Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2025-01-05T15:51:43.577Z Has data issue: false hasContentIssue false

Immune responses to hapten conjugates in vitro

Published online by Cambridge University Press:  17 March 2009

Sirkka Kontiainen
Affiliation:
Department of Serology and Bacteriology, University of Helsinki, Haartmanink. 3, SF-00290 Helsinki 29
O. Mäkelä
Affiliation:
Department of Serology and Bacteriology, University of Helsinki, Haartmanink. 3, SF-00290 Helsinki 29
M. Hurme
Affiliation:
Department of Serology and Bacteriology, University of Helsinki, Haartmanink. 3, SF-00290 Helsinki 29

Abstract

Several functions of the animal body can take place in cell or tissue cultures with almost unreduced efficiency and precision. Functions, where only one cell type is involved, often do so, but also some differentiation steps where interactions between two or more cell types are clearly needed can take place in tissue culture (Saxén et al. 1968).

Most immune responses require collaboration between two or more cell types (Claman, Chaperon & Triplett, 1966; Miller & Mitchell, 1968; Feldmann & Nossal 1972c). Some of them can be easily induced in vitro but others cannot. Even when antibody responses can be induced in vitro their intensity varies a great deal. With some antigens and under some circumstances a response in vitro can be nearly as strong as one in vivo. A crude comparison can be derived from responses in vitro and in vivo to the same antigen, conjugate of hapten NIP and pneumococcal polysaccharide type III (NIP-SIll, Nakamura, Ray & Mäkelä, 1973).

