chicken gizzard: its localization at the termini of microfilament bundles in cultured chicken cells. Cell 18, 193205.CrossRefGoogle Scholar
Geiger, B. (1983). Membrane-cytoskeleton interaction. Biochim. Biophys. Acta 737, 3O5341.CrossRefGoogle ScholarPubMed
Geiger, B., Rinnerthaler, G., Hinssen, H. & Small, V. J. (1984). Microfilament organizing centers in areas of cell contacts: cytoskeletal interactions during cell attachment and locomotion. J. cell Biol. 99, 83s–91s.CrossRefGoogle ScholarPubMed
Geiger, B. & Singer, S. J. (1979). The participation of α-actinin in the capping of cell membrane components. Cell 16, 213222.CrossRefGoogle ScholarPubMed
Geisow, M. J., Hart, P. D'A. & Young, M. R. (1981). Temporal changes of lysosome and phagosome pH during phagolysosome formation in macrophages: studies by fluorescence spectroscopy. J. cell Biol. 89, 645652.CrossRefGoogle ScholarPubMed
Gilbert, S. P., Allen, R. D. & Sloboda, R. D. (1985). Translocation of vesicles from squid axoplasm on flagellar microtubules. Nature 315, 245248.CrossRefGoogle ScholarPubMed
Gilbert, S. P. & Sloboda, R. D. (1984). Bidirectional transport of fluorescently labelled vesicles introduced into extruded axoplasm of squid Loligo pealei. J. cell Biol. 99, 445452.CrossRefGoogle ScholarPubMed
Giloh, H. & Sedat, J. W. (1982). Fluorescence microscopy: reduced photobleaching of rhodamine and fluorescein protein conjugates by n-propyl gelate. Science 217, 12521255.CrossRefGoogle Scholar
Glacy, S. (1983). Pattern and time course of Rhodamine-actin incorporation in cardiac myocytes. J. cell Biol. 96, 11641167.CrossRefGoogle ScholarPubMed
Glasser, S., Miller, J., Xuong, N. G. & Selverston, A. (1977). Computer reconstruction of invertebrate nerve cells. In Computer Analysis of Neuronal Structures (ed. Lindsay, R. D.), pp. 2158. New York: Plenum.CrossRefGoogle Scholar
Glazer, A. N. & Stryer, L. (1983). Fluorescent tandem phycobiliprotein conjugates. Biophys. J. 43, 383386.CrossRefGoogle ScholarPubMed
Glazer, A. N. & Stryer, L. (1984). Phycofluor probes. Trends in Biochem. Sci. 12, 423427.CrossRefGoogle Scholar
Golan, D. E. & Veatch, W. R. (1980). Lateral mobility of band 3 in the human erythrocyte membrane studied by fluorescence photobleaching recovery: evidence for control by cytoskeletal interactions. Proc. natn. Acad. Sci. U.S.A. 77, 25372541.CrossRefGoogle ScholarPubMed
Goss, S. A. & O'Brien, W. D. Jr. (1979). Direct ultrasonic velocity measurements of mammalian collagen threads. J. Acoust. Soc. Amer. 65, 507511.CrossRefGoogle Scholar
Graessman, A., Graessman, M. & Mueller, C. (1980). Microinjection of early SV40 DNA fragments and T antigen. Methods Enzymol. 65, 816825.CrossRefGoogle Scholar
Graessmann, M. & Graessmann, A. (1976). Proc. natn. Acad. Sci. U.S.A. 77, 366370.CrossRefGoogle Scholar
Graham, R. C. & Karnovsky, M. (1966). The early stages of absorption of injected horseradish peroxidase in the proximal tubules of mouse kidney: ultrastructural cytochemistry by a new technique. J. Histochem. Cytochem. 14, 291302.CrossRefGoogle ScholarPubMed
Grinvald, A. (1985). Real-time optical mapping on neuronal activity: from single growth cones to the intact mammalian brain. Ann. Rev. Neurosci. 8, 263305.CrossRefGoogle Scholar
Grinvald, A. & Farber, I. (1981). Optical recording of Ca2+ action potentials from growth cones of cultured neurons using a laser microbeam. Science 212, 11641169.CrossRefGoogle Scholar
Groeschel-Stewart, U. (1980). Immunochemistry of cytoplasmic contractile proteins. Int. Rev. Cytol. 65, 193254.CrossRefGoogle Scholar
Gross, D. & Webb, W. W. (1983). Time lapse video recording of individual molecular motions of LDL-receptor complex on living human fibroblasts. Biophys. J. 41 (2, pt. 2), 215a (Abstr.).Google Scholar
Gruenbaum, Y., Hochstrasser, M., Mathog, D., Saumweber, H., Agard, D. A. & Sedat, J. W. (1984). Spatial organization of the Drosophila nucleus: a three-dimensional cytogenetic study. J. Cell Sci. Suppl. 1, 223234.CrossRefGoogle ScholarPubMed
Grynkiewicz, G., Poenie, M. & Tsien, R. Y. (1985). New generation of Ca2+ indicators with greatly improved fluorescence properties. J. Biol. Chem. 260, 34403450.CrossRefGoogle ScholarPubMed
Gurr, E. (1960). Encyclopedia of Microscopic Stains. London: Leonard Hill.Google Scholar
Hafen, E., Kuroiwa, A. & Gahring, W. J. (1984). Spatial distribution of transcripts from the segmentation gene fushi tarazu during Drosophila embryonic development. Cell 37, 833841.CrossRefGoogle ScholarPubMed
Hafen, E., Levine, M., Garber, R. L. & Gehring, W. J. (1983). An improved in situ hybridization method for the detection of cellular RNAs in Drosophila tissue sections and its application for localizing transcripts of the hemeotic gene Antennapedia gene complex. EMBO J. 2, 617623.CrossRefGoogle ScholarPubMed
Haigler, H. T., Ash, J. F., Singer, S. J. & Cohen, S. (1978). Visualization of fluorescence of the binding and internalization of epidermal growth factor in human carcinoma cells A-431. Proc. natn. Acad. Sci. U.S.A. 75, 33173321.CrossRefGoogle Scholar
Halpern, J. & Hinkle, P. M. (1981). Direct visualization of receptors for thyrotropin releasing hormone with a fluorescein-labeled analogue. Proc. natn. Acad. Sci. U.S.A. 78, 587591.CrossRefGoogle Scholar
Hansen, E. W., Allen, R. D., Strohbehn, J. W., Chaffee, M. A., Farrington, D. L., Murray, W. F., Pilsbury, T. A. & Riley, M. F. (1985). Laser scanning phase modulation microscope. J. Microsc. 140, 371381.CrossRefGoogle ScholarPubMed
Hard, R., Zeh, R. & Allen, R. D. (1977). Phase randomized laser illumination for microscopy. J. Cell Sci. 23, 335343.CrossRefGoogle ScholarPubMed
Hayden, J. H. & Allen, R. D. (1984). Detection of single microtubules in living cells: particle transport can occur in both directions along the same microtubule. J. cell Biol. 99, 17851793.CrossRefGoogle ScholarPubMed
Hayden, J. H., Allen, R. D. & Goldman, R. D. (1983). Cytoplasmic transport in keratocytes: direct visualization of particle translocation along microtubules. Cell Motility 3, 119.CrossRefGoogle ScholarPubMed
Hazum, E. & Nimrod, A. (1982). Photoaffinity labeling and fluorescence distribution studies of gonadotropin-releasing hormone receptors in ovarian granulosa cells. Proc. natn. Acad. Sci. U.S.A. 79, 17471750.CrossRefGoogle ScholarPubMed
Heath, J. P. & Dunn, G. A. (1978). Cell to substratum contacts of chicken fibroblasts and their relation to the microfilament system. A correlated interference reflection and high-voltage electron microscopic study. J. Cell Sci. 29, 197212.CrossRefGoogle Scholar
Hedges, L. K. (1984). Microscopic nuclear magnetic resonance imaging. Doctoral Dissertation, State University of New York, Stony Brook.Google Scholar
Heiple, J. M. & Taylor, D. L. (1980). Intracellular pH in single motile cells. J. cell Biol. 86, 885890.CrossRefGoogle ScholarPubMed
Heiple, J. & Taylor, D. L. (1982). An optical technique for measurement of intracellular pH in single living cells. In Intracellular pH: its Measurement, Regulation and Utilization in Cellular Functions (ed. Nuccitelli, R. and Deamer, D.), pp. 2254. New York: Allan Liss.Google Scholar
Heiserman, J. E. (1982). Cryogenic acoustic microscopy: the search for ultrahigh resolution using cryogenic liquids. Physica B + C 109110, 19781989.CrossRefGoogle Scholar
Henis, Y. I. & Elson, E. L. (1981). Inhibition of the mobility of mouse lymphocyte surface immunoglobulins by locally bound concanavalin A. Proc. natn. Acad. Sci. U.S.A. 78, 10721076.CrossRefGoogle ScholarPubMed
