Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-25T04:52:46.419Z Has data issue: false hasContentIssue false

Genetics of the nervous system in Drosophila

Published online by Cambridge University Press:  17 March 2009

Jeffrey C. Hall
Affiliation:
Department of Biology, University of California at San Diego, La Jolla, California 92093, U.S.A.

Extract

The genetic analysis of Drosophila neurobiology has expanded into a considerable field. A host of genetic variants is now available for analyzing the development, structure, physiology, and chemistry of the fly's excitable cells and tissues and how they control the animal's behavior.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aceves-Piña, E. O. & Quinn, W. G. (1979). Learning in normal and mutant Drosophila larvae. Science, N. Y. 206, 9396.CrossRefGoogle ScholarPubMed
Adams, D. J., Smith, S. J. & Thompson, S. H. (1980). Ionic currents in molluscan soma. A. Rev. Neurosci. 3, 141161.CrossRefGoogle ScholarPubMed
Allen, T. O., Adler, N. T., Greenberg, J. H. & Reivich, M. (1981). Vaginocervical stimulation selectively increases metabolic activity in the rat brain. Science, N. Y. 211, 10701072.CrossRefGoogle ScholarPubMed
Anderson, H. (1981). Projections from sensory neurons developing at ectopic sites in insects. J. Embryol. exp. Morph. 65 (Suppl.), 209224.Google Scholar
Anderson, H., Edwards, J. S. & Palka, J. (1980). Developmental neuro-biology of invertebrates. A. Rev. Neurosci. 3, 97139.CrossRefGoogle Scholar
Antony, C. & Jallon, J.-M. (1981). Evolution des hydrocarbures comportalement actifs de Drosophila melanogaster au cours de la maturation sexuelle. C.r. Séanc. de l'Académie de Sciences 292, série III, 239242.Google Scholar
Arnold, A. P. (1980). Sexual differences in the brain. Am. Scient. 68, 165173.Google ScholarPubMed
Arnold, J. & Kankel, D. R. (1981). Fate mapping multi-focus phenotypes. Genetics. 99, 211229.CrossRefGoogle ScholarPubMed
Averhoff, W. W. & Richardson, R. H. (1974). Pheromonal control of mating patterns in Drosophila melanogaster. Behav. Genet. 4, 207225.Google ScholarPubMed
Baker, W. K. & McElwain, M. C. (1979). How to get a head and then some. Genetics 91, s4.Google Scholar
Barker, D. L., Molinoff, P. B. & Kravitz, E. A. (1972). Octopamine in the lobster nervous system. Nature New Biol. 236, 6163.CrossRefGoogle ScholarPubMed
Bastock, M. (1956). A gene mutation which changes a behaviour pattern. Evolution 10, 421439.CrossRefGoogle Scholar
Becker, H. J. (1976). Mitotic recombination. In The Genetics and Biology of Drosophila, vol. 1c (ed. Ashburner, M. and Novitski, E.), pp. 10191087. London: Academic Press.Google Scholar
Bennet-Clark, H. C. & Ewing, A. W. (1970). The love song of the fruit fly. Scient. Am. 223 (no. 1), 8492.CrossRefGoogle ScholarPubMed
Benshalom, G. & Dagan, D. (1981). Electrophysiological analysis of the temperature-sensitive paralytic Drosophila mutant, parats. J. comp. Physiol. 144, 409417.CrossRefGoogle Scholar
Benzer, S. (1967). Behavioral mutants of Drosophila isolated by counter-current distribution. Proc. natn. Acad. Sci. U.S.A. 58, 11121119.CrossRefGoogle Scholar
Benzer, S. (1973). Genetic dissection of behavior. Scient. Am. 229 (no. 6) 2437.CrossRefGoogle ScholarPubMed
Bernard, F. (1937). Recherches sur la morphogénèse des yeux composé d'arthropodes. Bull. biol. Fr. Belg. 23, suppl. XIII, pp. 162.Google Scholar
Bicker, G. & Reichert, H. (1978). Visual learning in a photoreceptor degeneration mutant of Drosophila melanogaster. J. comp. Physiol. 127, 2938.CrossRefGoogle Scholar
Bingham, P. M., Levis, R. & Rubin, G. M. (1981). Cloning of DNA sequences from the white locus of D. melanogaster. Cell 25, 693704.CrossRefGoogle ScholarPubMed
Birks, R. & MacIntosh, F. C. (1961). Acetylcholine metabolism of a sympathetic ganglion. Can. J. Biochem. Physiol. 39, 787827.CrossRefGoogle Scholar
Bishop, C. P. & Sherald, A. F. (1981). Isolation of two third chromosome mutants conferring resistance to α-methyl dopa. Drosoph. Inf. Serv. 56, 2122.Google Scholar
Bishop, L. G., Keehn, D. G. & McCann, G. D. (1968). Motion detection by interneurons of optic lobes and brain of the flies Calliphora phaenicia and Musca domestica. J. Neurophysiol. 31, 509524.CrossRefGoogle ScholarPubMed
Blondeau, J. (1981). Aerodynamic capabilities of flies, as revealed by a new technique. J. exp. Biol. 92, 155163.CrossRefGoogle Scholar
Blondeau, J. & Heisenberg, M. (1982). The three-dimensional optomotor torque system of Drosophila melanogaster. Studies on wildtype and the mutant optomotor-blindH31. J. comp. Physiol. 145, 321329.CrossRefGoogle Scholar
Booker, R. & Quinn, W. G. (1981). Conditioning of leg position in normal and mutant Drosophila. Proc. natn. Acad. Sci. U.S.A. 78, 39403944.CrossRefGoogle ScholarPubMed
Brieger, G. & Butterworth, F. M. (1970). Drosophila melanogaster: identity of male lipid in reproductive system. Science, N. Y. 167, 1262.CrossRefGoogle ScholarPubMed
Brower, D. L., Lawrence, P. A. & Wilcox, M. (1981). Clonal analysis of the undifferentiated wing disc of Drosophila. Devl, Biol. 86, 448455.CrossRefGoogle Scholar
Brown, R. G. B. (1965). Courtship behaviour in the Drosophila obscura group II: Comparative studies. Behaviour 25, 281323.CrossRefGoogle ScholarPubMed
Buchner, E. & Buchner, S. (1980). Mapping stimulus-induced nervous activity in small brains by [3H]-2-deoxy-D-glucose. Cell & Tiss. Res. 211, 5164.CrossRefGoogle ScholarPubMed
Buchner, E. & Buchner, S. (1981). The deoxyglucose method for insects: towards electron microscopical resolution. Eur. Neurol. 20, 152156.CrossRefGoogle ScholarPubMed
Bülthoff, H. (1982 a). Visual orientation of Drosophila mutants in a multiple Y-maze. Drosoph Inf. Serv. 57. (In the Press.)Google Scholar
Bülthoff, H. (1982 b). Isolation of sex-linked mutants disturbed in visual orientation. Drosoph. Inf. Serv. 57. (In the Press.)Google Scholar
Burdette, W. J. (1981). Genetics of neoplastic growth. Aberrant tissue in Drosophila. In Neoplasms – Comparative Pathology of Growth in Animals, Plants, and Man (ed. Kaiser, H. E.), pp. 461465. Baltimore: Williams & Wilkins.Google Scholar
Burnet, B., Connolly, K. & Mallinson, M. (1974). Activity and sexual behavior of neurological mutants in Drosophila melanogaster. Behav. Genet. 4, 227235.CrossRefGoogle ScholarPubMed
Burnet, B., Eastwood, L. & Connolly, K. (1977). The courtship song of male Drosophila lacking aristae. Anim. Behav. 25, 460464.CrossRefGoogle Scholar
Burnet, B. & Wilson, R. (1980). Pattern mosaicism for behaviour controlled by the yellow locus in Drosophila melanogaster. Genet. Res. 36, 235247.CrossRefGoogle ScholarPubMed
Burt, R. & Palka, J. (1982). The central projections of mesothoracic sensory neurons in wild type Drosophila and bithorax mutants. Devl Biol. (In the Press.)CrossRefGoogle Scholar