Type
Research Article
Copyright
Copyright © Cambridge University Press 1975

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ada, G. L. & Cooper, M. G. (1974). Suppressor activity in mice tolerant of hemocyanin. In Immunological Tolerance. Mechanisms and Potential Therapeutic Applications (eds. Katz, D. H. and Benacerraf, B.), p. 87. New York: Academic Press.Google Scholar
Askonas, B. A. & Roelants, G. E. (1974). Macrophages bearing haptencarrier molecules as foci inducers for T and B lymphocyte interaction. Eur.J. Immunol. 4, I.CrossRefGoogle Scholar
Basten, A. (1974). Specific suppression of the immune response by T cells. In Immunological Tolerance. Mechanisms and Potential Therapeutic Applications (eds. Katz, D. H. and Benacerraf, B.), p. 107. New York: Academic Press.Google Scholar
Bullock, W. W. & Rittenberg, M. B. (1970). Kinetics of in vitro initiated secondary anti-hapten response: induction of plaque-forming cells by soluble and particulate antigen. Immunochemistry 7, 310.CrossRefGoogle ScholarPubMed
Cantor, H. & Asofsky, R. (1972). Synergy among lymphoid cells mediating the graft-versus-host response. III. Evidence for interaction between two types of thymus-derived cells. J. exp. Med. 135, 764.CrossRefGoogle Scholar
Chan, E. L., Mishell, R. I. & Mitchell, G. F. (1970). Cell interaction in an immune response in vitro: Requirement for theta-carrying cells. Science, N.Y. 170, 1215.CrossRefGoogle Scholar
Claman, H. N., Chaperon, E. A. & Triplett, R. F. (1966). Thymusmarrow cell combinations: synergism in antibody production. Proc. Soc. exp. Biol. Med. 122, 1167.CrossRefGoogle ScholarPubMed
Click, R. E. (1972). Enhancement of antibody synthesis in vitro by mercaptoethanol. Cell. Immunol. 3, 155.CrossRefGoogle ScholarPubMed
Cohen, L. & Howe, M. L. (1973). Synergism between sub-populations of thymus-derived cells mediating the proliferative and effector phases of the mixed lymphocyte reaction. Proc. natn. Acad. Sci. U.S.A. 70, 2707.CrossRefGoogle Scholar
Desaymard, C., Feldmann, M. & Maurer, P. (1974). Effect of epitope density on the induction of tolerance in vitro. In Immunological Tolerance. Mechanisms and Potential Clinical Applications (eds. Katz, D. H. and Benacerraf, B.), p. 225. New York: Academic Press.Google Scholar
Diener, E. & Armstrong, W. D. (1967). Induction of antibody formation and tolerance in vitro to a purified protein antigen. Lancet ii, 1281.CrossRefGoogle Scholar
Dutton, R. W. (1972). Inhibitory and stimulatory effects of concanavallin A on the response of mouse spleen cell suspensions to antigen. I. Characterization of the inhibitory cell activity. J. exp. Med. 136, 1445.CrossRefGoogle Scholar
Dutton, R. W., Campbell, P., Chan, E., Hirst, J., Hoffmann, M., Kettman, J., Lesley, J., McCarthy, M., Mishell, R. I., Raidt, D. & Vann, D. (1971). Cell cooperation during immunologic responses of isolated lymphoid cells. In Cellular Interactions in the Immune Response. Second International Convocation of Immunology (eds. Cohen, S., Cudkowicz, G. and McCluskey, R. T.), p. 31. Basel: S. Karger A.G.Google Scholar
Elson, C. J. & Taylor, R. B. (1974). The suppressive effect of carrier priming on the response to a hapten-carrier conjugate. Eur. J. Immunol. 4, 682.CrossRefGoogle ScholarPubMed
Erb, P. & Feldmann, M. (1975 a). Role of macrophages in in vitro induction of T-helper cells. Nature, Lond. 254, 352.CrossRefGoogle ScholarPubMed
Erb, P. & Feldmann, M. (1975 b). The role of macrophages in the generation of T helper cells. I. The requirement of macrophages in helper cell induction and characteristics of macrophage-T cell interaction. (Submitted).CrossRefGoogle Scholar
Feldmann, M. (1974 a). Immunogenicity in vitro: structural correlations. In Contemporary Topics in Molecular Immunology (ed. Ada, G. L.), p. 57. New York: Plenum Press.CrossRefGoogle Scholar
Feldmann, M. (1974 b). T cell suppression in vitro. I. Role in regulation of antibody responses. Eur. J. Immunol. 4, 660.CrossRefGoogle ScholarPubMed
Feldmann, M. (1974 c). T cell suppression in vitro. II. Nature of specific suppressive factor. Eur. J. Immunol. 4, 667.CrossRefGoogle ScholarPubMed
Feldmann, M. & Palmer, J. (1971). The requirement for macrophages in the secondary immune response to antigens of small and large size in vitro. Immunology 21, 685.Google ScholarPubMed
Feldmann, M. & Basten, A. (1972 a). Cell interactions in the immune response in vitro. IV. Comparison of the effects of antigen-specific and allogeneic thymus-derived cell factors. J. exp. Med. 136, 722.CrossRefGoogle ScholarPubMed
