Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2025-01-03T19:36:38.500Z Has data issue: false hasContentIssue false

Microcalorimeters

Published online by Cambridge University Press:  17 March 2009

Ingemar Wadsö
Affiliation:
Thermochemistry Laboratory, Chemical Center, University of Lund, S–220 07 Lund 7, Sweden

Extract

In all life sciences there can be noted a marked trend toward an increased use of physical instrumentation. Calorimeters, which are instruments for measurements of heat quantities or heat effects, offer one approach in this respect.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1970

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ackerman, T. H. & Rüterjans, H. (1964). Kalorimetrische Messungen zur Helix-Coil-Umwandlung von Nucleinsäuren und synthetischen Polypeptiden in Lösung. Ber. Bunsenges. Phys. Chem. 68 850.CrossRefGoogle Scholar
Armstrong, G. T. (1964). The calorimeter and its influence on the development of chemistry. J. chem. Educ. 41 297.CrossRefGoogle Scholar
Attree, R. W., Cushing, R. L., Ladd, J. A. & Pieroni, J. J. (1958). Differential calorimeter of the Tian-Calvet type. Rev. scient. Instrum. 29 491.CrossRefGoogle Scholar
Balko, B., Berger, R. L. & Friauf, W. (1969). Stopped flow calorimetry for biochemical reactions. Analyt. Chem. 41 1506.CrossRefGoogle ScholarPubMed
Becker, F. & Kiefer, M. (1969). Kontinuerliche Bestimmung von Mischungswärmen durch isotherme Enthalpietitration. Z. Naturf. 24a, 7.CrossRefGoogle Scholar
Benjamin, L. & Benson, S. W. (1962). Thermal conduction in a Tian–Calvet microcalorimeter. Can. J. Chem. 40 601.CrossRefGoogle Scholar
Benzinger, T. H. (1969). Ultrasensitive Reaction Calorimetry in A Laboratory Manual of Analytical Methods of Protein Chemistry (ed. Alexander, P. and Lundgren, H. P.). New York: Pergamon Press.CrossRefGoogle Scholar
Benzinger, T. H. & Kitzinger, C. (1954). Microcalorimetry of simple biochemical systems. Fed. Proc. 13 11.Google Scholar
Benzinger, T. H. & Kitzinger, C. (1963). Microcalorimetry, new methods and objectives. In Temperature—Its Measurement and Control in Science and Industry (ed. Hardy, J. D.), vol. 3, part 3. New York: Reinhold.Google Scholar
Berger, R. L. (1969). (a) Combined calorimetry and spectrophotometry. (b) Computers for calorimetry. In Biochemical Microcalorimetry (ed. Brown, H. D.). New York: Academic Press.Google Scholar
Berger, R. L., Fok, Chick Y. & Davids, N. (1968). Differential microcalorimeter for biochemical reaction studies. Rev. scient. Instrum. 39 362.CrossRefGoogle ScholarPubMed
Biltonen, R. L., Schwartz, T. & Wadsö, I. (1970). Calorimetric studies of the chymotrypsinogen family of protein. Biochemistry N. Y. (submitted).Google Scholar
Bjurulf, C., Laynez, J. & Wadsö, I. (1970). Thermochemistry of lysozyme-Inhibitor Binding. Eur. J. BioChem. 14 47.CrossRefGoogle ScholarPubMed
Brandts, J. F. (1969). Conformational transitions of proteins in water and in aqueous mixtures. In Structure and Stability of Biological Macromolecules (ed. Timasheff, S. N. and Fasman, G. D.). New York: Decker.Google Scholar
Brown, H. D. (1969). Multiple calorimeters. In Biochemical Microcalorimetry (ed. Brown, H. D.). New York: Academic Press.Google Scholar
Buzzel, A. & Sturtevant, J. M. (1951). A new calorimetric method. J. Am. chem. Soc. 73 2454.CrossRefGoogle Scholar
Calvet, E. (1956). Microcalorimetry of slow phenomena. In Experimental Thermochemistry (ed. Rossini, F. D.). New York: Interscience.Google Scholar