Butterworth, F. M. (1969). Lipids of Drosophila: a newly detected lipid in the male. Science, N. Y. 163, 13561357.CrossRefGoogle ScholarPubMed
Buzin, C. H., Dewhurst, S. A. & Seecof, R. L. (1978). Temperature sensitivity and neuron differentiation in embryonic cell cultures from the Drosophila mutant shibiretsl. Devl Biol. 66, 442456.CrossRefGoogle Scholar
Byers, D. (1980). A review of the behavior and biochemistry of dunce, a mutation of learning in Drosophila. In Development and Neurobiology of Drosophila (ed. Siddiqi, O., Babu, P., Hall, L. M. and Hall, J. C.), pp. 467474. New York: Plenum Press.CrossRefGoogle Scholar
Byers, D., Davis, R. & Kiger, J. A. Jr., (1981). Defect in cyclic AMP phosphodiesterase due to the dunce mutation of learning in Drosophila melanogaster. Nature, Lond. 289, 7981.CrossRefGoogle Scholar
Campos-Ortega, J. A. (1974). Autoradiographic localization of 3H-γ-aminobutyric acid uptake in the lamina ganglionaris of Musca and Drosophila. Z. Zellforsch. 147, 415431.CrossRefGoogle ScholarPubMed
Campos-Ortega, J. A. (1980). On compound eye development in Drosophila melanogaster. In Current Topics in Developmental Biology, vol. 15 (ed. Hunt, R. K.), pp. 347371. New York: Academic Press.Google Scholar
Campos-Ortega, J. A. & Jiménez, F. (1980). The effect of X chromosome deficiencies on neurogenesis in Drosophila. In Development and Neurobiology of Drosophila (ed. Siddiqi, O., Babu, P., Hall, L. M. and Hall, J. C.), pp. 201222. New York: Plenum Press.CrossRefGoogle Scholar
Campos-Ortega, J. A., Jurgens, G. & Hofbauer, A. (1979). Cell clones and pattern formation: studies on sevenless, a mutant of Drosophila melanogaster. Wilhelm Roux' Arch. 186, 2750.CrossRefGoogle Scholar
Catterall, W. A. (1980). Neurotoxins that act on voltage-sensitive sodium channels in excitable membranes. Annu. Rev. Pharmacol. & Toxicol. 20, 1543.CrossRefGoogle ScholarPubMed
Chay, T. R. (1981). A model for biological oscillations. Proc. natn. Acad. Sci. U.S.A. 78, 22042207.CrossRefGoogle Scholar
Chiarodo, A., Reing, C. M. Jr., & Saranchak, H. (1971). On neurogenetic relations in Drosophila melanogaster. J. exp. Zool. 178, 325330.CrossRefGoogle ScholarPubMed
Clark, A. M. & Egen, R. C. (1975). Behavior of gynandromorphs of the wasp Habrobracon juglandis. Devl Biol. 45, 251259.CrossRefGoogle ScholarPubMed
Collins, M. F. (1980). An investigation and genetic analysis of a reported conditioned response in the courtship behaviour of Drosophila melanogaster. Master of Science thesis, University of Birmingham, England.Google Scholar
Connolly, K. & Cook, R. (1973). Rejection responses by female Drosophila melanogaster: their ontogeny, causality and effects upon the behaviour of the courting male. Behaviour 44, 142166.CrossRefGoogle Scholar
Conway, K., Feiock, K. & Hunt, R. K. (1980). Polyclones and patterns in growing Xenopus eye. In Current Topics in Developmental Biology, vol. 15 (ed. Hunt, R. K.), pp. 217317. New York: Academic Press.Google Scholar
Cook, R. (1975). ‘Lesbian’ phenotype of Drosophila melanogaster? Nature, Lond. 254, 241242.CrossRefGoogle ScholarPubMed
Cook, R. (1978). The reproductive behaviour of gynandromorphic Drosophila melanogaster. Z. Naturf. 33c, 744754.CrossRefGoogle Scholar
Cook, R. (1979). The courtship tracking of Drosophila melanogaster. Biol. Cybernet. 34, 91106.CrossRefGoogle Scholar
Cook, R. (1980). The extent of visual control in the courtship tracking of Drosophila melanogaster. Biol. Cybern. 37, 4151.CrossRefGoogle Scholar
Cook, R. (1981 a). Courtship-like tracking behaviour in wild-type female Drosophila melanogaster. Z. Naturf. 36c, 475483.CrossRefGoogle Scholar
Cook, R. (1981 b). Sex-specific tracking identified in single mosaic Drosophila. Naturwissenschaften 68, 267268.CrossRefGoogle Scholar
Cook, R. & Connolly, K. (1976). Sexual behaviour of a female sterile mutant of Drosophila melanogaster. J. Insect Physiol. 22, 17271735.CrossRefGoogle ScholarPubMed
Cook, R. & Cook, A. (1975). The attractiveness to males of females Drosophila melanogaster: effects of mating, age, and diet. Anim. Behav. 23, 521526.CrossRefGoogle ScholarPubMed
Cosens, D. & Perry, M. (1972). The fine structure of the eye in a visual mutant, A-type, of Drosophila melanogaster. J. Insect Physiol. 18, 17731786.CrossRefGoogle Scholar
Costello, W. J. (1980). Unattached pre-synaptic terminals in a flightless mutant of Drosophila melanogaster. Neurosci. Abstr. 6, 374.Google Scholar
Cowling, D. E. & Burnet, B. (1981). Courtship songs and genetic control of their acoustical characteristics in sibling species of Drosophila melanogaster. Anim. Behav. 29, 92935.CrossRefGoogle Scholar
Cozzari, C. & Hartman, B. K. (1980). Preparation of antibodies specific to choline acetyltransferase from bovine caudate nucleus and immunohistochemical localization of the enzyme. Proc. natn. Acad. Sci. U.S.A. 77, 74537457.CrossRefGoogle ScholarPubMed
Crawford, G. D., Slemmon, J. R. & Salvaterra, P. (1982). Monoclonal antibodies selective for Drosophila melanogaster choline acetyltransferase. J. biol. Chem. 257, 38533856.CrossRefGoogle ScholarPubMed
Craymer, L. (1980). Cma: Comma. Drosoph. Inf. Serv. 55, 197.Google Scholar
Culotti, J. G., Von Ehrenstein, G., Culotti, M. R. & Russell, R. L. (1981). A second class of acetylcholinesterase-deficient mutants of the nematode Caenorhabditis elegans. Genetics 97, 281305.CrossRefGoogle ScholarPubMed
Daly, H. V. & Sokoloff, A. (1965). Labialpedia, a sex-linked mutant in Tribolium confusum Duval (Coleoptera: Tenebrionidae). J. Morph. 117, 251269.CrossRefGoogle ScholarPubMed
Davis, R. L. & Kiger, J. A. Jr. (1981). dunce mutants of Drosophila melanogaster: mutants defective in the cyclic AMP phosphodiesterase enzyme system. J. Cell Biol. 90, 101107.CrossRefGoogle ScholarPubMed
Deak, I. I. (1976 a). Use of Drosophila mutants to investigate the effect of disuse on the maintenance of muscle. J. Insect Physiol. 22, 11591165.CrossRefGoogle ScholarPubMed
Deak, I. I. (1976 b). Demonstration of sensory neurones in the ectopic cuticle of spineless-aristapedia, a homoeotic mutant of Drosophila. Nature, Lond. 260, 252254.CrossRefGoogle ScholarPubMed
Deak, I. I. (1977 a). Mutations of Drosophila melanogaster that affect muscles. J. Embryol. exp. Morphol. 40, 3563.Google ScholarPubMed
Deak, I. I. (1977 b). A histochemical study of the muscles of Drosophila melanogaster. J. Morphol. 153, 307316.CrossRefGoogle ScholarPubMed
Deak, I. I. (1977 c). Detection of clones in the nervous system of Drosophila melanogaster. Wilhelm Roux' Arch. 183, 165169.CrossRefGoogle Scholar
Deak, I. I., Bellamy, P. R., Bienz, M., Dubuis, Y., Fenner, E., Gollin, M., Rahmi, A., Ramp, T., Reinhardt, C. A. & Cotton, B. (1982). Mutations affecting the indirect flight muscles of Drosophila melanogaster. J. Embryol. exp. Morph. 69, 6181.Google ScholarPubMed
