Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2025-01-03T18:36:49.911Z Has data issue: false hasContentIssue false

Insulin secretion: mechanism of the stimulation by glucose

Published online by Cambridge University Press:  17 March 2009

Erol Cerasi
Affiliation:
Department of Endocrinology and Metabolism, Karolinska Hospital, 10401 Stockholm, Sweden

Extract

Glucose is one of the substrates that is controlled with the most efficient hormonal mechanisms in higher organisms. The presence of tissues such as the central nervous system which, under normal conditions, depend solely on glucose as substrate, and the sporadic type of food intake with periods of fasting of various lengths in the mammalians necessitate that the distribution of energy-rich substrates among various tissues be continuously adjusted by changes in the secretion of a number of hormones. The efficiency of this system is evidenced by the stability of the blood glucose level in man, in whom after a carbohydrate-rich meal more than 70% of the glucose that has been ingested will be retained in the liver during a single passage of portal blood, resulting in only small changes of the glucose concentration in peripheral blood. Likewise, periods of fasting up to24–36 h are followed by modest to minimal reductions of the blood glucose level, the liver now supplying the circulation with the hexose.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1975

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ashcroft, S. J. H., Capito, K. & Hedeskov, C. J. (1973). Time course studies of glucose-induced changes in glucose-6-phosphate and fructose 1, 6-diphosphate content of mouse and rat pancreatic islets. Diabetologia 9, 299.CrossRefGoogle ScholarPubMed
Ashcroft, S. J. H., Hedeskov, C. J. & Randle, P. J. (1970). Glucose metabolism in mouse pancreatic islets. Biochem. J. 118, 143.Google Scholar
Blackard, W. G. & Nelson, N. C. (1970). Portal and peripheral vein immuno-reactive insulin concentrations before and after glucose infusion. Diabetes 19, 302.CrossRefGoogle Scholar
Brisson, G. R., Malaisse-Lagae, F. & Malaisse, W. J. (1971). The stimulus- secretion coupling of glucose-induced insulin release. VII. A proposed site ofaction for adenosine-3',5'-cyclic monophosphate. J. clin. Invest. 51, 232.CrossRefGoogle Scholar
Cerasi, E. (1967). An analogue computer model for the insulin response to glucose infusion. Acta endocr., Copenh. 55, 163.Google ScholarPubMed
Cerasi, E. (1975 a). Feed-back inhibition of insulin secretion in subjects with high and low insulin response to glucose. (Submitted for publication.)Google Scholar
Cerasi, E. (1975 b). Potentiation of insulin release by glucose in man. I.Quantitative analysis of the enhancement of glucose induced insulin secretion by pretreatment with glucose in normal subjects. Acta endocr., Copenh. (In the Press.)CrossRefGoogle Scholar
Cerasi, E. (1975 c). Potentiation of insulin release by glucose in man. II. Role of the insulin response, and potentiation of stimuli other than glucose. Acta endocr., Copenh. (In the Press.)CrossRefGoogle Scholar
Cerasi, E. (1975 d). Potentiation of insulin release by glucose in man. III. Normal recognition of glucose as a potentiator in subjects with low insulin response and in mild diabetics. Acta endocr., Copenh. (In the Press.)CrossRefGoogle Scholar
Cerasi, E., Efendic, S. & Luft, R. (1973). Dose—response relationship of plasma insulin and blood glucose levels during oral glucose loads in prediabetic and diabetic subjects. Lancet i, 794.Google Scholar
Cerasi, E., Fick, G. & Rudemo, M. 1974. A mathematical model for the glucose induced insulin release in man. Eur. J. Clin. Invest. 4, 267.Google Scholar