Herman, B. & Albertini, D. F. (1984). A time-lapse video image intensification analysis of cytoplasmic organelle movements during endosome translation. J. cell Biol. 98, 565576.CrossRefGoogle Scholar
Herman, B. & Fernandez, S. (1982). Dynamics and topographical distribution of surface glycoproteins during myoblast fusion. A resonance energy transfer study. Biochemistry 21, 32753283.CrossRefGoogle ScholarPubMed
Hermann, P., Steinhauser, K.-A., Gahler, R., Steyerl, A. & Mampe, W. (1985). Neutron microscope. Phys. Rev. Lett. 54, 19691972.CrossRefGoogle Scholar
Hiramoto, Y., Hamaguchi, Y., Shoji, Y. & Shimoda, S. (1981 a). Quantitative studies on the polarization optical properties of living cells. I. Microphotometric birefringence detection system. J. cell Biol. 89, 115120.CrossRefGoogle ScholarPubMed
Hiramoto, Y., Hamaguchi, Y., Shoji, Y. & Shimoda, S. (1981 6). Quantitative studies on the polarization optical properties of living cells. II. The role of microtubules in birefringence of the spindle of the sea urchin egg. J. cell Biol. 89, 121130.CrossRefGoogle ScholarPubMed
Hirschfeld, T. (1976). Optical microscopic observation of single small molecules. Appl. Opt. 15, 29652966.CrossRefGoogle ScholarPubMed
Hoffman, R. & Gross, L. (1975). Modulation contrast microscopy. Appl. Opt. 14, 11691176.CrossRefGoogle Scholar
Hoffmann, W. & Rostall, C. J. (1984). Rotational and lateral diffusion of membrane proteins as determined by laser techniques. In Biomembrane Structure and Function (ed. Chapman, D.), pp. 257318. Weinheim: Verlag Chemie.Google Scholar
Holgate, C., Jackson, P., Cowen, P. & Bird, C. (1983). Immunogold-silver staining: new method of immunostaining with enhanced sensitivity. J. Histochem. Cytochem. 31, 938944.CrossRefGoogle ScholarPubMed
Horio, T. & Hotani, H. (1986). Visualization of the dynamic instability of individual microtubules by dark-field microscopy. Nature 321, 605607.CrossRefGoogle ScholarPubMed
Ingram, V. M. (1969). A side view of moving fibroblasts. Nature 222, 641644.CrossRefGoogle ScholarPubMed
Inoué, S. (1952 a). Effect of temperature on the birefringence of the mitotic spindle. Biol. Bull. (Woods Hole) 103, 316.Google Scholar
Inoué, S. (1952 b). The effect of colchicine on the microscopic and submicroscopic structure of the mitotic spindle. Expl Cell Res., Suppl. 2, 305318.Google Scholar
Inoué, S. (1953). Polarization optical studies of the mitotic spindle. I. The demonstration of spindle fibers in living cells. Chromosoma 5, 487500.CrossRefGoogle ScholarPubMed
Inoué, S. (1961). Polarizing microscope: design for maximum sensitivity. In The Encyclopedia of Microscopy (ed. Clark, G. L.), pp. 480485. New York: Reinhold.Google Scholar
Inoué, S. (1964). Organization and function of the mitotic spindle. In Primitive Motile Systems in Cell Biology (ed. Allen, R. A. and Kamiya, N.), pp. 549598. New York: Academic Press.CrossRefGoogle Scholar
Inoué, S. (1969). The physics of structural organization in living cells. In Biology and the Physical Sciences (ed. Devons, S.), pp. 139171. Columbia University Press.Google Scholar
Inoué, S. (1981). Video image processing greatly enhances contrast quality and speed in polarization-based microscopy. J. cell Biol. 89, 346356.CrossRefGoogle ScholarPubMed
Inoué, S. (1986). Video Microscopy. New York: Plenum Press.CrossRefGoogle Scholar
Inoué, S. & Hyde, W. L. (1957). Studies on depolarization of light on microscope lens surfaces. II. The simultaneous realization of high resolution and high sensitivity with the polarizing microscope. J. Biophys. Biochem. Cytol. 3, 831838.Google ScholarPubMed
Inoué, S., Inoué, T. D. & Ellis, G. W. (1985). Rapid, stereoscopic display of microtubule distribution by video-processed optical sectioning system. J. cell Biol. 101, 164a (abstract 5549).Google Scholar
Inoué, S. & Sato, H. (1967). Cell motility by labile association of molecules: the nature of mitotic spindle fibers and their role in chromosome movement. J. gen. Physiol. 50, 259292.CrossRefGoogle ScholarPubMed
Izzard, C. S. & Lochner, L. (1976). Cell to substrate contacts in living fibroblasts: an interference reflection study with an evaluation of the technique. J. Cell Sci. 21, 129159.CrossRefGoogle ScholarPubMed
Izzard, C. S. & Lochner, L. R. (1980). Formation of cell-to-substrate contacts during fibroblast motility: an interference–reflection study. J. Cell Sci. 42, 81116.CrossRefGoogle Scholar
Jacobson, K., Wu, E.-S. & Poste, G. (1976). Measurement of the translational mobility of concanavalin A in glycerol-saline solutions and on the cell surface by fluorescence recovery after photobleaching. Biochim. biophys. Acta 433, 215222.CrossRefGoogle ScholarPubMed
Jacobson, K. & Wojcieszyn, J. (1984). The translational mobility of substances within the cytoplasmic matrix. Proc. natn. Acad. Sci. U.S.A. 81, 67476751.CrossRefGoogle ScholarPubMed
Jimenez, J., Santisteban, A., Carazo, J. M. & Carrascosa, J. L. (1986). Computer graphic display method for visualizing three-dimensional biological structures. Science 232, 11131115.CrossRefGoogle ScholarPubMed
Johnson, M. & Edidin, M. (1978). Lateral diffusion in plasma membrane of mouse egg is restricted after fertilization. Nature 272, 448450.CrossRefGoogle Scholar
Johnson, P. & Garland, P. B. (1981). Depolarization of fluorescence depletion: a microscopic method for measuring rotational diffusion of membrane proteins on the surface of a single cell. FEBS Lett. 132, 252256.CrossRefGoogle Scholar
Johnson, P. & Garland, P. B. (1982). Fluorescent triplet probes for measuring the rotational diffusion of membrane proteins. Biochem. J. 203, 313321.CrossRefGoogle ScholarPubMed
Johnson, L. V., Walsh, M. L., Bochus, B. J. & Chen, L. B. (1981). Monitoring of relative mitochondrial membrane potential in living cells by fluorescent microscopy. J. cell Biol. 88, 526535.CrossRefGoogle Scholar
Johnson, L. V., Walsh, M. L. & Chen, L. B. (1980). Localization of mitochondria in living cells with Rhodamin 123. Proc. natn. Acad. Sci. U.S.A. 77, 990994.CrossRefGoogle Scholar
Jotz, M. M., Gill, J. E. & Davis, D. T. (1976). A new optical multichannel micro-spectrofluorometer. J. Histochem. Cytochem. 24, 9199.CrossRefGoogle Scholar
Jovin, T. M. & Vaz, W. L. C. (1987). Rotational and translation diffusion in membranes measured by fluorescence and phosphorescence methods. Methods in Enzymol. (in press).Google Scholar
Kachar, B. (1985 a). Asymmetric illumination contrast: a method of image formation for video light microscopy. Science 227, 766768.CrossRefGoogle ScholarPubMed
Kachar, B. (1985 b). Direct visualization of organelle movement along actin filaments dissociated from characean algae. Science 227, 13551357.CrossRefGoogle ScholarPubMed
Kam, Z. (1975). Microscopic fluctuation spectroscopy. Biophys. J. 15, 330a.Google Scholar
Kam, Z. & Hofrichter, J. (1986). Quasi-elastic laser light scattering from solution and gels of hemoglobin S. Biophys. J. 50, 10151020.CrossRefGoogle ScholarPubMed
Kapitza, H. G., McGregor, G. & Jacobsen, K. A. (1985). Direct measurement of lateral transport by using time-resolved spatial photometry. Proc. natn. Acad. Sci. U.S.A. 82, 41224126.CrossRefGoogle ScholarPubMed
Karsenti, E., Newport, J., Hubble, R. & Kirschner, M. W. (1984). Interconversion of metaphase and interphase microtubule arrays, as studied by the injection of centrosomes and nuclei into Xenopus eggs. J. cell Biol. 98, 17301745.CrossRefGoogle ScholarPubMed
Keith, C., Dipaola, M., Maxfield, F. R. & Shelánski, M. L. (1983). Microinjection of Ca2+ -calmodulin causes a localized depolymerization of microtubules. J. cell Biol. 97, 19181924.CrossRefGoogle Scholar