Deak, I. I., Rahmi, A., Bellamy, P. R., Bienz, M., Blumer, A., Fenner, E., Gollin, M., Ramp, T., Reinhardt, C., Dubendorfer, A. & Cotton, B. (1980). Developmental and genetic studies of the indirect flight muscles of Drosophila melanogaster. In Development and Neurobiology of Drosophila (ed. Siddiqi, O., Babu, P., Hall, L. M. and Hall, J. C.), pp. 183192. New York: Plenum Press.CrossRefGoogle Scholar
DeJianne, D., Pruzan-Hotchkiss, A. & Grossfield, J. (1981). Light dependent mating inhibition in the white-eye mutant of Drosophila pseudoobscura. Experientia 37, 465467.CrossRefGoogle Scholar
Denell, R. E., Hummels, K. R., Wakimoto, B. T. & Kaufman, T. C. (1981). Developmental studies of lethality associated with the Antennapedia gene complex in Drosophila melanogaster. Devl Biol. 81, 4350.CrossRefGoogle ScholarPubMed
Dethier, V. G. (1968). Chemosensory input and taste discrimination in the blowfly. Science, N. Y. 161, 389391.CrossRefGoogle ScholarPubMed
Dewhurst, S. A. & Seecof, R. L. (1975). Development of acetylcholine metabolizing enzymes in Drosophila embryos and in cultures of embryonic Drosophila cells. Comp. Biochem. Physiol. 50c, 5358.Google Scholar
Dietrich, U. & Campos-Ortega, J. A. (1980). The effect of temperature on shibirets cell clones in the compound eye of Drosophila melanogaster. Wilhelm Roux' Arch. 188, 5563.CrossRefGoogle Scholar
Dudai, Y. (1977). Properties of learning and memory in Drosophila melanogaster. J. comp. Physiol. 114, 6990.CrossRefGoogle Scholar
Dudai, Y. (1979). Behavioral plasticity in a Drosophila mutant, dunceDB276. J. comp. Physiol. 130, 271276.CrossRefGoogle Scholar
Dudai, Y. (1980). Cholinergic receptors of Drosophila. In Receptors for Neurotransmitters, Hormones and Pheromones in Insects (ed. Satelle, D. B., Hall, L. M. and Hildebrand, J. G.), pp. 93110. New York: Elsevier/North-Holland.Google Scholar
Dudai, Y. (1981). Olfactory choice behavior of normal and mutant Drosophila in a conflict situation in a successive conditioning paradigm. Soc. Neurosci. Abstr. 7, 643.Google Scholar
Dudai, Y. & Bicker, G. (1978). Comparison of visual and olfactory learning in Drosophila. Naturwissenschaften 65, 494495.CrossRefGoogle Scholar
Dudai, Y., Jan, Y.-N., Byers, D., Quinn, W. G. & Benzer, S. (1976). dunce, a mutant of Drosophila deficient in learning. Proc. natn. Acad. Sci. U.S.A. 73, 16841688.CrossRefGoogle ScholarPubMed
Dudai, Y., Nahum-Zvi, S. & Haim-Granot, N. (1980). Cholinergic pharmacology of Drosophila melanogaster: comparison of in vivo to in vitro studies. Comp. Biochem. Physiol. 65c, 135138.Google Scholar
Dudai, Y. & Quinn, W. G. (1980). Genes and learning in Drosophila. Trends Neurosci. 3, 2830.CrossRefGoogle Scholar
Duerr, J. S. & Quinn, W. G. (1982). Three Drosophila mutations which block associative learning also affect habituation and sensitization. Proc. natn. Acad. Sci. U.S.A. 79, 36463650.CrossRefGoogle ScholarPubMed
Dvorak, D. R., Bishop, L. G. & Eckert, H. E. (1975). On the identification of movement detectors in the fly optic lobe. J. comp. Physiol. 100, 523.CrossRefGoogle Scholar
Dymond, G. R. & Evans, P. D. (1979). Biogenic amines in the nervous system of cockroach, Periplaneta americana: association of octopamine with mushroom bodies and dorsal unpaired median (DUM) neurones. Insect Biochem. 9, 535545.CrossRefGoogle Scholar
Ede, D. (1956). Studies of the effects of some lethal factors on the embryonic development of Drosophila melanogaster. IV. Analysis of the mutant X-20. Wilhelm Roux' Arch. 149, 101114.CrossRefGoogle Scholar
Ehrman, L. (1978). Sexual behavior. In The Genetics and Biology of Drosophila, vol. 2b (ed. Ashburner, M. and Wright, T. R. F.), pp. 127180. London: Academic Press.Google Scholar
Ehrman, L. & Probber, J. (1978). Rare Drosophila males: the mysterious matter of choice. Am. Scient. 66, 216222.Google Scholar
Engelmann, W. & Mack, J. (1978). Different oscillators control the circadian rhythm of eclosion and activity in Drosophila. J. comp. Physiol. 127, 229237.CrossRefGoogle Scholar
Englert, D. C. & Bell, A. E. (1963). Antennapedia’: an unusual antennal mutation in Tribolium castaneum. Ann. ent. Soc. Am. 56, 123124.CrossRefGoogle Scholar
Evans, P. D. (1980). Octopamine receptors in insects. In Receptors for Neurotransmitters, Hormones, and Pheromones in Insects (ed. Satelle, D. B., Hall, L. M. and Hildebrand, J. G.), pp. 245298. New York: Elsevier/North-Holland.Google Scholar
Ewing, A. W. (1977). Communication in Diptera. In How Animals Communicate (ed. Sebeok, T. A.), pp. 403417. Bloomington, London: Indiana University Press.Google Scholar
Ewing, A. W. & Manning, A. (1967). The evolution and genetics of insect behavior. A. Rev. Ent. 12, 471494.CrossRefGoogle Scholar
Falk, R. & Atidia, J. (1975). Mutations affecting taste perception in Drosophila melanogaster. Nature, Lond. 254, 325326.CrossRefGoogle ScholarPubMed
Fekete, E. & Szidonya, J. (1979). Abnormalities of ultrastructure and calcium distribution in the flight muscle of a flightless mutant of Drosophila melanogaster. Acta Acad. Sci. Hung. 30, 4758.Google ScholarPubMed
Ferrús, A. & Kankel, D. R. (1981). Cell lineage relationships in Drosophila melanogaster. The relationships of cuticular to internal tissues. Devl Biol. 85, 485504.CrossRefGoogle ScholarPubMed
Fingerman, M. (1952). The role of eye-pigments of Drosophila melanogaster in photic orientation. J. exp. Zool. 120, 131164.CrossRefGoogle Scholar
Fischbach, K. F. (1981 a). Neurons in the optic lobes of the Drosophila mutant sine oculis. Neurosci. Lett. 7 (Suppl.), s288.Google Scholar
Fischbach, K. F. (1981 b). Simplified behavior of the small optic lobes mutant of Drosophila melanogaster. Abstr. 3rd Congr. Eur. Soc. comp. Physiol. Biochem. pp. 229230.CrossRefGoogle Scholar
Fischbach, K. F. (1981 c). Habituation and sensitization of the landing response of Drosophila melanogaster. Naturwissenschaften 68, 332.CrossRefGoogle Scholar
Fischbach, K. F. & Heisenberg, M. (1981). Structural brain mutant of Drosophila melanogaster with reduced cell number in the medulla cortex and with normal optomotor response. Proc. natn. Acad. Sci. U.S.A. 78, 11051109.CrossRefGoogle Scholar
Fischbach, K. F. & Reichert, H. (1978). Interactions of visual subsystems in Drosophila melanogaster: a behavioural genetic analysis. Biol. Behav. 3, 305317.Google Scholar
Fischbach, K. F. & Technau, G. (1981). Ganglion cell degeneration in normal and mutant (sol) optic lobes of Drosophila melanogaster. Abstr. IXth Congr. Int. Soc. Devel. Biol., p. 219.Google Scholar
Flanagan, J. R. (1977). A method for fate mapping the foci of lethal and behavioral mutants in Drosophila melanogaster. Genetics 85, 587607.CrossRefGoogle ScholarPubMed
Folkers, E. (1982). Visual learning and memory of Drosophila melanogaster wild type C-S and the mutants dunce, amnesiac, turnip, and rutabaga. J. Insect Physiol. 28, 535539.CrossRefGoogle Scholar