Cerasi, E. & Luft, R. (1963). Plasma insulin response to sustained hyperglycaemia induced by glucose infusion in human subjects. Lancet ii, 1359.CrossRefGoogle Scholar
Cerasi, E. & Luft, R. (1967 a). The plasma insulin response to glucose infusion in healthy subjects and in diabetes mellitus. Acta endocr., Copenh. 55, 278.Google ScholarPubMed
Cerasi, E. & Luft, R. (1967 b). Insulin response to glucose infusion in diabetic and non-diabetic monozygotic twin pairs. Genetic control of insulin response? Acta endocr., Copenh. 55, 330.Google ScholarPubMed
Cerasi, E. & Luft, R. (1969). The effect of an adenosine 3′,5′-monophosphate diesterase inhibitor (aminophylline) on the insulin response to glucose infusion in prediabetic and diabetic subjects. Hormone Metab. Res. I, 162.CrossRefGoogle Scholar
Cerasi, E. & Luft, R. (1970). Diabetes mellitus — a disorder of cellular information transmission? Hormone Metab. Res. 2, 246.CrossRefGoogle ScholarPubMed
Cerasi, E. & Luft, R. (1974). Follow-up of non-diabetic subjects with normal and descreased insulin response to glucose infusion — first report. Hormone Metab. Res. (In the Press.)Google Scholar
Cerasi, E., Luft, R. & Efendic, S. (1972). Decreased sensitivity of the pancreatic beta cells to glucose in prediabetic and diabetic subjects. A glucose dose—response study. Diabetes 21, 224.CrossRefGoogle ScholarPubMed
Cerasi, E., Wahren, J., Luft, R., Felig, P. & Hendler, R. (1973). The regulation of splanchnic glucose production in subjects with low insulin response — a compensatory mechanism in prediabetes. Eur. J. Clin. Invest. 3, 193.CrossRefGoogle ScholarPubMed
Charles, M. A., Fanska, R., Schmid, F. G., Forsham, P. H. & Grodsky, G. M. (1973). Adenosine 3′,5′-monophosphate in pancreatic islets: glucose-induced insulin release. Science, N. Y. 179, 569.CrossRefGoogle ScholarPubMed
Christensen, H. N., Hellman, B., Lernmark, Å., Sehlin, J., Tager, H. S. & Täljedal, I. B. (1971). In vitro stimulation of insulin release by nonmetabolizable transport-specific amino acids. Biochim. biophys. Acta 241, 341.CrossRefGoogle ScholarPubMed
Efendic, S., Cerasi, E. & Luft, R. (1971). Role of glucose in arginineinduced insulin release in man.Metabolism 20, 568.CrossRefGoogle ScholarPubMed
Efendic, S., Cerasi, E. & Luft, R. (1972). Arginine-induced insulin release in relation to the cyclic AMP system in man. J. clin. Endocr. Metab. 34, 67.Google Scholar
Efendic, S., Cerasi, E. & Luft, R. (1974). Quantitativestudy on the potentiating effect of arginine on glucose-induced insulin response in healthy, prediabetic, and diabetic subjects. Diabetes 23, 161.CrossRefGoogle ScholarPubMed
Fajans, S. S., Quibrera, R., Pek, S., Flloyd, J. C., Christensen, H. N. & Conn, J. W. (1971). Stimulation of insulin release in the dog by a nonmetabolizable amino acid. Comparisons with leucine and arginine. J. clin. Endocr. Metab. 33, 35.Google Scholar
Goldfine, I. D., Perlman, R. & Roth, J. (1971). Inhibition of cyclic 3′,5′-AMP phosphodiesterase in islet cells and other tissues by tolbutamide. Nature, Lond. 234, 295.CrossRefGoogle Scholar
Grill, V. & Cerasi, E. (1973). Activation by glucose of adenyl cyclase in pancreatic islets of the rat. FEBS Lett. 33, 311.Google Scholar
Grill, V. & Cerasi, E. (1974). Stimulation by D-glucose of cyclic 3′,5′- adenosine monophosphate accumulation and insulin release in isolated pancreatic islets of the rat. J. biol. Chem. 249, 4196.Google Scholar
Grodsky, G. M., Bennett, L. L., Smith, D. & Nemechek, K. (1967). The effect of tolbutamide on the timed release of insulin from the perfused pancreas. In Tolbutamide after Ten Years (ed. Butterfield, W. J. H. and Westering, W.), p. II. Amsterdam: Excerpta Medica Foundation.Google Scholar
