Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-23T02:40:45.745Z Has data issue: false hasContentIssue false

The localization and assay of chemical elements by microprobe methods

Published online by Cambridge University Press:  17 March 2009

T. A. Hall
Affiliation:
Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, U.K.
Brij L. Gupta
Affiliation:
Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, U.K.

Extract

The principle of the microprobe analysis of chemical elements is illustrated in Fig. i. Some kind of radiation is directed on to the specimen, generating signals characteristic of the elements present. Local analysis in situ is achieved in one of two ways. Most often the impinging beam is finely focused so that the signal at any moment comes only from a selected microregion. Alternatively, in some instruments, the impinging beam floods a larger region but the emergent signals characteristic of a particular element may be selected and focused to give an elemental ‘map’ or ‘image’.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adamson-Sharpe, K. M. & Ottensmeyer, F. P. (1981). Spatial resolution and detection sensitivity in microanalysis by electron energy loss selected imaging. J. Microsc. 122, 309314.CrossRefGoogle ScholarPubMed
Appleton, T. C. (1974). A cryostat approach to ultrathin ‘dry’ frozen sections for electron microscopy: a morphological and X-ray analytical study. J. Microsc. 100, 4974.CrossRefGoogle ScholarPubMed
Appleton, T. C. (1978). The contribution of cryo-ultramicrotomy to X-ray microanalysis in biology. In Electron Probe Microanalysis in Biology (ed. Erasmus, D. A.), pp. 148182. London: Chapman & Hall.Google Scholar
Bachman, L. (1982). Cryofixation. Proc. 10th Int. Congr. Electron Microsc. 1, 17.Google Scholar
Bahr, G. F., Johnson, F. B. & Zeitler, E. (1965). The elementary composition of organic objects after electron irradiation. Lab. Invest. 14, 11151133.Google ScholarPubMed
Barnard, T. & Sevéus, L. (1978). Preparation of biological material for X-ray microanalysis of diffusible elements. II. Comparison of different methods of drying ultrathin cryosections cut without a trough liquid. J. Microsc. 112, 281291.CrossRefGoogle ScholarPubMed
Brombach, J. D. (1975). Electron beam X-ray microanalysis of frozen biological bulk specimens below 130 K. II. The electrical charging of the sample in quantitative analysis. J. Microsc. biol. cell. 22, 233238.Google Scholar
Burns, M. S. (1982). Applications of secondary ion mass spectrometry (SIMS) in biological research: a review. J. Microsc. 127, 237258.CrossRefGoogle ScholarPubMed
Cameron, I. L., Sparks, R. L., Horn, K. L. & Smith, N. R. (1977). Concentration of elements in mitotic chromatin as measured by X-ray microprobe. J. Cell Biol. 73, 193199.CrossRefGoogle Scholar
Castaing, R., & Henry, L. (1962). Filtrage magnétique des vitesses en microscopie électronique. C. r. hebd. Séanc. Acad. Sci. Paris 255, 7678.Google Scholar
Civan, M. M. (1983). Epithelial Ions and Transport. Application of Biophysical Techniques. New York: John Wiley.Google Scholar
Conru, H. W. & Laberge, P. C. (1975). Oil contamination with the SEM operated in the spot scanning mode. J. Phys. E 8, 136138.Google Scholar
Cosslett, V. E. (1978). Radiation damage in the high resolution microscopy of biological materials: a review. J. Microsc. 113, 113129.CrossRefGoogle ScholarPubMed
Cosslett, V. E. (1980). Progress in electron energy loss analysis for biological specimens. Scanning Electron Microscopy, 2, 575582.Google Scholar