Folkers, E. & Spatz, H.-Ch. (1981). Visual learning behaviour in Drosophila melanogaster wildtype AS. J. Insect Physiol. 27, 615622.CrossRefGoogle Scholar
Franceschini, N., Hardie, R., Ribi, W. & Kirschfeld, N. (1981). Sexual dimorphism in a photoreceptor. Nature, Lond. 291, 241244.CrossRefGoogle Scholar
Fuchs, J. L. & Moore, R. Y. (1980). Development of circadian rhythmicity and light responsiveness in the rat suprachiasmatic nucleus: a study using the 2-deoxy[1-14C]glucose method. Proc. natn. Acad. Sci. U.S.A. 77, 12041208.CrossRefGoogle ScholarPubMed
Fyrberg, E. A., Kindle, K. L., Davidson, N. & Sodja, A. (1980). The actin genes of Drosophila: a dispersed multigene family. Cell 19, 365378.CrossRefGoogle ScholarPubMed
Gailey, D. A., Jackson, F. R. & Siegel, R. W. (1982). Male courtship in Drosophila: The conditioned response to immature males and its genetic control. Genetics. (In the Press.)CrossRefGoogle Scholar
Gamo, S., Nakashima-Tanaka, E. & Ogaki, M. (1980). Inheritance of halothane resistance in Drosophila melanogaster. Jap. J. Genet. 55, 133140.CrossRefGoogle Scholar
Gamo, S., Ogaki, M. & Nakashima-Tanaka, E. (1979). Inheritance of chloroform resistance in Drosophila melanogaster. Jap. J. Genet. 54, 229234.CrossRefGoogle Scholar
Ganetzky, B. & Wu, C.-F. (1982 a). Drosophila mutants with opposing effects on nerve excitability: genetic and spatial interactions in repetitive firing. J. Neurophysiol. 47, 501514.CrossRefGoogle ScholarPubMed
Ganetzky, B. & Wu, C.-F. (1982 b). Indirect suppression involving behavioral mutants with altered nerve excitability in Drosophila melanogaster. Genetics. 100, 597614.CrossRefGoogle ScholarPubMed
García-Bellido, A. (1975). Genetic control of wing disc development in Drosophila. In Cell Patterning, Ciba Foundation Symposium 29, pp. 161182. Amsterdam: Elsevier/North-Holland.Google Scholar
García-Bellido, A. (1977). Homoeotic and atavic mutations in insects. Am. Zool. 17, 613630.CrossRefGoogle Scholar
García-Bellido, A. (1979). Genetic analysis of the achaete-scute system in Drosophila melanogaster. Genetics 91, 491520.CrossRefGoogle ScholarPubMed
García-Bellido, A. & Lewis, E. B. (1976). Autonomous cellular differentiation of homoeotic bithorax mutants of Drosophila melanogaster. Devl Biol. 48, 400410.CrossRefGoogle ScholarPubMed
García-Bellido, A. & Moscoso del Prado, J. (1979). Genetic analysis of maternal information in Drosophila. Nature 278, 346348.CrossRefGoogle ScholarPubMed
García-Bellido, A., Ripoll, P. & Morata, G. (1973). Developmental compartmentalisation of the wing disk of Drosophila. Nature, New Biol. 245, 251253.Google ScholarPubMed
Gardner, G. F. & Feldman, J. F. (1980). The frq locus in Neurospora crussa: a key element in circadian clock organization. Genetics 96, 877886.CrossRefGoogle ScholarPubMed
Gateff, E. (1978). The genetics and epigenetics of neoplasms in Drosophila. Biol. Rev. 53, 123128.CrossRefGoogle ScholarPubMed
Geer, G. W. & Green, M. M. (1962). Genotype, phenotype and mating behavior of Drosophila melanogaster. Am. Nat. 96, 175181.CrossRefGoogle Scholar
Gepner, J. J. & Gelbart, W. M. (1981). Mutants of Drosophila melanogaster resistant to Malathion, an acetylcholinesterase inhibitor. Genetics 97, s41.Google Scholar
Ghysen, A. (1978). Sensory neurones recognize defined pathways in the Drosophila central nervous system. Nature, Lond. 274, 869872.CrossRefGoogle ScholarPubMed
Ghysen, A. (1980). The projection of sensory neurons in the central nervous system of Drosophila: choice of appropriate pathway. Devl Biol. 78, 521541.CrossRefGoogle ScholarPubMed
Ghysen, A. & Deak, I. I. (1978). Experimental analysis of sensory nerve pathways in Drosophila. Wilhelm Roux' Arch. 184, 273284.CrossRefGoogle Scholar
Ghysen, A. & Janson, R. (1980). Sensory pathways in Drosophila central nervous system. In Development and Neurobiology of Drosophila (ed. Siddiqi, O., Babu, P., Hall, L. M. and Hall, J. C.), pp. 247265. New York: Plenum Press.CrossRefGoogle Scholar
Gilbert, D. G. & Richmond, R. C. (1981). Studies of esterase-6 in Drosophila melanogaster. VI. Ejaculate competitive abilities of males having null or active alleles. Genetics 97, 8594.CrossRefGoogle ScholarPubMed
Gilbert, D. G., Richmond, R. C. & Sheehan, K. B. (1981). Studies of esterase-6 in Drosophila melanogaster. VII. Remating times of females inseminated by males having active or null alleles. Behav. Genet. 11, 195208.CrossRefGoogle ScholarPubMed
Girton, J. R. & Bryant, P. J. (1980). The use of cell lethal mutations in the study of Drosophila development. Devl Biol. 77, 233243.CrossRefGoogle Scholar
Gitschier, J., Strichartz, G. R. & Hall, L. M. (1980). Saxitoxin binding to sodium channels in head extracts from wild-type and tetrodotoxin-sensitive strains of Drosophila melanogaster. Biochim. biophys. Acta 595, 291303.CrossRefGoogle ScholarPubMed
Gitschier, J., Strichartz, G. R. & Hall, L. M. (1982). [3H]saxitoxin as a probe for sodium channels in Drosophila melanogaster: analysis of temperature-sensitive paralytic mutants and effects of segmental aneuploidy on saxitoxin-binding activity. Biochem. Genet. (In the Press.)Google Scholar
Gloor, H. & Kobel, H. (1966). Antennapedia (ssAnp) eine homoeotische Mutante bei Drosophila hydei (Sturt). Rev. Suisee Zool. 73, 229252.CrossRefGoogle Scholar
Goldin, S. M., Rhoden, W. & Hess, E. J. (1980). Molecular characterization, reconstitution, and ‘transport specific fractionation’ of the saxitoxin binding protein/Na+ gate of mammalian brain. Proc. natn. Acad. Sci. U.S.A. 77, 68846888.CrossRefGoogle ScholarPubMed
Götz, K. G. (1970). Fractionation of Drosophila populations according to optomotor traits. J. exp. Biol. 52, 419436.CrossRefGoogle ScholarPubMed
Götz, K. G. (1980). Visual guidance in Drosophila. In Development and Neurobiology of Drosophila (ed. Siddiqi, O., Babu, P., Hall, L. M. and Hall, J. C.), pp. 391407. New York: Plenum Press.CrossRefGoogle Scholar
Götz, K. G. & Wenking, H. (1973). Visual control of locomotion in the walking fruitfly Drosophila. J. comp. Physiol. 85, 235266.CrossRefGoogle Scholar
Gould, J. L. (1974). Genetics and molecular ethology. Z. Tierpsychol. 36, 267292.CrossRefGoogle ScholarPubMed
Green, L. H. & Gelbart, W. M. (1981). Biochemical studies of acetylcholinesterase in Drosophila melanogaster. Genetics 97, s 45.Google Scholar
Green, S. H. (1981). The segment-specific organization of leg motoneurons in Drosophila is transformed in bithorax mutants. Nature, Lond. 292, 152154.CrossRefGoogle Scholar
Greenleaf, A. L., Weeks, J. R., Voelker, R. A., Ohnishi, S. & Dickson, B. (1980). Genetic and biochemical characterization of mutants at an RNA polymerase II locus in Drosophila melanogaster. Cell 21, 785792.CrossRefGoogle Scholar
Greenspan, R. J. (1980). Mutations of choline acetyltransferase and associated neural defects in Drosophila melanogaster. J. comp. Physiol. 137, 8392.CrossRefGoogle Scholar