Grodsky, G. M., Curry, D. L., Bennett, L. L. & Rodrigo, J. J. (1968). Factors influencing different rates of insulin release in vitro. Acta Diabet. Lat. 5 (suppl. I), 140.Google Scholar
Grodsky, G. M., Fanska, R. & Schmid, F. G. (1973). Evaluation of the role of exogenous insulin on phasic insulin secretion. Diabetes 22, 256.Google Scholar
Grodsky, G. M., Landahl, H., Curry, D. L. & Bennett, L. L.(1970). In vitro studies suggesting a two-compartmental model for insulin secretion. In The Structure and Metabolism of the Pancreatic Islets (ed. Falkmer, S., Hellman, B. and Täljedal, I. B.), p. 409. Oxford: Pergamon Press.Google Scholar
Gutzeit, A., Rabinovitch, A., Studer, P. P., Trueheart, P. A., Cerasi, E. & Renold, A. E. (1974 a). Decreased intravenous glucose tolerance and low plasma insulin response in spiny mice (Acomys cahirinus). Diabetologia 10, 667.Google Scholar
Gutzeit, A., Rabinovitch, A., Karakash, C., Stauffacher, W., Renold, A. E. & Cerasi, E. (1974 b). Evidence for decreased sensitivity to glucose of isolated islets from spiny mice (Acomys cahirinus). Diabetologia 10, 661.CrossRefGoogle ScholarPubMed
Hellman, B. (1970). Methodological approaches to studies on the pancreatic islets. Diabetologia 6, 110.CrossRefGoogle ScholarPubMed
Hellman, B., Idahl, L. Å., Lernmark, Å., Sehlin, J. & Täljedal, I. B. (1974). The pancreatic β-cell recognition of insulin secretagogues. Effects of calcium and sodium on glucose metabolism and insulin release.Biochem. J. 138, 33.Google Scholar
Hellman, B., Sehlin, J. & Täljedal, I. B. (1971 a).Calcium uptake by pancreatic β-cells as measured with the aid of 45Ca and mannitol-3H. Am. J. Physiol. 221, 17951801.CrossRefGoogle Scholar
Hellman, B., Sehlin, J. & Täljedal, I. B. (1971 c). The pancreatic β-cell recognition of insulin secretagogues. II. Site of action of tolbutamide. Biochem. biophys. Res. Commun. 45, 1384.CrossRefGoogle Scholar
Howell, S. L. & Montague, W. (1973). Adenylate cyclase activityin isolated rat islets of Langerhans. Effects of agents which alter rates of insulin secretion. Biochim. biophys. Acta 320, 44.CrossRefGoogle Scholar
Idahl, L. Å. (1972). A microperifusion device for pancreatic islets allowing concomitant recordings of intermediate metabolites and insulin release. Analyt. Biochem. 50, 386.CrossRefGoogle Scholar
Iversen, J. & Miles, D. W. (1971). Evidence for a feedback inhibition of insulin on insulin secretion in the isolated, perfused canine pancreas. Diabetes 20.CrossRefGoogle ScholarPubMed
Lambert, A. E. (1970). Biochemical and morphological studies of cultured rat pancreas. An in vitro model for the study of the regulation of insulin release. Thesis, University of Louvain (1970).Google Scholar
Lambert, A. E., Kanazawa, Y., Burr, I. M., Orci, L. & Renold, A. E. (1971). On the role of cyclic AMP in insulin release. I. Overall effects in cultured fetal rat pancreas. Ann. N.Y. Acad. Sci. 185, 232.CrossRefGoogle ScholarPubMed
Lehninger, A. L., Carafoli, E. & Rossi, C. S. (1967). Energy-linked ion movements in mitochondrial systems. Adv. Enzymol. 29, 259.Google Scholar
Loubatières, A., Mariani, M. M. & Chapal, J. (1970).Insulino-sécrétion étudiée sur le pancréas isolé et perfusé du rat. I. Synergie entre glucose et sulfamides hypoglycémiants. Diabetologia 6, 457.Google Scholar
Luft, R., Efendic, S. & Cerasi, E. (1973). Prediabetes, diabetes and arteriosclerosis — some considerations. Skandia International Symposia: Early Phases of Coronary Heart Disease, p. 223. Stockholm: Nordiska Bokhandeins Förlag.Google Scholar
Malaisse, W. (1969). Etude de la sécrétion insulinique in vitro. Brussels: Editions Arscia.Google Scholar
Malaisse, W. J. (1973). Insulin secretion: multifactorial regulation for a single process of release. Diabetologia 9, 167CrossRefGoogle ScholarPubMed