Calvet, E. (1962). Recent progress in microcalorimetry. In Experimental Thermochemistry (ed. Skinner, H. A.), vol. II. London: Interscience Publishers.Google Scholar
Calvet, E. & Camia, F. (1958). Sur l'obtention des courbes de thermogenèse a partir des courbes enregistrèes au microcalorimètrie de E. Calvet. J. Chim. phys. 55 818.CrossRefGoogle Scholar
Calvet, E. & Prat, H. (1956). Microcalorimètrie. Applications physicochimiques et biologiques. Paris: Masson et Cie.Google Scholar
Calvet, E. & Prat, H. (1963). Recent Progress in Microcalorimetry (ed. Skinner, H. A.). London: Pergamon Press.Google Scholar
Christensen, J. J., Rytting, J. H. & Izatt, R. M. (1969). Calorimetric determination of equilibrium constants and enthalpy changes in solution. J. Chem. Soc. (A), p. 861.CrossRefGoogle Scholar
Clem, T. R., Berger, R. L. & Ross, P. D. (1969). A differential adiabatic microcalorimeter for the study of heats of transition in solution. Rev. scient. Instrum. 40 1273.CrossRefGoogle Scholar
Coops, J., Jessup, R. S. & Van Ness, K. (1956). Experimental Thermochemistry (ed. Rossini, F. D.). New York: Interscience.Google Scholar
Danforth, R., Krakauer, H. & Sturtevant, M. (1967). Differential calorimetry of thermally induced processes in solution. Rev. scient. Instrum. 38 484.CrossRefGoogle Scholar
Delin, S., Monk, P. & Wadsö, I. (1969). Flow microcalorimetry as an analytical tool in microbiology. Sci. Tools 16 22.Google Scholar
Evans, W. J. (1969). The conduction-type microcalorimeter. In Biochemical Microcalorimetry (ed. Brown, H. D.). New York: Academic Press.Google Scholar
Forrest, W. W. (1969). Bacterial calorimetry. In Biochemical Microcalorimetry (ed. Brown, H. D.). New York: Academic Press.Google Scholar
Garrigues, J. C., Roux, R. & Valette, A. (1967). Détermination a l'aide du microcalorimètre Calvet des paramètres cinètiques d'une rèaction en solution. Colloques internationaux du CNRS No 156: Les développments recents de la microcalorimétrie et de la thermogenèse. Ed. du Centre National de la Recherche Scientifique, Paris.Google Scholar
Gill, S. J. & Beck, K. (1965). Differential heat capacity calorimeter for polymer transition studies. Rev. scient. Instrum. 36 274.CrossRefGoogle Scholar
Hutchens, J. A., Cole, A. G. & Stout, J. W. (1969). Heat capacities from 11 to 305 °K and entropies of hydrated and anhydrous bovine zinc insulin and bovine chymotrypsinogen A. J. biol. Chem. 244 26.CrossRefGoogle ScholarPubMed
Karasz, F. E. & O'Reilly, J. M. (1966). Wide temperature range adiabatic calorimeter. Rev. scient. Instrum. 37 255.CrossRefGoogle Scholar
Kitzinger, C. & Benzinger, T. H. (1960). Principle and method of heat-burst microcalorimetry and the determination of free energy, enthalpy and entropy changes. In Methods of Biochemical Analysis (ed. Glick, D.), vol. VIII.Google Scholar
Kleiber, M. (1961). The Fire of Life. New York: John Wiley and Sons.Google Scholar
Konicek, J. & Wadsö, I. (1970). A micro drop heat capacity calorimeter (to be published).Google Scholar
Kusano, K., Nelander, B. & Wadsö, I. (1970). A micro adsorption calorimeter. Reported at the 4th British Calorimetry Conference, London (to be published).Google Scholar
Laffitte, M., Coten, M. & Camia, F. M. (1968). A new calorimeter: The C.R.M.T. (Centre de Recherches de Microcalorimétrie et Thermochemie du C.N.R.S.) calorimeter. Report at the 23rd Annual Calorimetry Conference, Midland, Mich.Google Scholar
Monk, P. & Wadsö, I. (1968). A flow micro reaction calorimeter. Acta chem. scand. 22 1842.CrossRefGoogle Scholar