Feldmann, M., Wagner, H., Basten, A. & Holmes, M. (1972 b). Humoral and cell mediated responses in vitro of spleen cells from mice with thymic aplasia (nude mice). Aust. J. exp. Biol. med. Sci. 50, 651.CrossRefGoogle ScholarPubMed
Feldmann, M. & Nossal, G. J. V. (1972 c). Tolerance, enhancement and the interactions between T cells, B cells and macrophages. Transplant Rev. 13, 3.Google Scholar
Feldmann, M., Greaves, M. F., Parker, D. C. & Rittenberg, M. B. (1974 a). Direct triggering of B lymphocytes by insolubilized antigen. Eur. J. Immunol. 4, 591.CrossRefGoogle ScholarPubMed
Feldmann, M., Erb, P. & Kontiainen, S. (1974 b). Cell collaboration between T and B lymphocytes and macrophages in antibody production in vitro. In Proc. Kroc. Conference on Lymphocytes (ed. Williams, R. M. Jr). New York: Rover Press. (In press.)Google Scholar
Feldmann, M., Basten, A., Boylston, A., Erb, P., Gorczynski, R., Greaves, M. F., Hogg, N., Kilburn, D., Kontiainen, S., Parker, D., Pepys, M. & Schrader, J. (1974 c). Interactions between T and Blymphocytes and accessory cells in antibody production. Progr. Immunol. 3, 65.Google Scholar
Feldmann, M., Kontiainen, S. & Rittenberg, M. B. (1974 d). Effect of antigen structure on the induction of tolerance in T cells. In Immunological Tolerance. Mechanisms and Potential Therapeutic Applications (eds. Katz, D. H. and Benacerraf, B.), p. 397. New York: Academic Press.Google Scholar
Globerson, A. & Auerbach, R. (1966). Primary antibody response in organ cultures. J. exp. Med. 124, 1001.CrossRefGoogle ScholarPubMed
Grobstein, R. H. (1971). Cellular aspects of primary antibody response in vitro. J. Immunol. 106, 842.CrossRefGoogle ScholarPubMed
Hartmann, K.-U. (1970). Induction of a hemolysin response in vitro: interaction of cells of bone marrow origin and thymic origin. J. exp. Med. 132, 1267.CrossRefGoogle ScholarPubMed
Hartmann, K.-U., Dutton, R. W., McCarthy, M. M. & Mishell, R. I. (1970). Cell components in the immune response. II. Cell attachment separation of immune cells. Cell. Immunol. I, 182.CrossRefGoogle Scholar
Howard, J. G. (1972). Cellular events in the induction and loss of tolerance to pneumococcal polysaccharides. Transplant. Rev. 8, 50.Google ScholarPubMed
Hurme, M., Nakamura, I., Kaartinen, M. & Mäkelä, O. (1975). Antibody response by cultured spleen fragments from carrier primed mice to hapten-protein conjugates. Scand. J. Immunol. 4, 229.CrossRefGoogle ScholarPubMed
Häyry, P. & Andersson, L. C. (1974). T cell synergy in mixed lymphocyte culture-induced cytolysis. Eur. J. Immunol. 4, 145.CrossRefGoogle ScholarPubMed
Häyry, P., Andersson, L. C., Nordling, S. & Virolainen, M. (1972). Allograft response in vitro. Transplant Rev. 12, 91.Google ScholarPubMed
Jacobson, E. B. (1973). In vitro studies of allotype suppression in mice. Eur. J. Immunol. 3, 619.CrossRefGoogle ScholarPubMed
Julius, M. H., Simpson, E. & Herzenberg, L. A. (1973). A rapid method for the isolation of functional thymus derived murine lymphocyte. Eur. J. Immunol. 3, 645.CrossRefGoogle Scholar
Kaartinen, M., Hurme, M. & Mäkelä, O. (1974). Evidence for oligomeric IgA production by peripheral rat lymph nodes. Nature, Lond. 252, 329.CrossRefGoogle ScholarPubMed
Kettman, J. & Dutton, R. W. (1970). An in vitro primary immune response to 2,4,6-trinitrophenyl substituted erythrocytes: Response against carrier and hapten. J. Immunol. 104, 1558.CrossRefGoogle Scholar
Klaus, G. G. B. & Humphrey, J. H. (1974). The immunological properties of haptens coupled to thymus independent carrier molecules. I. The characteristics of the immune response to dinitrophenyllysine-substituted pneumococcal polysaccharide (SIII) and levan. Eur. J. Immunol. 4, 370.CrossRefGoogle ScholarPubMed
Kontiainen, S. (1975). Blocking antigen-antibody complexes on the T lymphocyte surface identified with defined protein antigens. II. Lymphocyte activation during the in vitro response. Immunology 28, 535.Google Scholar
Kontiainen, S. & Feldmann, M. (1973). Induction of specific helper cells in vitro. Nature (New Biol.) 245, 285.CrossRefGoogle Scholar
Kontiainen, S. & Feldmann, M. (1975 a). Conditions for inducing T helper cells in vitro. Scand. J. Immunol. 4, 121.CrossRefGoogle ScholarPubMed
Kontiainen, S. & Feldmann, M. (1975 b). Suppression of in vitro induced help. (Submitted.)Google Scholar