Greenspan, R. J., Finn, J. A. Jr., & Hall, J. C. (1980). Acetylcholinesterase mutants in Drosophila and their effects on the structure and function of the central nervous system. J. comp. Neurol. 189, 741774.CrossRefGoogle ScholarPubMed
Grell, E. H. (1969). Bsh: Bashed. Drosoph. Inf. Serv. 44, 46.Google Scholar
Grell, E. H. (1976). Genetic analysis of aspartate amino-transferase isoenzymes from hybrids between Drosophila melanogaster and Drosophila simulans and mutagen-induced isozyme variants. Genetics 83, 753764.CrossRefGoogle Scholar
Grigliatti, T., Suzuki, D. T. & Williamson, R. (1972). Temperature-sensitive mutations in Drosophila melanogaster. X. Developmental analysis of the paralytic mutation, parats. Devl Biol. 28, 352371.CrossRefGoogle Scholar
Grigliatti, T., Hall, L., Rosenbluth, R. & Suzuki, D. T. (1973). Temperature-sensitive mutations in Drosophila melanogaster. XIV. A selection of immobile adults. Molec. & Gen. Genet. 120, 107114.CrossRefGoogle ScholarPubMed
Grossfield, J. (1972). The use of behavioral mutants in biological control. Behav. Genet. 2, 311319.CrossRefGoogle ScholarPubMed
Grossfield, J. (1975). Behavioral mutants of Drosophila. In Handbook of Genetics, vol. 3 (ed. King, R. C.), pp. 679702. New York: Plenum Press.Google Scholar
Grossfield, J. (1978). Non-sexual behavior. In The Genetics and Biology of Drosophila, vol. 2b (ed. Ashburner, M. and Wright, T. R. F.), pp. 1126. London: Academic Press.Google Scholar
Hall, J. C. (1978 a). Behavioral analysis in Drosophila mosaics. In Genetic Mosaics and Cell Differentiation (ed. Gehring, W. J.), pp. 259305. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Hall, J. C. (1978 b). Courtship among males due to a male-sterile mutation in Drosophila melanogaster. Behav. Genet. 8, 125141.CrossRefGoogle ScholarPubMed
Hall, J. C. (1979). Control of male reproductive behavior by the central nervous system of Drosophila: dissection of a courtship pathway by genetic mosaics. Genetics 92, 437457.CrossRefGoogle ScholarPubMed
Hall, J. C. (1981). Sex behavior mutants in Drosophila. BioScience 31, 125130.CrossRefGoogle Scholar
Hall, J. C., Alahiotis, S. N., Strumpf, D. A. & White, K. (1980 a). Behavioral and biochemical defects in temperature-sensitive acetyl-cholinesterase mutants of Drosophila melanogaster. Genetics 96, 939965.CrossRefGoogle Scholar
Hall, J. C., Gelbart, W. M. & Kankel, D. R. (1976). Mosaic systems. In The Genetics and Biology of Drosophila, vol. 1 a (ed. Ashburner, M. and Novitski, E.), pp. 265314. London: Academic Press.Google Scholar
Hall, J. C. & Greenspan, R. J. (1979). Genetic analysis of Drosophila neurobiology. A. Rev. Genet. 13, 127195.CrossRefGoogle ScholarPubMed
Hall, J. C., Greenspan, R. J. & Harris, W. A. (1982). Genetic Neurobiology. Cambridge, Massachusetts: MIT Press.Google Scholar
Hall, J. C., Greenspan, R. J. & Kankel, D. R. (1979). Neural defects induced by genetic manipulation of acetylcholine metabolism in Drosophila. Soc. Neurosci. Symp. 4, 142.Google Scholar
Hall, J. C. & Kankel, D. R. (1976). Genetics of acetylcholinesterase in Drosophila melanogaster. Genetics 83, 517535.CrossRefGoogle ScholarPubMed
Hall, J. C., Siegel, R. W., Tompkins, L. & Kyriacou, C. P. (1980 c). Neurogenetics of courtship in Drosophila. Stadler Genetics Symp. 12, 4382.Google Scholar
Hall, J. C., Tompkins, L., Kyriacou, C. P., Siegel, R. W., Schilcher, F. V. & Greenspan, R. J. (1980 b). Higher behavior in Drosophila analyzed with mutations that disrupt the structure and function of the nervous system. In Development and Neurobiology of Drosophila (ed. Siddiqi, O., Babu, P., Hall, L. M. and Hall, J. C.), pp. 425455. New York: Plenum Press.CrossRefGoogle Scholar
Hall, L. (1973). Conditional dominance of temperature-sensitive locomotor mutants. Drosoph. Inf. Serv. 50, 103.Google Scholar
Hall, L. M. (1980 a). Biochemical and genetic analysis of an α-bungarotoxin-binding receptor from Drosophila melanogaster. In Receptors for Neurotransmitters, Hormones and Pheromones in Insects (ed. Satelle, D. B., Hall, L. M. and Hildebrand, J. G.), pp. 111124. New York: Elsevier/North-Holland.Google Scholar
Hall, L. M. (1980 b). Use of neurotoxins for biochemical and genetic analysis of membrane proteins involved in cell excitability. In Development and Neurobiology of Drosophila (ed. Siddiqi, O., Babu, P., Hall, L. M. and Hall, c.), pp. 293303. New York: Plenum Press.CrossRefGoogle Scholar
Hall, L. M., Von Borstel, R. W., Osmond, B. C., Hoeltzli, S. D. & Hudson, T. H. (1978). Genetic variants in an acetylcholine receptor from Drosophila melanogaster. FEBS Lett. 95, 243246.CrossRefGoogle Scholar
Hall, L. M., Wilson, S. D., Gitschier, J., Martinez, N. & Strichartz, G. R. (1982). Identification of a mutant that affects the saxitoxin receptor of the voltage sensitive sodium channel. In Neurophysiology of Insects, Ciba Foundation Symposium 88, pp. 207220. London: Pitman.CrossRefGoogle Scholar
Hall, L. M., Wilson, S. D., Gitschier, J. & Strichartz, G. R. (1981]. A Drosophila mutant affects sodium channel levels. Neurosci. Abstr. 7, 16.Google Scholar
Handler, A. N. & Konopka, R. J. (1979). Transplantation of a circadian pacemaker in Drosophila. Nature, Lond. 279, 236238.CrossRefGoogle ScholarPubMed
Hansen, K. (1969). The mechanism in insect sugar reception, a biochemical investigation. In Olfaction and Taste, vol. 3 (ed. Pfaffmann, C.), pp. 382391. New York: Rockefeller University Press.Google Scholar
Hardeland, R. (1972). Species differences in the diurnal rhythmicity of courtship behaviour within the melanogaster group of the genus Drosophila. Anim. Behav. 20, 170174.CrossRefGoogle ScholarPubMed
Harris, W. A. (1980). The effects of eliminating impulse activity on the development of the retinotectal projection in salamanders. J. comp. Neurol. 194, 303317.CrossRefGoogle ScholarPubMed
Harris, W. A. (1981). Physiological activity and development. A. Rev. Physiol. 43, 689710.CrossRefGoogle Scholar
Harris, W. A., Ready, D. F., Lipson, E. D., Hudspeth, A. J. & Stark, W. S. (1977). Vitamin A deprivation and Drosophila photopigments. Nature, Lond. 266, 648650.CrossRefGoogle ScholarPubMed
Harris, W. A. & Stark, W. S. (1977). Hereditary retinal degeneration in Drosophila melanogaster. A mutant defect associated with the photo-transduction process. J. gen. Physiol. 69, 261291.CrossRefGoogle Scholar
Harris, W. A., Stark, W. S. & Walker, J. A. (1976). Genetic dissection of the photoreceptor system in the compound eye of Drosophila melanogaster. J. Physiol. 256, 415439.Google ScholarPubMed
Hausen, K. & Strausfeld, N. J. (1980). Sexually dimorphic interneuron arrangements in the fly visual system. Proc. Roy. Soc. Lond. B 208, 5771.Google Scholar
Heisenberg, M. (1972). Comparative behavioral studies on two mutants of Drosophila. J. comp. Physiol. 80, 119136.CrossRefGoogle Scholar