Keith, C. H., Feramisco, J. R. & Shelanski, M. (1981). Direct visualization of fluorescein-labelled microtubules in vitro and in microinjected fibroblasts. J. cell Biol. 88, 234240.CrossRefGoogle Scholar
Keith, C. H., Ratan, B., Maxfield, F. R., Bajer, A. & Shelanski, M. L. (1985). local cytoplasmic calcium gradients in living mitotic cells. Nature 316, 848850.CrossRefGoogle ScholarPubMed
Keller, D., Bustamante, C., Maestre, M. F. & Tinoco, I. Jr. (1985). Imaging of optically active biological structures by use of circularly polarized light. Proc. natn. Acad. Sci. U.S.A. 82, 401405.CrossRefGoogle ScholarPubMed
Kenney, J., Jacobsen, C., Kirz, J., Rarback, H., Cinotti, F., Tomlinson, W., Rosser, R. & Schidlovsky, G. (1985). Absorption microanalysis with a scanning soft X-ray microscope mapping the distribution of calcium in bone. J. Microsc. 138, 321328.CrossRefGoogle Scholar
Kenney, J., Kirz, J., Rarback, H., Feder, R., Sayre, D. & Howells, M. (1983). Scanning soft X-ray microscopy with a Fresnel zoneplate at the national synchrotron light source. In Science with Soft X-rays, 447, 158163. (ed. Himpsel, F. J. and Klaffky, R. W.). SPIE.CrossRefGoogle Scholar
Kiehart, D. P. (1982). Microinjection of Echinoderm eggs: apparatus and procedures. Methods in Cell Biol. 25, 1331.CrossRefGoogle ScholarPubMed
Kirz, J. (1980 a). Mapping the distribution of particular atomic species. Ann. N. Y. Acad. Sci. 342, 273287.CrossRefGoogle Scholar
Kirz, J. (1980 b). Specimen damage considerations in biological microprobe analysis. Scanning Electron Microscopy 11, 239250.Google Scholar
Kirz, J. & Rarback, H. (1985). Soft X-ray microscopes. Rev. Sci. Instrum. 56, 113.CrossRefGoogle Scholar
Kirz, J. & Sayre, D. (1980). Soft X-ray microscopy of biological specimens. In Synchrotron Radiation Research (ed. Winick, H. and Doniach, S.), pp. 277318. New York: Plenum Press.CrossRefGoogle Scholar
Kishimoto, T. (1980). Microinjection and cytoplasmic transfer in starfish oocytes. Methods Cell Biol. 27, 379394.CrossRefGoogle Scholar
Kohen, E., Thorell, B., Hirschberg, J., Wouters, A., Kohen, C., Bartick, P., Selmon, J. M., Viallet, P., Schachtschabel, D., Rabinovitch, A., Mintz, D., Meda, P., Westerhoff, H., Nestor, J. & Ploem, J. (1981). Microspectrofluorometric procedures and their applications in biological systems. In Modern Fluorescence Spectroscopy, vol. 3 (ed. Wehry, E. L.), pp. 295345. New York: Plenum Press.CrossRefGoogle Scholar
Koppel, D. E. (1979). Fluorescence distribution after photobleaching: a new multipoint analysis of membrane translational dynamics. Biophys. J. 28, 281292.CrossRefGoogle Scholar
Koppel, D., Oliver, M. & Berling, R. (1982). Surface function during mitosis. III. Quantitative analysis of ligand receptor movement into the cleavage furrow: diffusion vs. flow. J. cell Biol. 93, 950960.CrossRefGoogle ScholarPubMed
Koppel, D. E. & Sheetz, M. P. (1983). A localized pattern photobleaching method for the concurrent analysis of rapid slow diffusion processes. Biophys. J. 43, 175181.CrossRefGoogle ScholarPubMed
Koppel, D. E., Sheetz, M. P. & Schindler, M. (1981). Matrix control of protein diffusion in biological membranes. Proc. natn. Acad. Sci. U.S.A. 78, 35763580.CrossRefGoogle ScholarPubMed
Kossiakoff, A. A. (1983). Neutron protein crystalography: advances in methods and applications. A. Rev. biophys. Bioeng. 12, 159182.CrossRefGoogle Scholar
Kouyama, T. & Mihashi, K. (1981). Fluorimetry study of N-(1-pyrenyl)iodoacetamide-labelled F-actin. Eur. J. Biochem. 114, 3338.CrossRefGoogle Scholar
Kreis, T. E. & Birchmeier, W. (1980). Stress fiber sarcomeres of fibroblasts are contractile. Cell 22, 555561.CrossRefGoogle ScholarPubMed
Kreis, T. & Birchmeier, W. (1982). Microinjection of fluorescently labeled proteins into living cells with emphasis on cytoskeletal proteins. Int. Rev. Cytol. 75, 209227.CrossRefGoogle ScholarPubMed
Kreis, T. E., Geiger, B. & Schlessinger, J. (1982). Mobility of microinjected rhodamine actin with living chicken gizzard cells determined by fluorescence photobleaching recovery. Cell 29, 835845.CrossRefGoogle ScholarPubMed
Kreis, J. E., Winterhalter, K. H. & Birchmeier, W. (1979). In vivo distribution and turnover of fluorescently labeled actin microinjected into human fibroblasts. Proc. natn. Acad. Sci. U.S.A. 76, 38143818.CrossRefGoogle ScholarPubMed
Kristofferson, D., Mitchison, T. & Kirsohner, M. (1986). Direct observation of steady state microtubule dynamics. J. cell Biol. 102, 10071019.CrossRefGoogle ScholarPubMed
Kruskal, B. A., Keith, C. & Maxfield, F. (1984). Thyrotropin-releasing hormone-induced changes in intracellular [Ca2+] measured by microspectrofluorometry of individual quin-2 loaded cells. J. cell Biol. 99, 11671172.CrossRefGoogle ScholarPubMed
Kruskal, B. A., Shak, S. & Maxfield, F. R. (1986). Spreading of human neutrophils is immediately preceded by a large increase in cytoplasmic free calcium. Proc. natn. Acad. Sci. U.S.A. 83, 29192923.CrossRefGoogle ScholarPubMed
Kurth, P. D. & Bustin, M. (1981). Localization of chromosomal protein HMG-1 in polytene chromosomes of chironomus thummi. J. cell Biol. 89, 7077.CrossRefGoogle ScholarPubMed
Ladd, W. A., Hess, W. M. & Ladd, M. W. (1956). High-resolution microradiography. Science (Wash., D.C.) 123, 370371.CrossRefGoogle ScholarPubMed
Lamarque, P. (1936). Histologie-historadiographie. C. R. Acad. Sci. Paris 202, 684685.Google Scholar
Lancet, D., Greer, C. A., Kaner, J. S. & Shepherd, G. M. (1982). Mapping of odor related neuronal activity in the olfactory bulb by high resolution 2-deoxyglucose autoradiography. Proc. natn. Acad. Sci. U.S.A. 79, 670674.CrossRefGoogle ScholarPubMed
Langley, K. H., Piddington, R. W., Ross, D. & Satelle, D. B. (1976). Photon correlation analysis of cytoplasmic streaming. Biochim. biophys. Acta 444, 893898.CrossRefGoogle ScholarPubMed
Lanni, F. (1986). Standing-wave fluorescence microscopy. In Application of Fluorescence in the Biomedical Sciences (ed. Taylor, L. D.Waggoner, A. S.Murphy, R. F.Lanni, F. and Birge, R. R.), pp. 505521. New York: Alan R. Liss.Google Scholar
Lanni, F., Waggoner, A. S. & Taylor, D. L. (1985). Structural organization of interphase 3T3 fibroblasts studied by total internal reflection fluorescence microscopy. J. cell Biol. 100, 10911102.CrossRefGoogle ScholarPubMed
Latt, S. A., Elhanan, S. & Eisenhard, M. (1979). Pairs of fluorescence dyes as probes of DNA and chromosomes. J. Histochem. Cytochem. 27, 6571.CrossRefGoogle Scholar
Lazarides, E. (1975). Tropomyosin antibody: the specific localization of tropomyosin in non-muscle cells. J. cell Biol. 65, 549561.CrossRefGoogle Scholar
Lazarides, E. (1982). Biochemical and immunocytological characterization of intermediate filaments in muscle cells. Methods Cell Biol. 25, 333357.CrossRefGoogle ScholarPubMed
Lazarides, E. & Webber, K. (1974). Actin antibodies: the specific visualization of actin filaments in non-muscle cells. Proc. natn. Acad. Sci. U.S.A. 71, 22682272.CrossRefGoogle ScholarPubMed
Lee, W. I. & Verdugo, P. (1976). Laser light-scattering spectroscopy: a new application in the study of ciliary activity. Biophys. J. 16, 11151119.CrossRefGoogle Scholar
Lemons, R. A. & Quate, C. F. (1974). Acoustic microscopy by mechanical scanning. Appl. Phys. Lett. 24, 163165.CrossRefGoogle Scholar
Leslie, R. J. & Pickett-Heaps, J. D. (1983). Ultraviolet microbeam irradiation of mitotic diatoms: investigation of spindle elongation. J. cell Biol. 96, 548561.CrossRefGoogle ScholarPubMed