Dörge, A., Rick, R., Gehring, K. & Thurau, K. (1978). Preparation of freeze-dried cryosections for quantitative X-ray microanalysis of electrolytes in biological soft tissues. Pflügers Arch. 373, 8597.CrossRefGoogle ScholarPubMed
Dubochet, J. & McDowall, A. W. (1981). Vitrification of pure water for electron microscopy. J. Microsc. 124, no. 3, RP3-RP4.CrossRefGoogle Scholar
Dubochet, J., Lepault, J., Freeman, R., Berriman, J. A. & Homo, J. O. (1982 b). Electron microscopy of frozen water and aqueous solutions. J. Microsc. 128, 219237.CrossRefGoogle Scholar
Dubochet, J., McDowall, A., Freeman, R. & Lepault, J. (1982 a). Cryoprotection on organic specimens. Proc. 10th Int. Congr. Electron Microsc. 1, 1923.Google Scholar
Duncumb, P. (1959). The X-ray scanning microanalyser. Br. J. appl. Phys. 10, 420427.CrossRefGoogle Scholar
Echlin, P. (ed.) (1978). Low Temperature Biological Microscopy and Microanalysis. Oxford: The Royal Microscopical Society.Google Scholar
Egerton, R. F. (1978). Formulae for light-element microanalysis by electron energy-loss spectrometry. Ultramicroscopy 3, 243251.CrossRefGoogle ScholarPubMed
Egerton, R. F. (1980). Chemical measurements of radiation damage in organic samples at and below room temperature. Ultramicroscopy 5, 521523.CrossRefGoogle Scholar
Egerton, R. F. (1982 a). Organic mass loss at 100 Kand 300 K. J. Microsc. 126, 95100.CrossRefGoogle Scholar
Egerton, R. F. (1982 b). Electron energy loss analysis in biology. Proc. 10th Int. Congr. Electron Microsc. 1, 151158.Google Scholar
Eusemann, R., Rose, H. & Dubochet, J. (1982). Electron scattering in ice and organic materials. J. Microsc. 128, 239249.CrossRefGoogle Scholar
Faulkner, R. G., Hopkins, T. C. & Norrgård, K. (1977). Improved spatial resolution microanalysis in a scanning transmission electron microscope. X-ray Spectrom. 6, 7379.CrossRefGoogle Scholar
Forer, A., Gupta, B. L. & Hall, T. A. (1980). Electron probe X-ray microanalysis of calcium and other elements in meiotic spindles, in frozen sections of spermatocytes from crane fly testes. Expl Cell Res. 126, 217226.CrossRefGoogle ScholarPubMed
Frederik, P. M., Busing, W. M. & Hax, W. M. A. (1982 b). Frozen hydrated and drying thin cryo-sections observed in STEM. J. Microsc. 126, no. 1, RPI-RP2.CrossRefGoogle ScholarPubMed
Frederik, P. M., Busing, W. M. & Persson, A. (1982 a). Concerning the nature of the cryosectioning process. J. Microsc. 125, 167175.CrossRefGoogle ScholarPubMed
Glaeser, R. M. (1975). Radiation damage and biological electron microscopy. In Physical Aspects of Electron Microscopy and Microbeam Analysis (ed. Siegel, B. M. and Beaman, D. R.), pp. 205229. New York: Wiley.Google Scholar
Glaeser, R. M. & Taylor, K. A. (1978). Radiation damage relative to transmission electron microscopy of biological specimens at low temperature: a review. J. Microsc. 112, 127138.CrossRefGoogle ScholarPubMed
Goldstein, J. L., Costley, J. L., Lorimer, G. W. & Reed, S. J. B. (1977). Quantitative X-ray analysis in the electron microscope. In Scanning Electron Microscopy/1977, vol. 1 (ed. Johari, O.), pp. 315322. Chicago: IIT Research Institute.Google Scholar
Green, M. & Cosslett, V. E. (1961). The efficiency of production of characteristic X-radiation in thick targets of a pure element. Proc. phys. Soc. 78, 12061214.CrossRefGoogle Scholar
Gupta, B. L., Berridge, M. J., Hall, T. A. & Moreton, R. B. (1978 a). Electron microprobe and ion-selective microelectrode studies of fluid secretion in the salivary glands of Calliphora. J. exp. Biol. 72, 261264.CrossRefGoogle ScholarPubMed