Heisenberg, M. (1974). Isolation of autosomal mutants with defects in the optomotor response. Drosoph. Inf. Serv. 51, 64.Google Scholar
Heisenberg, M. (1979). Genetic approach to a visual system. In Handbook of Sensory Physiology, vol. VII/6A (ed. Autrum, H.), pp. 665679. Berlin: Springer-Verlag.Google Scholar
Heisenberg, M. (1980). Mutants of brain structure and function: what is the significance of the mushroom bodies for behavior? In Development and Neurobiology of Drosophila (ed. Siddiqi, O., Babu, P., Hall, L. M. and Hall, J. C.), pp. 373390. New York: Plenum Press.CrossRefGoogle Scholar
Heisenberg, M. & Böhl, K. (1979). Isolation of anatomical brain mutants of Drosophila by histological means. Z. Naturf. 34 c, 143147.CrossRefGoogle Scholar
Heisenberg, M. & Buchner, E. (1977). The role of retinal cell types in visual behavior of Drosophila melanogaster. J. comp. Physiol. 117, 127162.CrossRefGoogle Scholar
Heisenberg, M. & Götz, K. G. (1975). The use of mutations for the partial degradation of vision in Drosophila melanogaster. J. comp. Physiol. 98, 217241.CrossRefGoogle Scholar
Heisenberg, M. & Wolf, R. (1979). One the fine structure of yaw torque in visual orientation of Drosophila melanogaster. J. comp. Physiol. 130, 113130.CrossRefGoogle Scholar
Heisenberg, M., Wonneberger, R. & Wolf, R. (1978). OptomotorblindH31 – a Drosophila mutant of the lobula plate giant neurons. J. comp. Physiol. 124, 287296.CrossRefGoogle Scholar
Hilliker, A. J., Clark, S. H., Chovnick, A. & Gelbart, W. M. (1980). Cytogenetic analysis of the chromosomal region immediately adjacent to the rosy locus in Drosophila melanogaster. Genetics 95, 95110.CrossRefGoogle Scholar
Hirsh, J. & Davidson, N. (1981). Isolation and characterization of the dopa decarboxylase gene of Drosophila melanogaster. Molec. Cell. Biol. 1, 475485.Google ScholarPubMed
Hodgetts, R. B. (1972). Biochemical characterization of mutants affecting the metabolism of β-alanine in Drosophila. J. Insect Physiol. 18, 937947.CrossRefGoogle Scholar
Hodgetts, R. B. (1980). A cytogenetic description of three duplications in which portions of proximal 2L have been inserted into the Y-chromosome. Drosoph. Inf. Serv. 55, 63.Google Scholar
Hodgetts, R. B. & Konopka, R. J. (1973). Tyrosine and catecholamine metabolism in wild-type Drosophila melanogaster and a mutant, ebony. J. Insect Physiol. 19, 12111220.CrossRefGoogle Scholar
Hollyday, M. (1980). Motoneuron histogenesis and the development of limb innervation. In Current Topics in Developmental Biology, vol. 15 (ed. Hunt, R. K.), pp. 181215. New York: Academic Press.Google Scholar
Homyk, T. Jr. (1977). Behavioral mutants of Drosophila melanogaster. II. Behavioral analysis and focus mapping. Genetics 87, 105128.CrossRefGoogle ScholarPubMed
Homyk, T. Jr., Pye, Q. & Pak, W. L. (1981). Visual defective mutants in Drosophila. Genetics 97, s50.Google Scholar
Homyk, T. Jr., & Sheppard, D. E. (1977). Behavioral mutants of Drosophila melanogaster. I. Isolation and mapping of mutations which decrease flight ability. Genetics 87, 95104.CrossRefGoogle ScholarPubMed
Homyk, T., Sinclair, D., Wong, D. & Suzuki, D. T. (1979). Genetic and developmental analysis of temperature-sensitive adult lethal mutations in Drosophila melanogaster. Genetics 91, s49–s50.Google Scholar
Homyk, T. Jr., Szidonya, J. & Suzuki, D. T. (1980). Behavioral mutants of Drosophila melanogaster. III. Isolation and mapping of mutations by direct visual observation of behavioral phenotypes. Molec. & Gen. Genet. 177, 553565.CrossRefGoogle ScholarPubMed
Horridge, G. A. (1962). Learning of leg position by headless insects. Nature, Lond. 193, 697698.CrossRefGoogle ScholarPubMed
Hörstadius, S. (1952). Induction and inhibition of reduction gradients by the micromeres in the sea urchin egg. J. exp. Zool. 120, 421436.CrossRefGoogle Scholar
Hörstadius, S. (1955). Reduction gradients in animalized and vegetalized sea urchin eggs. J. exp. Zool. 129, 249256.CrossRefGoogle Scholar
Hotta, Y. (1979). A biochemical analysis of visual mutations in Drosophila melanogaster: changes in major eye proteins. In Mechanisms of Cell Change, (ed. Ebert, J. D. and Okada, T.), pp. 169182. New York: John Wiley.Google Scholar
Hotta, Y. & Benzer, S. (1970). Genetic dissection of the Drosophila nervous system by means of mosaics. Proc. natn. Acad. Sci. U.S.A. 67, 11561163.CrossRefGoogle ScholarPubMed
Hotta, Y. & Benzer, S. (1972). Mapping of behaviour in Drosophila mosaics. Nature, Lond. 240, 527535.CrossRefGoogle ScholarPubMed
Hotta, Y. & Benzer, S. (1976). Courtship in Drosophila mosaics: sex-specific foci for sequential action patterns. Proc. natn. Acad. Sci. U.S.A. 73, 41544158.CrossRefGoogle ScholarPubMed
Howse, P. E. (1975). Brain structure and behaviour in insects. A. Rev. Ent. 20, 359379.CrossRefGoogle ScholarPubMed
Hoyle, G. (1975). Identified neurons and the future of neuroethology. J. exp. Zool. 194, 5174.CrossRefGoogle Scholar
Hu, K. G., Reichert, H. & Stark, W. S. (1978). Electrophysiological characterization of Drosophila ocelli. J. comp. Physiol. 126, 1524.CrossRefGoogle Scholar
Hu, K. G. & Stark, W. S. (1977). Specific receptor input into spectral preference in Drosophila. J. comp. Physiol. 121, 241252.CrossRefGoogle Scholar
Hu, K. G. & Stark, W. S. (1980). The roles of Drosophila ocelli and compound eyes in phototaxis. J. comp. Physiol. 135, 8595.CrossRefGoogle Scholar
Ikeda, K. (1980). Neuromuscular physiology. In The Genetics and Biology of Drosophila, vol. 2d (ed. Ashburner, M. and Wright, T. R. F.), pp. 369405. London: Academic Press.Google Scholar
Ikeda, K. & Kaplan, W. D. (1970). Unilaterally patterned neural activity of gynandromorphs, mosaic for a neurological mutant of Drosophila melanogaster. Proc. natn. Acad. Sci. U.S.A. 67, 14801487.CrossRefGoogle ScholarPubMed
Ikeda, K. & Kaplan, W. D. (1974). Neurophysiological genetics in Drosophila melanogaster. Am. Zool. 14, 10551066.CrossRefGoogle Scholar
Ingham, P. & Whittle, R. (1980). Trithorax – a new homoeotic mutation of Drosophila melanogaster causing transformation of abdominal and thoracic imaginal segments. Molec. & Gen. Genet. 179, 607614.CrossRefGoogle Scholar
Jacob, K. G., Willmund, R., Folkers, E. & Spatz, H.-Ch. (1977). T-maxe phototaxis of Drosophila melanogaster and several mutants of the visual systems. J. comp. Physiol. 116, 209225.CrossRefGoogle Scholar
Jacobs, M. E. (1978 a). Influence of β-alanine on mating and territorialism in Drosophila melanogaster. Behav. Genet. 8, 487502.CrossRefGoogle ScholarPubMed
Jacobs, M. E. (1978 b). β-alanine tanning of Drosophila cuticles and chitin. Insect Biochem. 8, 3741.CrossRefGoogle Scholar
Jacobson, M. (1978). Developmental Neurobiology, 2nd ed.New York, London: Plenum.CrossRefGoogle Scholar