Leuther, M. D., Barisas, B. G., Peacock, J. S. & Krakauer, H. (1979). Photobleaching recovery studies of membrane events accompanying lectin stimulation of rabbit lymphocytes. Biochem. biophys. Res. Commun. 89, 5890.CrossRefGoogle ScholarPubMed
Lewis, A., Isaacson, M., Harootunian, A. & Muray, A. (1984). Development of a 500 Å spatial resolution light microscope. Ultramicroscopy 13, 227323.CrossRefGoogle Scholar
Lindsay, R. D. (ed.) (1977). Computer Analysis of Neuronal Structures. New York: Plenum Press.CrossRefGoogle Scholar
Locquin, M. R. & Langeron, M. (1978). Handbook of Microscopy. London: Butterworths.Google Scholar
Lohs-Schardin, M., Cremer, C. & Nussleim-Volhard, C. (1979). A fate map for the larval epidermis of Drosophila melanogaster: localized cuticle defects following irradiation of the blastoderm with an ultraviolet laser microbeam. Devl. Biol. 73, 239255.Google Scholar
Luby-Phelps, K., Amato, P. A. & Taylor, D. L. (1984). Selective immunocyto-chemical detection of fluorescent analogs with antibodies specific for the fluorophore. Cell Motil. 4, 137149.CrossRefGoogle Scholar
Luby-Phelps, K., Lanni, F. & Taylor, D. (1985). Behavior of a fluorescent analogue of calmodulin in living 3T3 cells. J. cell Biol. 101, 12451256.CrossRefGoogle ScholarPubMed
Luna, E. J., Wang, Y.-L., Voss, E. W. Jr., Branton, D. & Taylor, D. L. (1982). A stable, high capacity, F-actin affinity column. J. biol. Chem. 257, 1309513100.CrossRefGoogle ScholarPubMed
Luna, L. G. (ED.) (1968). Manual of Histological Staining Methods of the Armed Forces Institute of Pathology, 3rd ed.New York: McGraw-Hill.Google Scholar
Macagno, E. R., Levinthal, C. & Sobel, I. (1979). Three-dimensional computer reconstruction of neurons and neuronal assemblies. A. Rev. biophys. Bioeng. 8, 323351.CrossRefGoogle ScholarPubMed
Maeda, T. & Fujime, S. (1972). Quasielastic light scattering under optical microscope. Rev. Sci. Instrum. 43, 566567.CrossRefGoogle Scholar
Mallard, J. (1986). First sight of a single cell. Nature 322, 116.CrossRefGoogle ScholarPubMed
Manuelidis, L., Sedat, J. & Feder, R. (1980). Soft X-ray studies of interphase chromosomes. Ann. N.Y. Acad. Sci. 342, 404–325.CrossRefGoogle ScholarPubMed
Margel, S., Beitler, U. & Ofarim, M. (1982). Polyacrolein microspheres as a new tool in cell biology. J. Cell Sci. 56, 157175.CrossRefGoogle ScholarPubMed
Marmor, M. F., Wickramasinghe, H. K. & Lemons, R. A. (1977). Acoustic microscopy of the human retina and pigment epithelium. J. Invest. Ophthalmol. Visual Sci. 16, 660666.Google ScholarPubMed
Massey, G. A. (1984). Microscopy and pattern generation with scanned evanescent waves. Appl. Opt. 23, 658660.CrossRefGoogle ScholarPubMed
Mastro, A. M., Babich, M., Taylor, L. D. & Keith, A. D. (1984). Diffusion of a small molecule in the cytoplasm of mammalian cells. Proc. natn. Acad. Sci. U.S.A. 81, 34143418.CrossRefGoogle ScholarPubMed
Mathog, D. (1985). Light microscope based analysis of three-dimensional structure: application to the study of Drosophila salivary gland nuclei. II. Algorithms for model analysis. J. Microsc. 137, 253273.CrossRefGoogle Scholar
Mathog, D., Hochstrasser, M., Gruenbaum, Y., Saumweber, H. & Sedat, J. W. (1984). Characteristic folding pattern of the polytene chromosomes in Drosophila salivary gland nuclei. Nature, Lond. 308, 414421.CrossRefGoogle ScholarPubMed
Mathog, D., Hochstrasser, M. & Sedat, J. W. (1985). Light microscope based analysis of three-dimensional structure. Application to the study of Drosophila salivary gland nuclei. I. Data collection and analysis. J. Microsc. 137, 241242.CrossRefGoogle Scholar
Maxfield, F. R., Schlessinger, J., Schechter, Y., Pastan, I. & Willingham, M. C. (1978). Collection of insulin, EGF and α-2 macroglobulin in the same patches on the surface of cultured fibroblasts and common internalization. Cell 14, 805820.CrossRefGoogle Scholar
McBeath, E. & Fujiwara, K. (1984). Improved fixation for immunofluorescence microscopy using light-activated 1, 3, 5-triazido-2, 4, 6-trinitrobenzene (TTB). J. cell Biol. 99, 20612073.CrossRefGoogle ScholarPubMed
McBride, G. M., La Bounty, L., Adams, J. & Berns, M. W. (1974). The totipotency and relationship of seta-bearing cells to thallus development in the green alga Coleochaeta Scutata. A laser microbeam study. Devi Biol. 37, 9091.CrossRefGoogle ScholarPubMed
McNeil, P., Murphy, R., Lanni, F. & Taylor, D. L. (1984). A method for incorporating molecules into adherent cells. J. cell Biol. 98, 15561564.CrossRefGoogle ScholarPubMed
Michel, K. (1964). Die grundzüge der theorie des microskops, 2nd edition. Stuttgart: Wissenschaftliche Verlag Gesellschaft.Google Scholar
Mitchison, T. J., Evans, L. M., Schultz, E. S. & Kirschner, M. W. (1986). Sites of microtubule assembly and disassembly in the mitotic spindle. Cell 45, 515527.CrossRefGoogle ScholarPubMed
Mize, R. R. (ED.) (1985). The Microcomputer in Cell and Neurobiology Research. New York: Elsevier.Google Scholar
Moreno, G., Lutz, M. & Bessis, M. (1969). Partial cell irradiation by ultraviolet and visible light. Conventional and laser sources. Int. Rev. exp. Pathol. 7, 99.Google ScholarPubMed
Morrow, J. S. (1986). Nuclear magnetic resonance imaging: a tool for microscopist? J. Histochem. Cytochem. 34, 7581.CrossRefGoogle Scholar
Murphy, R., Jorgensen, E. & Cantor, C. (1982). Kinetics of hitone endocytosis in Chinese hamster ovary cells. J. biol. Chem. 257, 16951701.CrossRefGoogle Scholar
Mustacich, R. V. & Ware, B. R. (1976). A study of protoplasmic streaming in Nitella by laser doppler spectroscopy. Biophys. J. 16, 373388.CrossRefGoogle ScholarPubMed
Mustacich, R. V. & Ware, B. R. (1977). Velocity distribution of the streaming protoplasm in Nitella Flexilis. Biophys. J. 17, 229241.CrossRefGoogle Scholar
Nelson, A. C. (1986). Computer-aided microtomography with the 3-D display in electron microscopy. J. Histochem. Cytochem. 34, 5760.CrossRefGoogle ScholarPubMed
Nicklas, R. B. (1983). Measurements of the force produced by the mitotic spindle in anaphase. J. cell Biol. 97, 542548.CrossRefGoogle ScholarPubMed
Nicklas, R. B. (1985). Mitosis in eukaryotic cells: an overview of chromosome distribution. In Aneuploidy (ed. Dellarco, V. L.Voytek, D. E. and Hollaender, A.), pp. 183195. New York: Plenum Press.CrossRefGoogle Scholar
Nicklas, R. B. & Kubai, D. F. (1985). Microtubules, chromosome movement, and reorientation after chromosomes are detached from the spindle by micromanipulation. Chromosoma 92, 313324.CrossRefGoogle ScholarPubMed
Nicklas, R. B., Kubai, D. F. & Hays, T. S. (1982). Spindle microtubules and their mechanical association after micromanipulation in anaphase. J. cell Biol. 95, 91104.CrossRefGoogle ScholarPubMed
Niemann, B., Rudoulph, D. & Schmahl, G. (1974). Soft X–ray imaging zone plates with large zone numbers for microscopic and spectroscopic applications. Opt. Commun. 12, 160163.CrossRefGoogle Scholar
Niemann, B., Rudoulph, D. & Schmahl, G. (1976). X–ray microscopy with synchrotron radiation. Appl. Opt. 15, 18831884.CrossRefGoogle ScholarPubMed
Nikei, T., Meldelson, R. & Botts, J. (1974). Use of fluorescence polarization to observe changes in attitude of S–1 moieties in muscle fibers. Biophys. J. 14, 236242.Google Scholar
Nishio, I., Tanaka, T., Sun, S.–T., Imanishi, Y. & Ohnis, S. T. (1983). Hemoglobin aggregation in single red blood cells of sickle cell anemia. Science 220, 11731175.CrossRefGoogle ScholarPubMed
Nomarski, G. (1945). Microinterférométrie différentiel à ondes polarizées. J. Phys. Radium. 16, 9135.Google Scholar