Malaisse, W. J., Malaisse-Lagae, F. & Mayhew, D. (1967). A possible role for the adenylcyclase system in insulin secretion. J. clin. Invest. 46, 1724.CrossRefGoogle ScholarPubMed
Malaisse, W. J., Malaisse-Lagae, F., Van obberghen, E., Somers, G., Devis, G., Ravazzola, M. & Orci, L. (1974). Role of microtubules in the phasic pattern of insulin release. Ann. N.Y. Acad. Sci. (In the Press.)Google Scholar
Matschinsky, F. M. & Ellerman, J. E. (1973). Dissociation of the insulin releasing and the metabolic functions of hexoses in islets of Langerhans. Biochem. biophys. Res. Commun. 50, 193.CrossRefGoogle ScholarPubMed
Matschinsky, F. M., Ellerman, J. E., Krzanowski, J., Kotler-Brajtburg, J., Landgraf, R. & Fertel, R. (1971). The dual function ofglucose in islets of Langerhans. J. biol. Chem. 246, 1007.CrossRefGoogle Scholar
Matschinsky, F. M., Landgraf, R., Ellerman, J. E. & Kotler-Brajtburg, J. (1972) Glucoreceptor mechanisms in islets of Langerhans. Diabetes 21 (suppl. 2), 555.CrossRefGoogle ScholarPubMed
Porte, D. & Pupo, A. A. (1969). Insulin response to glucose: evidence for a two pool system in man. J. clin. Invest. 48, 2309.Google Scholar
Rabinovitch, A., Grill, V., Renold, A. E. & Cerasi, E. (1974). Pancreatic islets of Acomys cahirinus: decreased insulin and adenosine 3′, 5′- monophosphate responses to glucose. (Submitted for publication.)Google Scholar
Rasmussen, H., Bordier, P., Kurzokawa, K., Nagata, N. & Ogata, E. (1974). Hormonal control of skeletal and mineral homeostasis. Am. J. Med. 56, 751.Google Scholar
Sams, D. J. & Montague, W. (1972). The role of adenosine 3′, 5′-cyclic monophosphate in the regulation of insulin release. Properties of islet-cell adenosine 3′, 5′-cyclic monophosphate phosphodiesterase. Biochem. J. 129, 945.Google Scholar
Sando, H., Borg, J. & Steiner, D. F. (1972). Studies onthe secretion of newly synthesized proinsulin and insulin from isolated rat islets of Langerhans. J. clin. Invest. 51, 1476.Google Scholar
Sando, H. & Grodsky, G. M. (1973). Dynamic synthesis and release of insulin and proinsulin from perifused islets. Diabetes 22, 354.Google Scholar
Seltzer, H. S., Allen, E. W., Herron, A. L. & Brennan, M. T. (1967). Insulin secretion in response to glycemic stimulus: relation of delayed initial release to carbohydrate intolerance in mild diabetes mellitus. J. clin. Invest. 46, 323.Google Scholar
Turtle, J. R. & Kipnis, D. M. (1967). An adrenergic receptor mechanism for the control of cyclic-3′, 5′-adenosine monophosphate synthesis in tissues. Biochem. biophys. Res. Commun. 28, 797.CrossRefGoogle ScholarPubMed
Widström, A. & Cerasi, E. (1973 a). On the action of tolbutamide in normal man. II. Modulation of glucose-induced insulin release by tolbutamide.Acta endocr., Copenh. 72, 519.Google ScholarPubMed
Widström, A. & Cerasi, E. (1973 b). On the action of tolbutamide in normal man. III. Interaction of tolbutamide with glucagon, aminophylline and arginine in stimulating insulin response. Acta endocr., Copenh. 72, 532.Google Scholar
Widström, A. & Cerasi, E. (1973 c). On the action oftolbutamide in normal man. I. Role of adrenergic mechanisms in tolbutamide-induced insulin releaseduring normoglycemia and induced hypoglycemia. Acta endocr., Copenh. 72, 506.Google Scholar
Wollheim, C. B., Blondel, B., Trueheart, P. A., Renold, A. E. & Sharp, G. W. G. (1975). Calcium induced insulin release in monolayer culture of the endocrine pancreas. Studies with ionophore A23187. J. biol. Chem. (In thePress.)Google Scholar
Zawalich, W. S., Karl, R. C., Ferendelli, J. & Matschinsky, F. M. (1974). Effects of glucose, Ca++ and an ionophore on cyclic-3′, 5′-AMP and insulin release in isolated pancreatic islets. Diabetes 23 (suppl. 1), 337.Google Scholar