Jackson, F. R. (1982). The isolation of biological rhythm mutations on the autosomes of Drosophila melanogaster. Submitted to Molec. & gen. Genet.Google Scholar
Jackson, F. R., Gailey, D. A. & Siegel, R. W. (1981). Mutations that alter endogenous rhythms also affect courtship conditioning in Drosophila. Genetics 97, s51–s52.Google Scholar
Jackson, L. L., Arnold, M. T. & Blomquist, G. J. (1981). Surface lipids of Drosophila melanogaster: Comparison of the lipids from female and male wild type and sex-linked yellow mutant. Insect Biochem. 11, 8791.CrossRefGoogle Scholar
Jallon, J.-M., Antony, C. & Benamar, O. (1981). Une antiaphrodisiaque produit par les mâles Drosophila melanogaster et transféré aux femelles lors des la copulation. C. r. Séanc. Acad. Sci., Paris 292, Série III, 11471149.Google Scholar
Jallon, J.-M., Antony, C., Gallois, M. & Venard, R. (1980). Première caractérisation de substances aphrodisiaques chez Drosophila melanogaster. C. r. Séanc. Acad. Sci., Paris D 291, 717719.Google Scholar
Jan, Y.-N. & Jan, L. Y. (1978). Genetic dissection of short-term and long-term facilitation at the Drosophila neuromuscular junction. Proc. natn. Acad. Sci. U.S.A. 75, 515519.CrossRefGoogle ScholarPubMed
Jan, Y.-N. & Jan, L. Y. (1979). Genetic dissection of synaptic transmission in Drosophila melanogaster. In Insect Neurobiology and Pesticide Action (ed. Rickett, F. E.), pp. 161168. London: Society of Chemical Industry.Google Scholar
Jallon, J.-M. & Hotta, Y. (1979). Genetic and behavioral studies of Drosophila female sex appeal. Behav. Genet. 9, 257275.CrossRefGoogle ScholarPubMed
Jan, L. Y. & Jan, Y.-N. (1981). Mutations of the synapse in Drosophila. In Development of the Nervous System (ed. Garrod, D. R. and Feldman, J. D.), pp. 347360. Cambridge University Press.Google Scholar
Jan, Y.-N., Jan, L. Y. & Dennis, M. J. (1977). Two mutations of synaptic transmission in Drosophila. Proc. R. Soc. Lond. B 198, 87108.Google ScholarPubMed
Jiménez, F. & Campos-Ortega, J. A. (1979). A region of the Drosophila genome necessary for CNS development. Nature, Lond. 282, 310312.CrossRefGoogle ScholarPubMed
Jiménez, F. & Campos-Ortega, J. A. (1981). A cell arrangement specific to thoracic ganglia in the central nervous system of the Drosophila embryo: its behaviour in homoeotic mutants. Wilhelm Roux' Arch.CrossRefGoogle Scholar
Jiménez, F. & Campos-Ortega, J. A. (1982). Maternal effects of zygotic mutants affecting early neurogenesis in Drosophila. Wilhelm Roux Arch 191, 191201.CrossRefGoogle Scholar
Judd, B. H., Shen, M. W. & Kaufman, T. C. (1972). The anatomy and function of a segment of the X chromosome of Drosophila melanogaster. Genetics 71, 139156.CrossRefGoogle ScholarPubMed
Kalmus, H. (1943). The optomotor responses of some eye mutants of Drosophila. J. Genet. 45, 206214.CrossRefGoogle Scholar
Kandel, E. R. (1979). Cellular insights into behavior and learning. In The Harvey Lectures, series 73, pp. 1992. New York: Academic Press.Google Scholar
Kankel, D. R. & Ferrús, A. (1979). Genetic analysis of problems in the neurobiology of Drosophila. In Neurogenetics: Genetic Approaches to the Nervous System (ed. Breakefield, X. O.), pp. 2766. New York: Elsevier/North Holland.Google Scholar
Kankel, D. R. & Ferrús, A., Garen, S. H., Harte, P. J. & Lewis, P. E. (1980). The structure and development of the nervous system. In The Genetics and Biology Drosophila, vol. 2d (ed. Ashburner, M. and Wright, T. R. F.), pp. 295368. London: Academic Press.Google Scholar
Kankel, D. R. & Hall, J. C. (1976). Fate mapping of nervous system and other internal tissues in genetic mosaics of Drosophila melanogaster. Devl Biol. 48, 124.CrossRefGoogle ScholarPubMed
Kaplan, W. D. (1977). iav: inactive. Drosoph. Inf. Serv. 52, 1.Google Scholar
Kaplan, W. D. (1979). Motor activity mutants of Drosophila. In Psychology Survey, vol. 2 (ed. Connolly, K.), pp. 90109. London: Allen & Unwin.Google Scholar
Kaplan, W. D. & Trout, W. E. III (1969). The behavior of four neurological mutants of Drosophila. Genetics 61, 399409.CrossRefGoogle ScholarPubMed
Kaplan, W. D. & Trout, W. E. III, (1974). Genetic manipulation of an abnormal jump response in Drosophila. Genetics 77, 721739.CrossRefGoogle ScholarPubMed
Kaufman, T. C. (1978). Cytogenetic analysis of chromosome 3 in Drosophila melanogaster: isolation and characterization of four new alleles of the proboscipedia (pb) locus. Genetics 90, 579596.CrossRefGoogle ScholarPubMed
Kawanishi, M. & Watanabe, T. K. (1980). Genetic variations of courtship song of Drosophila melanogaster and D. simulans. Jap. J. Genet. 55, 235240.CrossRefGoogle Scholar
Kawanishi, M. & Watanabe, T. K. (1981). Genes affecting courtship song and mating preference in Drosophila melanogaster, Drosophila simulans and their hybrids. Evolution 35, 11281133.CrossRefGoogle Scholar
Kelly, L. E. (1974). Temperature-sensitive mutations affecting the regenerative sodium channel in Drosophila melanogaster. Nature, Lond. 248, 166168.CrossRefGoogle ScholarPubMed
Kelly, L. E. (1982). Correlation of an unusual ‘light-off’ induced escape response with alterative in the electroretinogram of a Drosophila mutant. (Submitted for publication.)Google Scholar
Kiger, J. A. Jr., Davis, R. L., Salz, H., Fletcher, T. & Bowling, M. (1981). Genetic analysis of cyclic nucleotide phosphodiesterases in Drosophila melanogaster. Adv. Cyclic Nucleotide Res. 14, 273288.Google ScholarPubMed
Kikuchi, T. (1973). Genetic alterations of olfactory functions in Drosophila melanogaster. Jap. J. Genet. 48, 105118.CrossRefGoogle Scholar
Kimura, H., McGeer, P. L., Peng, F. & McGeer, G. G. (1980). Choline acetyltransferase-containing neurons in rodent brain demonstrated by immunohistochemistry. Science, N. Y. 208, 10571059.CrossRefGoogle ScholarPubMed
King, D. G. & Wyman, R. J. (1980). Anatomy of the giant fibre system in Drosophila. I. Three thoracic components of the pathway. J. Neurocytol. 9, 753770.CrossRefGoogle Scholar
Kirschfeld, K. (1972). The visual system of Musca: studies on optics, structure and function. In Information Processing in the Visual System of Arthropods (ed. Wehner, R.), pp. 6174. Berlin: Springer-Verlag.Google Scholar
Klein, M. & Kandel, E. R. (1980). Mechanism of calcium current modulation underlying presynaptic facilitation and behavioral sensitization in Aplysia. Proc. natn. Acad. Sci. U.S.A. 77, 69126916.CrossRefGoogle ScholarPubMed
Klemm, N. (1976). Histochemistry of putative transmitter substances in the insect brain. Prog. Neurobiol. 7, 99169.CrossRefGoogle ScholarPubMed
Koana, T. & Hotta, Y. (1978). Isolation and characterization of flightless mutants in Drosophila melanogaster. J. Embryol. exp. Morph. 45, 123143.Google ScholarPubMed
Koenig, J. H. & Ikeda, K. (1980 a). Flight pattern induced by temperature in a single-gene mutant of Drosophila melanogaster. J. Neurobiol. 11, 509517.CrossRefGoogle Scholar