O'Brien, W. D. Jr. & Kessler, L. W. (1975). Examination of mouse embryological development with an acoustic microscope. Am. Zool. 15, 807812.Google Scholar
O'Brien, W. D. Jr., Olerund, J., Reid, J. M. & Shung, K. K. (1981). Quantitative acoustical assessment of wound maturation with acoustic microscopy. J. acoust. Soc. Amer. 69, 575579.Google Scholar
Oi, V. T., Glazer, A. N. & Stryer, L. (1982). Fluorescent phycobiliprotein conjugates for analysis of cells and molecules. J. cell Biol. 93, 981986.CrossRefGoogle ScholarPubMed
Okada, C. Y. & Rechsteiner, M. (1982). Introduction of macromolecules into cultured mammalian cells by osmotic lysis of pinocytic vesicles. Cell 29, 3341.CrossRefGoogle ScholarPubMed
Opas, M. & Kaluins, V. I. (1983). Surface reflection interference microscopy: a new method for visualizing cytoskeletal components by light microscopy. J. Microsc. 133, 291306.CrossRefGoogle Scholar
Osborne, M. & Weber, K. (1982). Immunofluorescence and immunocytochemical procedures with affinity purified antibodies: tubulin–containing structures. Methods Cell Biol. 24, 97132.CrossRefGoogle Scholar
Pagano, R. E., Longmuir, K. J., Martin, O. C. & Struck, D. K. (1981). Metabolism and intracellular localization of a fluorescently labeled intermediate in lipid biosynthesis within cultured fibroblasts. J. cell Biol. 91, 872877.CrossRefGoogle ScholarPubMed
Pagano, R. E. & Sleight, R. G. (1985). Defining lipid transport pathways in animal cells. Science 229, 10511057.CrossRefGoogle ScholarPubMed
Panessa, B. J., Waren, J. B., Hoffman, P. & Feder, R. (1980). Imaging unstained proteoglycan aggregates by soft X–ray contact microscopy. Ultramicroscopy 5, 267274.CrossRefGoogle ScholarPubMed
Parpart, A. K. (1951). Televised microscopy in biological research. Science 113, 483484.Google Scholar
Parsons, D. F. (1974). Structure of wet specimens in electron microscopy. Science 186, 407414.CrossRefGoogle ScholarPubMed
Parsons, D. F., Matricardi, V. R., Moretz, R. C. & Turner, J. N. (1974). Electron microscopy and diffraction of wet unstained and unfixed biological objects. Adv. Biol. Med. Phys. 15, 161270.CrossRefGoogle ScholarPubMed
Pasternak, C. & Elson, E. L. (1985). Lymphocyte cytoskeleton mechanical response triggered by cross–linking surface receptors. J. cell Biol. 100, 860872.CrossRefGoogle ScholarPubMed
Pearlman, J. & Riordan, J. C. (1981). X–ray lithography using a pulsed plasma source. J. Vac. Sci. Tech. 19, 11901193.CrossRefGoogle Scholar
Peters, R. (1981). Translational diffusion in the plasma membrane of single cells as studied by fluorescence microphotolysis. Cell Biol. Int. Rep. 5, 733760.CrossRefGoogle ScholarPubMed
Peters, R. (1985). Measurement of membrane transport in single cells by fluorescence microanalysis. TIBS (June), 223227.Google Scholar
Petersen, N. D. W., McConnanghey, B. & Elson, E. L. (1982). Dependence of locally measured cellular deformability on position of the cell, temperature, and cytochalasin B. Proc. natn. Acad. Sci. U.S.A. 79, 53275331.CrossRefGoogle ScholarPubMed
Petran, M., Hadravski, M. & Boyde, A. (1985). The tandem scanning reflected light microscope. Scanning 7, 97108.CrossRefGoogle Scholar
Petran, M., Hadravsky, M., Egger, M. D. & Galambos, R. (1968). Tandem–scanning reflected–light microscope. J. Opt. Soc. Amer. 58, 661664.CrossRefGoogle Scholar
Piller, H. (1977). Microscope Photometry. Berlin: Springer Verlag.CrossRefGoogle Scholar
Pinder, J. C. & Gratzer, W. B. (1982). Investigation of the actin–deoxyribonuclease I interaction using a pyrene–conjugated actin derivative. Biochemistry 21, 48864890.CrossRefGoogle ScholarPubMed
Plant, A. L., Benson, D. M. & Smith, L. C. (1985). ellular uptake and intracellular localization of Benzo(a)pyrene by digital fluorescence imaging microscopy. J. cell Biol. 100, 12951308.CrossRefGoogle Scholar
Ploem, J. (1967). The use of vertical illuminator with interchangable dichroic mirrors for fluorescence microscopy with incident light. Z. wiss. Mikrosk. 68, 129142.Google Scholar
Ploem, J., Verwoerd, N., Bonnet, J. & Koper, G. (1979). An automated microscope for quantitative cytology combining television image analysis and stage scanning microphotometry. J. Histochem. Cytochem. 27, 136143.CrossRefGoogle ScholarPubMed
Ploem, J. S. (1971). A study of filters and light sources in immunofluorescence microscope. Ann. N. Y. Acad. Sci. 177, 414429.CrossRefGoogle Scholar
Ploem, J. S. (1975). Reflection–contrast microscopy as a tool for investigation of the attachment of living cells to a glass surface. In Mononuclear Phagocytes in Immunity, Infection, and Pathology (ed. Van Furth, R.), pp. 405421. Oxford, London, Edinburgh, Melbourne: Blackwell Scientific.Google Scholar
Ploem, J. S. (1977). Quantitative fluorescence microscopy. In Analytical and Quantitative Methods in Microscopy (ed. Meek, G. A. and Elder, H. J.). Cambridge, U.K.: Cambridge University Press.Google Scholar
Poenie, M., Alderton, J., Steinhardt, R. & Tsien, R. (1986). Calcium rises abruptly and briefly throughout the cell at the onset of anaphase. Science 233, 886889.CrossRefGoogle ScholarPubMed
Poenie, M., Alderton, J., Tsien, R. Y. & Steinhardt, R. A. (1985). Changes of free calcium levels with stages of the cell division cycle. Nature 315, 147149.CrossRefGoogle ScholarPubMed
Pohl, D. W., Denk, W. & Lanz, M. (1984). Optical stethescopy: image recording with resolution λ/20. Appl. Phys. Lett. 44, 651/653.CrossRefGoogle Scholar
Preston, K. JR. (1986). High–resolution image analysis. J. Histochem. Cytochem. 34, 6774.CrossRefGoogle ScholarPubMed
Raichle, M. E. (1979). Quantitative in vivo autoradiography with positron emission tomography. Brain Res. Rev. 1, 4768.CrossRefGoogle Scholar
Rappaport, R. (1967). Cell division: direct measurement of maximum tension exerted by furrow of echinoderm eggs. Science 156, 12411243.CrossRefGoogle ScholarPubMed
Rees, A. R., Gregorion, M., Johnson, P. & Garland, P. B. (1984). High affinity epidermal growth factor receptor on the surface of A431 cells have restricted lateral diffusion. EMBO J. 3, 18431847.CrossRefGoogle ScholarPubMed
Reidler, J., OI, V., Carlsen, W., Vuong, T., Pecht, I., Herzenberg, L. & Stryer, L. (1982). Rotational dynamics of monoclonal anti–dansyl immunoglobulin. J. molec. Biol. 158, 739746.CrossRefGoogle Scholar
Reynolds, G. T. (1980). Applications of image intensification to low–level fluorescence studies of living cells. Microscopica Acta 83, 5562.Google ScholarPubMed
Reynolds, G. T. & Taylor, D. L. (1980). Image intensification applied to light microscopy. Bio Science 30, 586592.Google Scholar
Rogers, A. W. (1979). Techniques of Autoradiography, 3rd edn, New York: Elsevier, North Holland.Google Scholar
Ross, W. N., Salzberg, B. M., Cohen, L. B., Grinvald, A., Davila, H. V., Waggoner, A. S. & Wang, C. H. (1977). Changes in absorption, fluorescence, dichroism, and birefrigence in stained giant axon: optical measurement of membrane potential. J. membr. Biol. 33, 141183.CrossRefGoogle Scholar
Rosser, R. J., Baldwin, K., Feder, R., Busset, D., Coles, A. & Eason, R. (1985). Soft X–ray contact microscopy with nanosecond exposure times. J. Microscopy 138, 311319.CrossRefGoogle Scholar
Roth, J. (1983). The colloidal Gold Masher system for light and electron microscopic cytochemistry. In Techniques in Immunochemistry (ed. Bulloch, G. and Petrusz, P.). New York: Academic Press.Google Scholar
Rudoulph, D. & Schmahl, G. (1980). High power zone plates for a soft X–ray microscope. In Ultrasoft X–ray Microscopy: its Application to Biological and Physical Sciences. Ann. N. Y. Acad. Sci. 342, 94104.Google Scholar