Gupta, B. L. & Hall, T. A. (1979). Quantitative electron probe X-ray microanalysis of electrolyte elements within epithelial tissue compartments. Fedn Proc. Fedn Am. Socs exp. Biol. 38, 144153.Google ScholarPubMed
Gupta, B. L. & Hall, T. A. (1981 a). The X-ray mircoanalysis of frozen-hydrated sections in scanning electron microscopy: an evaluation. Tissue & Cell 13, 623643.CrossRefGoogle ScholarPubMed
Gupta, B. L. & Hall, T. A. (1981 b). Microprobe analysis of fluid-transporting epithelia: evidence for local osmosis and solute recycling. In Water Transport Across Epithelia: Barriers, Gradients and Mechanisms (ed. Ussing, H. H., Bindslev, N., Lassen, N. A. & Sten-Knudsen, O.), pp. 1735. Copenhagen: Munksgaard.Google Scholar
Gupta, B. L. & Hall, T. A. (1982). Electron-probe X-ray microanalysis. Publication P128 in the series Techniques in Cellular Physiology (ed. Baker, P. F.), pp. 152. Amsterdam: Elsevier/North-Holland.Google Scholar
Gupta, B. L. & Hall, T. A. (1983). Ionic distribution in dopamine-stimulated NaCl fluid-secreting cockroach salivary glands. Am. J. Physiol. 244, R176186.Google ScholarPubMed
Gupta, B., Hall, T. A. & Moreton, R. B. (1977). Electron probe X-ray microanalysis. In Transport of Ions and Water in Animals (ed. Gupta, B. L., Moreton, R. B., Oschman, J. L. and Wall, B. J.), pp. 83143. London: Academic Press.Google Scholar
Gupta, B. L., Hall, T. A. & Naftalin, R. J. (1978 b). Microprobe measurement of Na, K and Cl concentration profiles in epithelial cells and intercellular spaces of rabbit ileum. Nature, Land. 272, 7073.CrossRefGoogle Scholar
Hagler, H. K., Lopez, L. E., Flores, J. S., Lundswick, R. J. & Buja, L. M. (1983). Standards for quantitative energy dispersive X-ray microanalysis of biological cryosections: validation and application to studies of myocardium. J. Microsc. 131, 221234.CrossRefGoogle ScholarPubMed
Hall, T. A. (1968). Some aspects of the microprobe analysis of biological specimens. In Quantitative Electron Microprobe Analysis (ed. Heinrich, K. F. J.), pp. 269299. National Bureau of Standards (U.S.A.) Special Technical Publication 298.Google Scholar
Hall, T. A. (1971). The microprobe assay of chemical elements. In Physical Techniques in Biological Research, 2nd ed., vol. 1A (ed. Oster, G.), pp. 157275. New York: Academic Press.Google Scholar
Hall, T. A. (1979 a). Biological X-ray microanalysis. J. Microsc. 117, 145163.CrossRefGoogle ScholarPubMed
Hall, T. A. (1979 b). Problems of the continuum-normalisation method for the quantitative analysis of sections of soft tissue. In Microbeam Analysis in Biology (ed. Lechene, C. P. and Warner, R. R.), pp. 185203. New York: Academic Press.Google Scholar
Hall, T. A. & Gupta, B. L. (1974). Beam-induced loss of organic mass under electron-microprobe conditions. J. Microsc. 100, 177188.CrossRefGoogle Scholar
Hall, T. A. & Gupta, B. L. (1982 a). Quantification for the X-ray microanalysis of cryosections. J. Microsc. 126, 333345.CrossRefGoogle ScholarPubMed
Hall, T. A. & Gupta, B. L. (1982 b). The imaging problem in the X-ray microanalysis of matrix-free extracellular spaces in frozen-hydrated tissue sections. Proc. 40th Annual Meeting, Electron Microscopy Society of America (ed. Bailey, G. W.).pp. 394397. Baton Rouge:Claitor.Google Scholar
Hall, T. A. & Gupta, B. L. (1983). EDS quantitation and application to biology. In Principles of AEM (ed. Hren, J., Goldstein, J. and Joy, D.). New York: Academic Press. (In the Press.)Google Scholar