Kontiainen, S. & Mitchison, N. A. (1975). Blocking antigen-antibody complexes on the T lymphocyte surface identified with defined protein antigens. I. Lymphocyte activation during in vitro incubation before adoptive transfer. Immunology 28, 523.Google Scholar
Kunin, S., Shearer, G., Segal, S., Globerson, A. & Feldman, M. (1971). A bicellular mechanism in the immune response to chemically defined antigens. III. Interactions of thymus and bone-marrow derived cells. Cell. Immunol. 2, 229.CrossRefGoogle Scholar
Delandazuri, M. O. & Herberman, R. B. (1972). In vitro activation of cellular immune response to Gross virus-induced lymphoma. J. exp. Med. 136, 969.CrossRefGoogle Scholar
Marbrook, J. (1967). Primary immune response in cultures of spleen cells. Lancet ii, 1279.CrossRefGoogle Scholar
Miller, J. F. A. P. & Mitchell, G. F. (1968). Cell to cell interaction in the immune response. I. Hemolysin-forming cells in neonatally thymectomized mice reconstituted with thymus or thoracic duct lymphocytes. J. exp. Med. 128, 801.CrossRefGoogle ScholarPubMed
Mishell, R. I. & Dutton, R. W. (1967). Immunization of dissociated spleen cell cultures from normal mice. J. exp. Med. 126, 423.CrossRefGoogle ScholarPubMed
Mosier, D. E. (1968). A requirement of two cell types for antibody formation in vitro. Science, N.Y. 158, 1573.CrossRefGoogle Scholar
Mosier, D. E., Johnson, B. M., Paul, W. E. & Mcmaster, P. R. B. (1974). Cellular requirements for the primary in vitro antibody response to DNP-ficoll. J. exp. Med. 139, 1354.CrossRefGoogle ScholarPubMed
Nakamura, I., Ray, A. & Mäkelä, O. (1973). Oligomeric IgA: the major component of the in vitro primary response of mouse spleen fragments. J. exp. Med. 138, 973.CrossRefGoogle ScholarPubMed
Pierce, C. W., Johnson, B. M., Gershon, H. E. & Asofsky, R. (1971). Immune responses in vitro. III. Development of primary γM, γG and γA plaque-forming cell responses in mouse spleen cell cultures stimulated with heterologous erythrocytes. J. exp. Med. 134, 395.CrossRefGoogle Scholar
Pierce, C. W., Solliday, S. & Asofsky, R. (1972). Immune responses in vitro. V. Suppression of γM, γG and γA plaque-forming cell responses in cultures in primed mouse spleen cells by class-specific antibody to mouse immunoglobulin. J. exp. Med. 135, 698.CrossRefGoogle Scholar
Pierce, C. W., Kapp, J. A., Wood, D. D. & Benacerraf, B. (1974). Immune response in vitro. X. Functions of macrophages. J. Immunol. 112, 1181.CrossRefGoogle ScholarPubMed
Raff, M. C. & Cantor, H. (1971). Subpopulations of thymus cells and thymus-derived lymphocytes. Progr. Immunol I, 83.CrossRefGoogle Scholar
Rich, R. R. & Pierce, C. W. (1974). Biological expressions of lymphocyte activation. III. Suppression of plaque forming cell responses in vitro by supernatant fluids from concanavallin A activated spleen cell cultures. J. Immunol. 112, 1360.CrossRefGoogle Scholar
Saxén, L., Koskimies, O., Lahti, A., Miettinen, H., Rapola, J. & Wartio, Vaara J. (1968). Differentiation of kidney mesenchyme in an experimental model system. Adv. Morphogen. 7, 251.CrossRefGoogle Scholar
Segal, S., Globerson, A., Feldman, M., Haimovich, J. & Sela, M. (1970). In vitro induction of primary response to the dinitrophenyl determinant. J. exp. Med. 131, 93.CrossRefGoogle Scholar
Shortman, K., Diener, E., Russel, P. & Armstrong, W. D. (1970). The role of non-lymphoid accessory cells in the immune response. J. exp. Med. 131, 461.CrossRefGoogle Scholar
Shortman, K. & Palmer, J. (1971). The requirement for macrophages in the in vitro immune response. Cell. Immunol. 2, 399.CrossRefGoogle ScholarPubMed
Taussig, M. J. (1974 a). Demonstration of suppressor T cells in a population of educted T cells. Nature, Lond. 248, 236.CrossRefGoogle Scholar
Taussig, M. J. (1974 b). T cell factor which can replace T cells in vivo. Nature, Lond. 248, 234.CrossRefGoogle ScholarPubMed
Taylor, R. B. & Wortis, H. H. (1968). Thymus dependence of antibody response: Variation with dose of antigen and class of antibody. Nature, Lond. 220, 927.CrossRefGoogle ScholarPubMed
Unanue, E. R. (1972). The regulatory role of macrophages in antigenic stimulation. Adv. Immunol. 15, 95.Google ScholarPubMed
Wagner, H. (1973). Synergy during in vitro cytotoxic allograft responses. I. Evidence for cell interaction between thymocytes and peripheral T cells. J. exp. Med. 138, 1379.CrossRefGoogle ScholarPubMed
Wagner, H. & Feldmann, M. (1972). Cell mediated immune response in vitro. I. A new in vitro system for the generation of cell-mediated cytotoxic activity. Cell. Immunol. 3, 405.CrossRefGoogle Scholar