Saffman, P. & Delbruck, M. (1975). Brownian motion in biological membranes. Proc. natn. Acad. Sci. U.S.A. 72, 31113113.CrossRefGoogle ScholarPubMed
Salmon, E. D. (1975). Pressure–induced depolymerization of spindle microtubules. 1. Changes in birefringence and spindle length. J. cell Biol. 65, 603614.CrossRefGoogle Scholar
Salmon, E. D. & Ellis, G. W. (1975). A new miniature hydrostatic pressure chamber for microscopy. J. cell Biol. 65, 587662.CrossRefGoogle ScholarPubMed
Salmon, E. D., Leslie, R. J., Saxton, W. M., Karow, M. L. & McIntosh, J. R. (1984 c). Spindle microtubule dynamics in sea urchin embryos: analysis using a fluorescein–labelled tubulin and measurements of fluorescence redistribution after laser photobleaching. J. cell Biol. 99, 21652174.CrossRefGoogle Scholar
Salmon, E. D., McKeel, M. & Hays, T. (1984 a). Rapid rate of tubulin dissociation from microtubules in the mitotic spindle in vivo measured by blocking polymerization with colchicine. J. cell Biol. 99, 10661075.CrossRefGoogle ScholarPubMed
Salmon, E., Saxton, W., Leslie, R., Karow, M. & McIntosh, J. (1984 6). Diffusion coefficient of fluorescein labelled tubulin in the cytoplasm of embryonic cells of the sea urchin: video image analysis of fluorescence redistribution after photobleaching. J. cell Biol. 99, 21572165.CrossRefGoogle ScholarPubMed
Sato, H., Ellis, G. W. & Inoué, S. (1975). Microtubule origin of mitotic spindle from birefringence: demonstration of the applicability of Wiener's equation. J. cell Biol. 67. 501517.CrossRefGoogle ScholarPubMed
Sattelle, D. B., Green, D. J. & Langley, K. H. (1979). Subcellular motion in Nitella Flexilis studied by photon correlation spectroscopy. Phys. Scr. 19, 471475.CrossRefGoogle Scholar
Sawyer, D. W., Sullivan, J. A. & Mandell, G. L. (1985). Intracellular free calcium localization in neutrophils during phagocytosis. Science 230, 663666.CrossRefGoogle ScholarPubMed
Saxton, W. M., Stemple, D. L., Leslie, R. J., Salmon, E. D., Zavortink, M. & McIntosh, J. R. (1984). Tubulin dynamics in cultured mammalian cells. J. cell Biol. 99, 21752186.CrossRefGoogle ScholarPubMed
Sayre, D. & Feder, R. (1981). Status report on contact X–ray microscopy. In High Resolution Soft X–ray Optics (ed. Spiller, E.), 316, 5661. SPIE.Google Scholar
Sayre, D., Kirz, J., Feder, R., Kim, D. M. & Spiller, E. (1977). Transmission microscopy of unmodified biological materials: comparative radiation dosages with electrons and ultrasoft X–ray photons. Ultramicroscopy 2, 337349.CrossRefGoogle ScholarPubMed
Scherson, T., Kreis, T. E., Schlessinger, J., Littauer, U. Z., Borisy, G. G. & Geiger, B. (1984). Dynamic interaction of fluorescently labelled microtubule asociated proteins in living cells. J. cell Biol. 99, 425434.CrossRefGoogle Scholar
Schindler, M., Holland, J. F. & Hogan, M. (1985). Lateral diffusion in nuclear membranes. J. cell Biol. 100, 14081414.CrossRefGoogle ScholarPubMed
Schindler, M., Osborn, M. J. & Koppel, D. E. (1980). Lateral mobility in reconstituted membranes — comparison with diffusion in polymers. Nature 283, 346350.CrossRefGoogle ScholarPubMed
Schlessinger, J. (1980). The mechanism and role of hormone–induced clustering of membrane receptors. Trends biochem. Sci. 5, 210214.CrossRefGoogle Scholar
Schlessinger, J., Axelrod, D., Koppel, D. E., Webb, W. W. & Elson, E. L. (1977 a). Lateral transport of a lipid probe and labelled proteins on a cell membrane. Science 195, 307309.CrossRefGoogle ScholarPubMed
Schlessinger, J., Barak, L. S., Hammes, G. G., Yamada, K. M., Pastan, I., Webb, W. W. & Elson, E. L. (1977 b). Mobility and distribution of a cell surface glycoprotein and its interaction with other membrane component. Proc. natn. Acad. Sci. U.S.A. 74, 29092913.CrossRefGoogle Scholar
Schlessinger, J., Elson, E. L., Webb, W. W., Yahara, I., Rutishanser, V. & Edelman, G. M. (1977 c). Receptor diffusion on cell surface modulated by locally bound concanavalin A. Proc. natn. Acad. Sci. U.S.A. 74, 11101114.CrossRefGoogle ScholarPubMed
Schlessinger, J., Koppel, D. E., Axelrod, D., Jacobson, K., Webb, W. W. & Elson, E. L. (1976). Lateral transport on cell membranes: mobility of concanavalin A receptors on myoblasts. Proc. natn. Acad. Sci. U.S.A. 73, 24092413.CrossRefGoogle ScholarPubMed
Schlessinger, J., Shechter, Y., Cuatrecasas, P., Willingham, M. C. & Pastan, I. (1978 a). Quantitative determination of the lateral diffusion coefficients of the hormone–receptor complexes of insulin and epidermal growth factor on the plasma membrane of cultured fibroblasts. Proc. natn. Acad. Sci. U.S.A. 75, 53535357.CrossRefGoogle ScholarPubMed
Schlessinger, J., Schechter, Y., Willingham, M. C. & Pastan, I. (1978 b). Direct visualization of binding aggregation and internalization of insulin and epidermal growth factor on living fibroblastic cells. Proc. natn. Acad. Sci. U.S.A. 75, 26592663.CrossRefGoogle ScholarPubMed
Schmahl, G. & Rudolph, D. (eds) (1984). X–ray Microscopy. New York: Springer Series in Optical Sciences.CrossRefGoogle Scholar
Schmahl, G., Rudolph, D., Niemann, B. & Christ, O. (1980 a). X–ray microscopy of biological specimens with a zone–plate microscope. In Ultrasoft X–ray Microscopy: its Application to Biological and Physical Sciences. Ann. N. Y. Acad. Sci. 342, 368386.Google ScholarPubMed
Schmahl, G., Rudolph, D., Niemann, B. & Christ, O. (1980 b). Zone–plate X–ray microscopy. Q. Rev. Biophys. 13, 297315.CrossRefGoogle ScholarPubMed
Schmidt, W. J. (1937). Die Doppelbrechung von Karyplasma, Zytoplasma und Metaplasma. Protoplasma Monograph, Berlin.Google Scholar
Schnapp, B. J., Vale, R. D., Shertz, M. & Reese, T. S. (1985). Single microtubules from squid axoplasm support bidirectional movement of organelles. Cell 40, 455462.CrossRefGoogle ScholarPubMed
Schultz, E. & Kirschner, M. (1986). Microtubule dynamics in interphase cells. J. cell Biol. 102, 10201031.Google Scholar
Sejnowski, T. J., Reingold, S. C., Kelley, D. & Gelperin, A. (1980). Localization of [H3]–2–deoxyglucose in single mulluscan neurons. Nature 287, 449451.CrossRefGoogle Scholar
Shack, R., Baker, R., Buchroeder, R., Hillman, D., Shoemaker, R. & Bartels, P. H. (1979). Ultrafast laser scanner microscope. J. Histochem. Cytochem. 27. 153159.CrossRefGoogle ScholarPubMed
Sharnoff, M., Brehm, L. & Henry, R. W. (1985). Dynamic structures through microdifferential holography. Biophys. Disc, pp. 265274.Google ScholarPubMed
Sheetz, M. P., Schindler, M. & Koppel, D. F. (1980). The lateral mobility of integral membrane proteins is increased in spectrin–deficient spherocytic erythrocytes. Nature 285, 510512.CrossRefGoogle Scholar
Sheppard, C. J. R. (1980). Imaging modes of scanning optical microscopy. In Scanned Image Microscopy, pp. 201226. New York: Academic Press.Google Scholar
Sheppard, C. J. R. & Choudhury, A. (1977). Image formation in the scanning microscope. Opt. Acta 24, 10511073.CrossRefGoogle Scholar
Sheppard, C. J. R. & Hamilton, D. K. (1983). High resolution stereoscopic imaging. Appl. Opt. 22, 886887.CrossRefGoogle ScholarPubMed
Sheppard, C. J. R. & Kompfner, R. (1978). Resonant scanning optical microscope. Appl. Opt. 17, 28792882.CrossRefGoogle ScholarPubMed
Sheppard, C. J. R. & Wilson, T. (1982). The image of a single point in microscopes of large numerical aperture. Proc. R. Soc. Lond. A379, 145158.Google Scholar
Shriver, K. & Rohrschneider, L. (1981). Organization of pp60src and selected cytoskeletal proteins within adhesion plaques and junctions of Rows Sarcoma Virustransformed rat cells. J. cell Biol. 89, 525535.CrossRefGoogle Scholar