Hall, T. A., Hale, A. J. & Switsur, V. R. (1966). Some applications of microprobe analysis in biology and medicine. In The Electron Microprobe (ed. McKinley, C., Heinrich, K. F. J. and Wittry, D.), pp. 805833. New York: Wiley.Google Scholar
Hall, T. A. & Werba, P. (1971). Quantitative microprobe analysis of thin specimens: Continuum method. Proc. 25th Anniversary Meeting of EMAG, pp. 146149. Bristol: Institute of Physics.Google Scholar
Halloran, B. P., Kirk, R. G. & Spurr, A. R. (1978). Quantitative electron probe microanalysis of biological thin sections: the use of STEM for measurement of local mass thickness. Ultramicroscopy 3, 175184.CrossRefGoogle ScholarPubMed
Hillenkamp, F., Unsold, E., Kaufmann, R. & Nitsche, R. (1975). A high-sensitivity laser microprobe mass analyzer. Apli. Physics 8, 341348.CrossRefGoogle Scholar
Hirokawa, N. & Heuser, J. E. (1981). Structural evidence that botulinum toxin blocks neuromuscular transmission by impairing the calcium influx that normally accompanies nerve depolarization. J. Cell Biol. 88, 160171.CrossRefGoogle ScholarPubMed
Hosoi, J., Oikawa, T., Inoue, M., Kokubo, Y. & Hama, K. (1981). Measurement of partial specific thickness (net thickness) of critical-point-dried cultured fibroblast by energy analysis. Ultramicroscopy 7, 147154.CrossRefGoogle ScholarPubMed
Hren, J. J. (1979). Specimen contamination in analytical electron microscopy: sources and solutions. Ultramicroscopy 3, 375380.CrossRefGoogle Scholar
Hutchinson, T. E., Johnson, D. E. & Mackenzie, A. P. (1978). Instrumentation for direct observation of frozen hydrated specimens in the electron microscope. Ultramicroscopy 3, 315324.CrossRefGoogle ScholarPubMed
Isaacson, M. & Johnson, D. (1975). The microanalysis of light elements using transmitted energy loss electrons. Ultramicroscopy 1, 3352.CrossRefGoogle ScholarPubMed
Jeanguillaume, C., Tence, M., Trebbia, P. & Colliex, C. (1983). EELS chemical mapping of low Z elements in biological sections. Scanning Electron Microscopy (in the Press).Google Scholar
Jeanguillaume, C., Trebbia, P. & Colliex, C. (1978). About the use of electron energy-loss spectroscopy for chemical mapping of thin foils with high spatial resolution. Ultramicroscopy 3, 237242.CrossRefGoogle ScholarPubMed
Johnson, D. E. (1979). Energy loss spectrometry for biological research. In Introduction to Analytical Electron Microscopy (ed. Hren, J. J., Goldstein, J. L. & Joy, D. C.), pp. 245258. New York: Plenum.CrossRefGoogle Scholar
Joy, D. C. (1979). The basic principles of electron energy loss spectroscopy. In Introduction to Analytical Electron Microscopy (eds. Hren, J. J., Goldstein, J. L. and Joy, D. C.), pp. 223244. New York: Plenum.CrossRefGoogle Scholar
Joy, D. C. & Maher, D. M. (1980). Electron energy loss spectroscopy: detectable limits for elemental analysis. Ultramicroscopy 5 333342.CrossRefGoogle Scholar
Joy, D. C. & Maher, D. M. (1981). The quantitation of electron energy loss spectra. J. Microsc. 124, 3748.CrossRefGoogle Scholar
Joy, D. C., Newbury, D. E. & Myklebost, R. L. (1982). The role of fast secondary electrons in degrading spatial resolution in the analytical electron microscope. J. Microsc. 128, no. 2, RPI-RP2.CrossRefGoogle Scholar
Karp, R. D., Silcox, J. C. & Somlyo, A. V. (1982). Cryoultramicrotomy: evidence against melting and the use of a low temperature cement for specimen orientation. J. Microsc. 125, 157165.CrossRefGoogle ScholarPubMed
Kaufmann, R., Hillenkamp, F., Nitsche, R., Schürmann, M. & Unsold, E. (1975). Biomedical applications of laser microprobe analysis. J. Microsc. Biol. Cell. 22, 389398.Google Scholar