Monk, P. & Wadsö, I. (1969). Flow microcalorimetry as an analytical tool in biochemistry and related areas. Acta chem. scand. 23 29.CrossRefGoogle ScholarPubMed
O'Neil, M. J. (1964). The analysis of a temperature-controlled scanning calorimeter. Analyt. Chem. 36 1238.CrossRefGoogle Scholar
O'Neil, M. J. (1966). Measurement of specific heat functions by differential scanning calorimetry. Analyt. Chem. 38 1331.CrossRefGoogle Scholar
Pennington, S. N., Brown, H., Berger, R. L. & Evans, W. J. (1969). Analytical application of microcalorimetry: A stopped flow mixing device. Analyt. BioChem. 32 251.CrossRefGoogle Scholar
Picker, P., Jolicoeur, C. & Desnoyers, J. E. (1969). Steady state and composition scanning differential flow microcalorimeters. J. Chem. Thermodyn. 1 485.CrossRefGoogle Scholar
Prat, H. (1969). Calorimetry of higher organisms. In Biochemical Microcalorimetry (ed. Brown, H. D.). New York: Academic Press.Google Scholar
Privalov, P. C., Monaselidze, G. M., Mrevlishvili, G. M. & Mageldadze, V. A. (1964). Intramolecular heat of fusion of macromolecules. J. expt. theor. Phys. (U.S.S.R.) 47 2073.Google Scholar
Roughton, F. J. W. (1963). The thermal measurement of rapid reactions in solution. In Technique of Organic Chemistry (ed. Friess, S. L., Lewis, E. S. and Weissberger, A.), vol. VIII, part II, ed. 2. New York: John Wiley and Sons.Google Scholar
Skinner, H. A. (1969). Theory, scope and accuracy of calorimetric measurements. In Biochemical Calorimetry (ed. Brown, H. D.). New York: Academic Press.Google Scholar
Skinner, H. A., Sturtevant, J. M. & Sunner, S. (1962). The design and operation of reaction calorimeters. In Experimental Thermochemistry (ed. Skinner, H. A.), vol. 2. London: Interscience.Google Scholar
Stoesser, P. R. & Gill, S. J. (1967). A precision flow-microcalorimeter. Rev. sclent. Instrum. 38 422.CrossRefGoogle ScholarPubMed
Sturtevant, J. M. (1959). Calorimetry. In Techniques of Organic Chemistry (ed. Weissberger, A.), 3rd ed., vol. 1, part 1. New York: John Wiley and Sons.Google Scholar
Sturtevant, J. M. (1962). Heats of biochemical reactions. In Experimental Thermochemistry (ed. Skinner, H. A.), vol. II. London: Interscience.Google Scholar
Sturtevant, J. M. (1969). Flow calorimetry. Fractions 1969, 1.Google Scholar
Swietoslawski, W. (1946). Microcalorimetry. New York: Reinhold Publ. Comp.Google Scholar
Swietoslawski, W. & Zielenkiewicz, W. (1959). On a new labyrinth flow calorimeter. Bull. Acad. polon. sci. 7 101.Google Scholar
Tian, A. (1923). Utiliason de la méthode calorimétrique en dynamique chimique: emploi d'un micro-calorimètre à compensation. Bull. Soc. chim. Fr. 33 427.Google Scholar
Wadsö, I. (1968). Design and testing of a micro reaction calorimeter. Acta chem. scand. 22, 927.CrossRefGoogle Scholar
Watson, E. S., O'Neil, M. J., Justin, J. & Brenner, N. (1964). A differential scanning calorimeter for quantitative differential thermal analysis. Analyt. Chem. 36 1233.CrossRefGoogle Scholar
Westrum, E. F. Jr (1962). Cryogenic calorimetric contributions to chemical thermodynamics. J. Chem. Educ. 39 443.CrossRefGoogle Scholar
Westrum, E. F. Jr., Furukawa, G. T. & McCullough, J. P. (1968). Adiabatic low-temperature calorimetry. In Experimental Thermodynamics (ed. McCullough, J. P. and Scott, D.W.). London: Butterworths.Google Scholar
Wilson, H. & Epps, T. D. (1919). The construction of thermocouples by electro-deposition. Proc. phys. Soc. (Lond.), 32 326.Google Scholar