Siemens, A., Walter, R., Liaw, L.–H. & Berns, M. W. (1982). Laser–stimulated fluorescence of submicrometer regions within mitochondria of rhodamine–treated myocordial cells in culture. Proc. natn. Acad. Set. U.S.A. 79, 466470.CrossRefGoogle Scholar
Skaer, R. J. & Whytock, S. (1975). Interpretation of the three–dimensional structure of living nuclea by specimen tilt. J. Cell Sci. 19, 110.CrossRefGoogle Scholar
Slobin, J. A., Stocum, D. L. & O'Brien, W. D. Jr. (1986). Amphibian limb regeneration curves generated by the scanning laser acoustic microscope. J. Histochem. Cytochem. 34, 5356.CrossRefGoogle ScholarPubMed
Small, V. J., Rinnerthaler, G., Avnur, Z. & Geiger, B. (1985). Cytoarchetectural changes associated with fibroblast locomotion: involvement of ruffling and microtubules in the establishment of new substrate contacts at the leading edge. In Proc. 1st Int. Congress on Contractile Proteins. Temple University Press.Google Scholar
Smart, R. N. & Steel, W. H. (1985). Point–diffraction interference microscope. Appl. Opt. 24, 14021403.CrossRefGoogle Scholar
Smith, R. W. (1983). Holographic methods in microscopy. J. Microsc. 129, 2947.CrossRefGoogle Scholar
Smith, B. A. & McConnel, H. M. (1978). Determination of molecular motion in membranes using periodic pattern photobleaching. Proc. natn. Acad. Sci. 75, 27592763.CrossRefGoogle ScholarPubMed
Smith, L. M., McConnell, H. M., Smith, B. A. & Parce, J. W. (1981). Pattern photobleaching of fluorescent lipid vesicles using polarized laser light. Biophys. J. 33, 139146.CrossRefGoogle ScholarPubMed
Sokoloff, L. (1977). Relation between physiological function and energy metabolism in the central nervous system. J. Neurochem. 29, 1326.CrossRefGoogle ScholarPubMed
Soltys, B. J. & Borisy, G. C. (1985). Polymerization of tubulin in vivo: direct evidence for assembly onto microtubule ends and from centrosomes. J. cell Biol. 100, 16821689.CrossRefGoogle ScholarPubMed
Spiller, E. & Feder, R. (1977). X–ray lithography. In Topics in Applied Physics (ed. Queisser, H. -J.), vol. 22, pp. 3592. New York: Springer–Verlag.Google Scholar
Spiller, E., Feder, R., Topalian, J., Eastman, D., Gudat, W. & Sayre, D. (1976). X–ray microscopy of biological objects with carbon K and synchrotron radiation. Science (Wash., D.C.) 191, 11721174.CrossRefGoogle Scholar
Spring, K. R. (1983). Application of video to light microscopy. In Membrane Biophysics, vol. II, pp. 1520. New York: Liss.Google Scholar
Stokseth, P. A. (1969). Properties of a defocused optical system. J. Opt. Soc. Am. 59, 13141321.CrossRefGoogle Scholar
Streibl, N. (1985). Three-imensional imaging by a microscope. J. Opt. Soc. Am. A2, 121127.CrossRefGoogle Scholar
Struck, D. K., Hoekstra, D. & Pagano, R. E. (1981). Use of resonance energy transfer to monitor membrane fusion. Biochem. 20, 40934099.CrossRefGoogle ScholarPubMed
Stryer, L. (1978). Fluorescence energy transfer as a spectroscopic ruler. A. Rev. Biochem. 47, 819846.CrossRefGoogle ScholarPubMed
Stuschke, M. & Bojar, H. (1985). Insulin effect on translational diffusion of lipids and proteins in the plasma membrane of isolated rat hepatocytes. Biochim. biophys. Acta 845, 436444.CrossRefGoogle ScholarPubMed
Stye, M. & Axelrod, D. (1983). Mobility and detergent extractability of acetylcholine receptor on cultured rat myotubes: a correlation. J. cell Biol. 97, 4851.CrossRefGoogle Scholar
Summers, K. & Kirschner, M. W. (1979). Characteristics of the polar assembly and disassembly of microtubules observed in vitro by dark field light microscopy. J. cell Biol. 83, 205217.CrossRefGoogle Scholar
Surramanian, S., Seul, M. & McConnel, H. M. (1986). Lateral diffusion of specific antibodies bound to lipid monolayers on alkylated substrates. Proc. natn. Acad. Sci. U.S.A. 83, 11601173.Google Scholar
Tanasugarn, L., McNeil, P., Reynolds, G. & Taylor, D. L. (1984). Microspectrofluorometry by digital image processing: measurement of cytoplasmic pH. J. cell Biol. 98, 717723.CrossRefGoogle ScholarPubMed
Tank, D. W., Fredericks, W. J., Barak, L. S. & Webb, W. W. (1985). Electric fieldinduced redistribution and postfield relaxation of low density lipoprotein receptor on cultured human fibroblasts. J. cell Biol. 101, 148157.CrossRefGoogle ScholarPubMed
Tank, D. W., WU, E.-S. & WEBB, W. W. (1982). Enhanced molecular diffusibility in muscle membrane blebs: release of lateral constraints. J. cell Biol. 92, 207212.CrossRefGoogle ScholarPubMed
Taylor, D. L. (1979). Quantitative studies on the polarization optical properties of striated muscle. I. Birefringence changes of rabbit psoas muscle in the transition from rigor to relaxed state. J. cell Biol. 68, 497511.CrossRefGoogle Scholar
Taylor, D. L., Amato, P. A., Luby-Phelps, K. & McNeil, P. (1984). Fluorescent analog cytochemistry. Trends in Biochem. Sci. 9, 8891.CrossRefGoogle Scholar
Taylor, D. L., Waggoner, A. S., Lanni, F., Murphy, R. F. & Birge, R. (eds) (1986). Application of Fluorescence in the Biomedical Sciences. New York: Alan Liss.Google Scholar
Taylor, D. L. & Wang, Y. -L. (1978). Molecular cytochemistry: incorporation of fluorescently labeled actin into living cells. Proc. natn. Acad. Sci. U.S.A. 75, 857861.CrossRefGoogle ScholarPubMed
Taylor, D. L. & WANG, Y.-L. (1980). Fluorescently labelled molecules as probes of the structure and function of living cells. Nature 284, 405410.CrossRefGoogle ScholarPubMed
Taylor, D. L., Wang, Y.-L. & Heiple, J. M. (1980). Contractile basis of ameboid movement. VII. The distribution of fluorescently labeled actin in living amoebas. J. cell Biol. 86, 590598.CrossRefGoogle Scholar
Terasaki, M., Song, J., Wong, J. R., Weiss, M. J. & Chen, L. B. (1984). Localization of endoplasmatic reticulum in living and glutaraldehyde-fixed cells with fluorescent dyes. Cell 38, 101108.CrossRefGoogle Scholar
Thurston, G. & Palcic, B. (1986). Automated studies of cell motility. Biophys. J. 49, 79a (Abstract) M-Pos 43.Google Scholar
Travis, J. L., Kenealy, J. F. & Allen, R. D. (1983). Studies on the motility of the foraminifera. II. The dynamic microtubular cytoskeleton of the reticulopodial network of allogromia laticollaris. J. cell Biol. 97, 16681676.CrossRefGoogle ScholarPubMed
Tsien, R. Y., Rink, T. J. & Poenie, M. (1985). Measurement of cytosolic free Ca2+ in individual small cells using fluorescence microscopy with dual excitation wavelengths. Cell Calcium 6, 145157.CrossRefGoogle ScholarPubMed
Uster, P. S. & Pagano, R. E. (1986). Resonance energy transfer between membrane probes visualized in living cells by fluorescence microscopy. Biophys. J. 49, 89a abstract M-Pos 72.Google Scholar
Vale, R. D., Schnapp, B. J., Reese, T. S. & Sheetz, M. P. (1985). Movement of organelles along filaments dissociated from axoplasm of the squid giant axon. Cell 40, 449454.CrossRefGoogle ScholarPubMed
Valnes, K. & Brandtzaeg, P. (1985). Retardation of of immunofluorescence fading during microscopy. J. Histochem. Cytochem. 33, 755761.CrossRefGoogle ScholarPubMed
Van Der Voort, H. T. M., Brakenhoff, G. J., Valkenburg, J. A. C. & Nanninga, N. (1985). Design and use of computer controlled confocal microscope for biological applications. Scanning 7, 6678.CrossRefGoogle Scholar
Van Haarlem, R., Lagerweij, C. & Ten Horn, L. C. J. E. M. (1982). A simple device for recording serial optical sections. J. Microsc. 127, 265269.CrossRefGoogle Scholar
Vernon, Y. O., Glazer, N. A. & Stryer, L. (1982). Fluorescent phycobiliprotein conjugates for analyses of cells and molecules. J. cell Biol. 93, 981986.Google Scholar