Kaufmann, R., Hillenkamp, F., Nitsche, R., Schürmann, M. & Wechsung, R. (1978). The laser microprobe mass analyser (LAMMA): biomedical applications. Microsc. Acta, Suppl. 2, 297306.Google Scholar
Kellenberger, E. (1982). Radiation damage in biological materials in perspective with other limitations. Proc. 10th Int. Congr. Electron Microscopy I, 3340.Google Scholar
Kramers, H. A. (1923). On the theory of X-ray absorption and of the continuous X-ray spectrum. Phil. Mag. 46, 836871.CrossRefGoogle Scholar
Krefting, E.-R., Lissner, G. & Höhling, H. J. (1981). Quantitative EPMA of biological tissue using mixtures of salts as standards. Scanning Electron Microscopy 2, 369376.Google Scholar
Kuypers, G. A. J. & Rodmans, G. M. (1980). Post-mortem elemental redistribution in rat studied by X-ray microanalysis and electron microscopy. Histochemistry 69, 145156.CrossRefGoogle ScholarPubMed
Leapman, R. D., Fiori, C. E. & Swyt, C. R. (1983). Mass thickness determination by electron energy loss for quantitative X-ray micro-analysis in biology. J. Microsc. (in the Press).Google Scholar
Lechene, C. (1982). Electron probe microanalysis of frozen hydrated kidneys, isolated cells, and cultured cells. Proc. 10th Annual Meeting, Electron Microscopy Society of America (ed. Bailey, G. W.), pp. 402403. Baton Rouge: Claitor.Google Scholar
Legge, G. J. F. (1980). The scanning proton microprobe. In Microbeam Analysis (ed. Wittry, D. B.), pp. 7076. San Francisco: San Francisco Press.Google Scholar
Lepault, J., Booy, F. P. & Dubochet, J. (1983). Electron microscopy of frozen biological suspensions. J. Microsc. 129, 89102.CrossRefGoogle ScholarPubMed
Love, G., Scott, V. D., Dennis, N. M. & Laurenson, L. (1981). Sources of contamination in electron optical equipment. Scanning 4, 3239.CrossRefGoogle Scholar
Lubbock, R., Gupta, B. L. & Hall, T. A. (1981). Novel role of calcium in exocytosis: mechanism of nematocyst discharge as shown by X-ray microanalysis. Proc. natn. Acad. Sci. U.S.A. 78, 36243628.CrossRefGoogle ScholarPubMed
Marshall, A. T. (1980). Freeze-substitution as a preparation technique for biological X-ray microanalysis. Scanning Electron Microscopy 2, 395408.Google Scholar
Marshall, A. T. (1982). Application of φ(ρZ) curves and a windowless detector to the quantitative X-ray microanalysis of frozen-hydrated bulk biological specimens. Scanning Electron Microscopy 1, 243260.Google Scholar
Mcdowall, A. W., Chang, J.-J., Freeman, R., Lepault, J., Walter, C. A. & Dubochet, J. (1983). Electron microscopy of frozen hydrated sections of vitreous ice and vitrified biological samples. J. Microsc. 13, 19.CrossRefGoogle Scholar
Monson, K. L. & Hutchinson, T. E. (1981). X-ray microanalysis of freeze-dried muscle: techniques and problems. In Microprobe Analysis of Biological Systems (ed. Hutchinson, T. E. and Somlyo, A. P.), pp. 157176. San Francisco: Academic Press.Google Scholar
Moreton, R. B. (1981). Electron-probe X-ray microanalysis: techniques and recent applications in biology. Biol. Rev. 56, 409461.CrossRefGoogle ScholarPubMed
Morgan, A. J. & Davies, T. W. (1982). An electron microprobe study of the influence of beam current density on the stability of detectable elements in mixed-salts (isoatomic) droplets. J. Microsc. 125, 103116.CrossRefGoogle Scholar
Nicholson, W. A. P., Gray, C. C., Chapman, J. N. & Robertson, B. W. (1982). Optimizing thin film X-ray spectra for quantitative analysis. J. Microsc. 125, 2540.CrossRefGoogle Scholar
Ottensmeyer, F. P. & Andrew, J. W. (1980). High-resolution microanalysis of biological specimens by electron energy loss spectroscopy and by electron spectroscopie imaging. J. Ultrastruct. Res. 72, 336348.CrossRefGoogle Scholar
Ottensmeyer, F., Bazett-Jones, D. & Adamson-Sharpe, K. (1981). Electron energy-loss microanalysis with high spatial resolution, energy resolution and sensitivity. In Microprobe Analysis of Biological Systems (ed. Hutchinson, T. E. and Somlyo, A. P.), pp. 309324. San Francisco: Academic Press.Google Scholar
Pieri, C., Zs.-Nagy, I., Zs.-Nagy, V., Giuli, C. & Bertoni-Freddari, C. (1977). Energy dispersive X-ray microanalysis of the electrolytes in biological bulk specimens. II. Age dependent alterations in the monovalent ion contents of cell nucleus and cytoplasm in rat liver and brain cells. J. Ultrastruct. Res. 59, 320331.CrossRefGoogle ScholarPubMed
Popescu, L. M., De Bruijn, W. C., Diculescu, I. & Daems, W. T. (1980). Calcium and magnesium compartmentalization in skeletal muscle: electron probe X-ray microanalysis. Microbeam Analysis -1980 (ed. Wittry, D. B.), pp. 259264. San Francisco: San Francisco Press.Google Scholar
Reed, S. J. B. (1982). The single-scattering model and spatial resolution in X-ray analysis of thin foils. Ultramicroscopy 7, 405410.CrossRefGoogle Scholar
Reimer, L. & Wächter, M. (1978). Contribution to the contamination problem in transmission electron microscopy. Ultramicroscopy 3, 169174.CrossRefGoogle Scholar
Revel, J. P., Barnard, T. & Haggis, G. (eds.) (1983). The Science of Specimen Preparation. AMF O'Hare, Illinois: SEM Inc. (in the Press).Google Scholar
Rick, R., Dörge, A. & Thurau, K. (1982). Quantitative analysis of electrolytes in frozen dried sections. J. Microsc. 125, 239247.CrossRefGoogle ScholarPubMed
Roinel, N. (1981). Electron probe analysis of microdroplets: factors affecting the proportionality between measured X-ray intensity and concentration. J. Microsc. 123, 311321.CrossRefGoogle Scholar
Rodmans, G. M. (1980). Problems in quantitative X-ray microanalysis of biological specimens. Scanning Electron Microscopy 2, 309320.Google Scholar
Rodmans, G. M. & Kupyers, G. A. J. (1980). Background determination in X-ray microanalysis of biological thin sections. Ultramicroscopy 5, 8183.CrossRefGoogle Scholar
Rodmans, G. M., Wei, X. & Sevéus, L. (1982). Cryoultramicrotomy as a preparative method for X-ray microanalysis in pathology. Ultra-structural Pathology 3, 6584.CrossRefGoogle Scholar
Sasaki, S., Nakagaki, I., Mori, H. & Imai, Y. (1983). Intracellular calcium store and transport of elements in acinar cells of the salivary gland determined by electron probe X-ray microanalysis. Jap. J. Physiol. 33, 6983.CrossRefGoogle ScholarPubMed
Saubermann, A. J., Echlin, P., Peters, P. D. & Beeuwkes, R. (1981). Application of scanning electron microscopy to X-ray analysis of frozen-hydrated sections. I. Specimen handling techniques. J. Cell Biol. 88, 257267.CrossRefGoogle ScholarPubMed
Schueler, B., Nitsche, R. & Hillenkamp, F. (1980). Possibilities for a laser-induced micro-mass analysis of bulk surfaces. Scanning Electron Microscopy 2, 597605.Google Scholar
Sevéus, L. (1980). Cryoultramicrotomy as a preparation method for X-ray microanalysis. Scanning Electron Microscopy 4, 161170.Google Scholar
Shuman, H. (1981). Parallel recording of electron energy loss spectra. Ultramicroscopy 6, 163168.CrossRefGoogle ScholarPubMed
Shuman, H. & Somlyo, A. P. (1976). Electron probe X-ray analysis of single ferritin molecules. Proc. natn. Acad. Sci. U.S.A. 73, 11931195.CrossRefGoogle ScholarPubMed