Wadsworth, P. & Salmon, E. D. (1986). Analysis of the treadmilling model during metaphase of mitosis using fluorescence redistribution after photobleaching. J. cell Biol. 102, 10321038.CrossRefGoogle ScholarPubMed
Waggoner, A. S. (1976). Optical probes of membrane potential. J. membr. Biol. 27, 317334.CrossRefGoogle ScholarPubMed
Walter, R. J. & Berns, M. W. (1981). Computer–enhanced video microscopy: digitally processed microscope images can be produced in real time. Proc. natn. Acad. Sci. U.S.A. 78, 69276931.CrossRefGoogle ScholarPubMed
Wang, Y. -L. (1985). Exchange of actin subunits at the leading edge of living fibroblasts: possible role of treadmilling. J. cell Biol. 101, 597602.CrossRefGoogle Scholar
Wang, K., Feramisco, J. & Ash, J. (1982 a). Fluorescent localization of contractile proteins in tissue culture cells. Methods in Enzymol. 85, 514562.CrossRefGoogle ScholarPubMed
Wang, Y. -L., Heiple, J. & Taylor, D. L. (1982 b). Fluorescent analog cytochemistry of contractile proteins. In Methods in Cell Biology, vol. 25 (ed. Wilson, L.), pp. 111. New York: Academic Press.Google Scholar
Wang, Y.-L., Lanni, F., McNeil, P. L., Ware, B. R. & Taylor, D. L. (1982 c). Mobility of cytoplasmic and membrane-associated actin in living cells. Proc. natn. Acad. Sci. U.S.A. 79, 46604664.CrossRefGoogle ScholarPubMed
Wang, Y.-L. & Taylor, D. L. (1979). Distribution of fluorescently labeled actin in living sea urchins eggs during early development. J. cell Biol. 81, 672679.CrossRefGoogle ScholarPubMed
Wang, Y.-L. & Taylor, D. L. (1980). Preparation and characterization of a new molecular cytochemical probe: 5-iodoacetamidofluorescein–labeled actin. J. Histochem. Cytochem. 28, 11981206.CrossRefGoogle ScholarPubMed
Ware, B. R., Brvenik, L. J., Cummings, R. T., Furukawa, R. H. & Krafft, G. A. (1986). Fluorescence photoactivation and dissipation (EPD). In Application of Fluorescence in the Biomedical Sciences (ed. Taylor, D. L.Waggoner, A. S.Murphy, R. F.Canni, F. and Birge, R. R.), pp. 141157. New York: Alan R. Liss.Google Scholar
Watts, T. H., Gaub, H. E. & McConnell, H. M. (1986). T cell mediated association of peptide antigen and major histocompatibility complex protein detected by energy transfer in an evanescent wave-field. Nature 320, 179181.CrossRefGoogle Scholar
Weber, K. (1976). Visualization of tubulin-containing structures by immunofluorescence microscopy: cytoplasmic microtubules, mitotic figures and vinblastine-induced paracrystals. In Cell Motility, pp. 403417. Cold Spring Harbor.Google Scholar
Weber, K. & Groeschel-Stewart, U. (1974). Antibody to myosin: the specific visualization of myosin-containing filaments in nonmuscle cells. Proc. natn. Acad. Set. U.S.A. 71, 45614564.CrossRefGoogle ScholarPubMed
Weber, K. & Osborn, M. (1979). Intracellular display of microtubule structure revealed by indirect immunofluorescence microscopy. In Microtubules (ed. Robert, K. and Hyams, J. S.), pp. 279313. London: Academic Press.Google Scholar
Wehland, J., Osborn, M. & Weber, K. (1979). Cell-to-substratum contacts in living cells. A direct correlation between interference-reflection and indirect immunofluorescence microscopy using antibodies against actin and α-actinin. J. Cell Sci. 37, 257273.CrossRefGoogle Scholar
Wehland, J. & Weber, K. (1980). Distribution of fluorescently labelled actin and tropomyosin after microinjection in living tissue culture cells as observed with TV image intensification. Expl. Cell Res. 127, 397408.CrossRefGoogle ScholarPubMed
Wessel, J. (1985). Surface-enhanced optical microscopy. J. Optic. Soc. Am. B2 (9), 15381541.CrossRefGoogle Scholar
Wichramasinghe, H. K. & Hall, M. (1976). Phase imaging with the scanning acoustic microscope. Electron. Lett. 12, 637638.CrossRefGoogle Scholar
Wieland, T. & Faulstich, H. (1978). Amatoxins, phallotoxins, phallolysin, and antamanide: the biologically active components of poisonous amanita mushrooms. Crit. Rev. Biochem. 4, 1852601.CrossRefGoogle Scholar
Wijnaendts Van Resandt, R. W., Marsman, H. J. B., Kaplan, R., Davoust, J., Stelzer, E. H. K. & Striker, R. (1985). Optical fluorescence microscopy in three dimensions: microtomoscopy. J. Microsc. 138, 2934.CrossRefGoogle Scholar
Williams, D., Fogarty, K., Tsien, R. & Fay, F. (1985). Calcium gradients in single smooth muscle cells revealed by the digital imaging microscope using fura-2. Nature, Lond. 318, 558561.CrossRefGoogle ScholarPubMed
Williams, G. Z. (1957). Direct observation of cellular absorption by ultraviolet television microscopy. J. Histochem. Cytochem. 5, 246253.CrossRefGoogle ScholarPubMed
Willingham, M. & Pastan, I. (1978). The visualization of fluorescent proteins in living cells by video intensification microscopy (VIM). Cell 13, 501507.CrossRefGoogle ScholarPubMed
Willingham, M. C. & Pastan, I. H. (1983). Image intensification techniques for detection of proteins in cultured cells. Methods Enzymol. 98, 226283, 635 (addendum).Google ScholarPubMed
Wilson, T. & Sheppard, C. (1984). Theory and Practice of Scanning Optical Microscopy. New York: Academic Press.Google Scholar
Wojcieszyn, J., Schlegel, R., Wu, E.-S. & Jacobson, K. (1981). Diffusion of injected macromolecules within the cytoplasm in living cells. Proc. natn. Acad. Sci. 78, 44074410.CrossRefGoogle ScholarPubMed
Wolniak, S. M., Helper, P. K. & Jackson, W. T. (1983). Ionic changes in the mitotic apparatus at the metaphase/anaphase transition. J. cell Biol. 96, 598605.CrossRefGoogle ScholarPubMed
Wu, E. -S., Tank, D. W. & Webb, W. W. (1982). Unconstrained lateral diffusion of concanavalin A receptors in bulbous lymphocytes. Proc. natn. Acad. Sci. 79, 49624966.CrossRefGoogle ScholarPubMed
Yamamoto, K. & Taira, A. (1983). Some improvement in phase contrast microscope. J. Microsc. 129, 4962.CrossRefGoogle Scholar
Yanagida, M., Hiraoka, Y. & Katsura, I. (1983). Dynamic behaviors of DNA molecules in solutions studied by fluorescence microscopy. Cold Spring Harb. Sym. quant. Biol. 47, 177187.CrossRefGoogle ScholarPubMed
Young, I. T. (1983). The use of digital image processing techniques for the caibration of quantitative microscopes. Proc. Soc. Photo-Optical Inst. Eng. 397, 326335.Google Scholar
Zaccai, G. & Jacrot, B. (1983). Small angle neutron scattering. A. Rev. biophys. Bioeng. 12, 139157.CrossRefGoogle ScholarPubMed
Zarling, D. A., Arndt-Jovin, D. A., Robert-Nicoud, M., Thomae, R., McIntosh, L. P. & Jovin, T. M. (1984). Immunoglobulin recognition of synthetic and natural left-handed z-DNA conformations and sequences. J. mol. Biol. 176, 369415.CrossRefGoogle ScholarPubMed
Zavortink, M., Welsch, M. T. & McIntosh, J. R. (1983). The distribution of calmodulin in living mitotic cells. Expl. Cell Res. 149, 375385.CrossRefGoogle ScholarPubMed
Zernike, F. (1942). Phase contrast, a new method for microscopic observation of transparent objects. Physaica 9, 686698; 974–986.CrossRefGoogle Scholar
Zigmond, S. H. (1977). Ability of polymorphonuclear leukocytes to orient in gradients of chemotactic factors. J. cell Biol. 75, 606616.CrossRefGoogle ScholarPubMed
Zimmerman, U. (1982). Electric field-mediated fusion and related electrical phenomena. Biochim. biophys. Acta 694, 227277.CrossRefGoogle Scholar
Zirkle, R. E. (1970). Ultraviolet-microbeam irradiation of newt-cell cytoplasm: spindle destruction, false anaphase and delay of true anaphase. Rad. Res. 41, 516537.CrossRefGoogle ScholarPubMed
Zorn, C, Cremer, C, Cremer, J. & Zimmer, J. (1979). Unscheduled DNA synthesis after partial UV irradiation of the cell nucleus. Distribution in interphase and metaphase. Expl. Cell Res. 124, 111119.CrossRefGoogle ScholarPubMed