Shuman, H., Somlyo, A. V. & Somlyo, A. P. (1976). Quantitative electron probe microanalysis of biological thin sections: methods and validity. Ultramicroscopy 1, 317339.CrossRefGoogle ScholarPubMed
Shuman, H., Somlyo, A. V. & Somlyo, A. P. (1981). Electron energy-loss analysis in biology: application to muscle and a parallel collection system. In Microprobe Analysis of Biological Systems (ed. Hutchinson, T. E. and Somlyo, A. P.), pp. 273288. San Francisco: Academic Press.Google Scholar
Siegel, G. (1972). Der Einfluss tiefer Temperaturen auf die Strahlenschädigung von organischen Kristallen durch 100 keV-Elektronen. Z. Naturf. 27A, 325332.CrossRefGoogle Scholar
Sitte, H. (1982). Instrumentation for cryosectioning. Proc. 10th Int. Congr. Electron Microsc. 1, pp. 918.Google Scholar
Sjöström, M. & Squire, J. M. (1977). Cryoultramicrotomy and myofib-rillar fine structure: a review. J. Microsc., 239278.CrossRefGoogle ScholarPubMed
Somlyo, A. P., Somlyo, A. V. & Shuman, H. (1979). Electron probe analysis of vascular smooth muscle: composition of mitochondria, nuclei and cytoplasm. J. Cell Biol. 81, 316335.CrossRefGoogle Scholar
Somlyo, A. P., Shuman, H. & Somlyo, A. V. (1982). X-ray mapping, electron energy loss analysis and quantitative electron probe analysis in biology. Proc. 10th Int. Congr. Electron Microsc. 1, pp. 143150.Google Scholar
Somlyo, A. V., Shuman, H. & Somlyo, A. P. (1977). Elemental distribution in striated muscle and the effects of hypertonicity. J. Cell Biol. 74, 828857.CrossRefGoogle ScholarPubMed
Talmon, Y. & Thomas, E. L. (1977). Temperature rise and sublimation of water from thin frozen hydrated specimens in cold stage microscopy. Proc. 10th Annual SEM Symposium, vol. I (ed. Johari, O.), pp. 265272. Chicago: IIT Press.Google Scholar
Talmon, Y. & Thomas, E. L. (1978). Electron beam heating temperature profiles in moderately thick cold stage STEM/SEM specimens. J. Microsc. 113, 6975.CrossRefGoogle Scholar
Taylor, K. A. & Glaeser, R. M. (1976). Electron microscopy of frozen hydrated biological specimens. J. Ultrastruct. Res. 55, 448456.CrossRefGoogle ScholarPubMed
Zeitler, E. & Bahr, G. F. (1965). Contrast and mass thickness. Lab Invest. 14, 208216.Google ScholarPubMed
Zierold, K., König, R., Olech, K.-H., Schäfer, D., Lübbers, D. W. & Müller, K.-H. (1981). A cooling chain for studies of cryofixed biological specimens by scanning transmission electron microscopy and X-ray microanalysis. Ultramicroscopy 6, 181186.CrossRefGoogle ScholarPubMed
Zierold, K., Schäfer, D. & Pietruschka, F. (1982). Ultrastructure and element analysis in frozen-hydrated and freeze-dried cryosections. Proc. 10th Int. Congr. Electron Microsc. 3, 371372.Google Scholar
Zs.-Nagy, I., Lustyik, G., Zs.-Nagy, V., Zarandi, B. & Bertoni-Freddari, C. (1981). Intracellular Na+:K+ ratios in human cancer cells as revealed by energy dispersive X-ray microanalysis. J. Cell Biol. 90, 769777.CrossRefGoogle Scholar
Zs.-Nagy, I., Lustyik, G. & Bertoni-Freddari, C. (1982). Intracellular water and dry mass content as measured in bulk specimens by energy-dispersive X-ray microanalysis. Tissue & Cell 14, 4760.CrossRefGoogle Scholar
Zs.-Nagy, I., Pieri, C., Giuli, C., Bertoni-Freddari, C. & Zs.-Nagy, V. (1977). Energy dispersive X-ray microanalysis of the electrolytes in biological bulk specimens. I. Specimen preparation, beam penetration and quantitative analysis. J. Ultrastruct. Res. 58, 2233.CrossRefGoogle ScholarPubMed