Koenig, J. H. & Ikeda, K. (1980 b). Interspike interval relationship among flight muscle fibers in Drosophila. J. exp. Biol. 87, 137147.CrossRefGoogle ScholarPubMed
Koenig, J. H. & Merriam, J. R. (1977). Autosomal ERG variants. Drosoph. Inf. Serv. 52, 50.Google Scholar
Konopka, R. J. (1972). Abnormal concentrations of dopamine in a Drosophila mutant. Nature, Lond. 239, 281282.CrossRefGoogle Scholar
Konopka, R. J. (1979). Genetic dissection of the Drosophila circadian system. Fedn Proc. 38, 26022605.Google ScholarPubMed
Konopka, R. J. (1980). Effects of Drosophila photoreceptor mutations on the circadian activity rhythm. Neurosci. Abstr. 6, 706.Google Scholar
Konopka, R. J. & Benzer, S. (1971). Clock mutants of Drosophila melanogaster. Proc. natn. Acad. Sci. U.S.A. 68, 21122116.CrossRefGoogle ScholarPubMed
Konopka, R. J. & Orr, D. (1980). Effects of a clock mutation on the subjective day – implications for a membrane model of the Drosophila circadian clock. In Development and Neurobiology of Drosophila (ed. Siddiqi, O., Babu, P., Hall, L. M. and Hall, J. C.), pp. 409416. New York: Plenum Press.CrossRefGoogle Scholar
Konopka, R. J. & Wells, S. (1980). Drosophila clock mutations affect the morphology of a brain neurosecretory cell group. J. Neurobiol. 11, 411415.CrossRefGoogle ScholarPubMed
Konopka, R. J. & Wells, S. (1982). A circadian rhythm of cell division in Drosophila cell culture. Submitted to Am. J. Physiol.Google Scholar
Konopka, R. J., Pittendrigh, C. S. & Orr, D. (1982 b). Reciprocal behavior, impaired homeostasis, and altered photosensitivity in Drosophila clock mutants. Submitted to Am. J. Physiol.Google Scholar
Konopka, R., Wells, S. & Lee, T. (1982 a). Mosaic analysis of a Drosophila clock mutant. Submitted to Devl Genet.Google Scholar
Kornberg, T. (1981 a). engrailed: A gene controlling compartment and segment formation in Drosophila. Proc. natn. Acad. Sci. U.S.A. 78, 10951099.CrossRefGoogle ScholarPubMed
Kornberg, T. (1981 b). Compartments in the abdomen of Drosophila and the role of the engrailed locus. Devl Biol. 86, 363372.CrossRefGoogle ScholarPubMed
Kravitz, E. A., Evans, P. D., Talamo, B. R., Wallace, B. G. & Estelle, B. A. (1975). Octopamine neurons in lobsters: location, morphology, release of octopamine and possible physiological role. Cold Spring Harb. Symp. quant. Biol. 40, 127133.CrossRefGoogle Scholar
Kulkarni, S. J. & Padhye, A. (1982). Temperature-sensitive mutations on the second and third chromsomes of Drosophila melanogaster. Submitted to Genet. Res.Google Scholar
Kung, C. (1979). Biology and genetics of Paramecium behavior. In Neurogenetics: Genetic Approaches to the Nervous System (ed. Breakefield, X. O.), pp. 126. New York: Elsevier/North-Holland.Google Scholar
Kyriacou, C. P. (1981). The relationship between locomotor activity and sexual behavior in ebony strains of Drosophila melanogaster. Anim. Behav. 29, 462471.CrossRefGoogle Scholar
Kyriacou, C. P., Burnet, B. & Connolly, K. (1978). The behavioral basis of overdominance in competitive mating success at the ebony locus of Drosophila melanogaster. Anim. Behav. 26, 11951206.CrossRefGoogle Scholar
Kyriacou, C. P. & Hall, J. C. (1980). Circadian rhythm mutations in Drosophila melanogaster affect short-term fluctuations in the male's courtship song. Proc. natn. Acad. Sci. U.S.A. 77, 67296733.CrossRefGoogle ScholarPubMed
Kyriacou, C. P. & Hall, J. C. (1982). The function of courtship song rhythms in Drosophila. Anim. Behav. 30, 794801.CrossRefGoogle Scholar
Labhart, T. (1977). Electrophysiological recordings from the lateral ocelli of Drosophila. Naturwissenschaften 64, 99100.CrossRefGoogle ScholarPubMed
Lang, A. B., Wyss, C. & Eppenberger, H. M. (1981). Lack of actin III in fibrillar flight muscle of Drosophila mutant raised. Nature, Lond. 291, 506508.CrossRefGoogle Scholar
Larrivee, D. C., Conrad, S. K., Stephenson, R. S. & Pak, W. L. (1981). Mutation that selectively affects rhodopsin concentration in the peripheral photoreceptors of Drosophila melanogaster. J. gen. Physiol. 78, 521545.CrossRefGoogle ScholarPubMed
Lawrence, P. A. (1975). The structure and properties of a compartment border: the intersegmental boundary in Oncopeltus. In Cell Patterning, Ciba Foundation Symposium 29, pp. 323. Amsterdam: Elsevier/North Holland.Google Scholar
Lawrence, P. A. (1978). Compartments and the insect nervous system. Zoon 6, 157160.Google Scholar
Lawrence, P. A. (1981 a). The cellular basis of segmentation in insects. Cell 26, 310.Google Scholar
Lawrence, P. A. (1981 b). A general cell marker for clonal analysis of Drosophila development. J. Embryol. exp. Morph. 64, 321332.Google ScholarPubMed
Lawrence, P. A. & Green, S. M. (1979). Cell lineage in the developing retina of Drosophila. Devl Biol. 71, 142152.CrossRefGoogle ScholarPubMed
Lawrence, P. A. & Morata, G. (1976). Compartments in the wing of Drosophila: a study of the engrailed gene. Devl Biol. 50, 321337.CrossRefGoogle ScholarPubMed
Lehmann, R., Dietrich, U., Jiménez, F. & Campos-Ortega, J. A. (1981). Mutations of early neurogenesis in Drosophila. Wilhelm Roux' Arch. 190, 226229.CrossRefGoogle Scholar
Leonard, J. E., Ehrman, L. & Schorsch, M. (1974). Bioassay of a Drosophila pheromone influencing sex and selection. Nature, Lond. 250, 261262.CrossRefGoogle Scholar
Levine, J. D. (1974). Giant neuron input in mutant and wild-type Drosophila. J. comp. Physiol. 93, 265285.CrossRefGoogle Scholar
Lewis, E. B. (1963). Genes and developmental pathways. Am. Zool. 3, 3356.CrossRefGoogle Scholar
Lewis, E. B. (1978). A gene complex controlling segmentation in Drosophila. Nature, Lond. 276, 565570.CrossRefGoogle ScholarPubMed
Lewis, E. B. (1980). Genetic control of body segmentation in Drosophila and Bombyx by homoeotic genes. Symp. Devel. Genet., XVIth Int. Cong. Ent., Abstracts, p. 161.Google Scholar
Lindsley, D. L. & Grell, E. H. (1968). Genetic Variations of Drosophila melanogaster, Carnegie Institution of Washington, Publication No. 627, Washington, D.C.Google Scholar
Lindsley, D. L., Sandler, S., Baker, B. S., Carpenter, A. T. C., Denell, R. E., Hall, J. C., Jacobs, P. A., Miklos, G. L. G., Davis, B. K., Gethmann, R. C., Hardy, R. W., Hessler, A., Miller, S. M., Nozawa, H., Parry, D. M. & Gould-Somero, M. (1972). Segmental aneuploidy and the gross structure of the Drosophila genome. Genetics 71, 157184.CrossRefGoogle ScholarPubMed
Liu, C. P. & Lim, J. K. (1975). Complementation analysis of methyl methane-sulfonate-induced recessive lethal mutations in the zestewhite region of the X chromosome of Drosophila melanogaster. Genetics 79, 601611.CrossRefGoogle ScholarPubMed
Livingstone, M. S. (1981). Two mutations in Drosophila affect the synthesis of octopamine, dopamine and serotonin by altering the activities of two different amino-acid decarboxylases. Neurosci. Abstr. 7, 351.Google Scholar
Livingstone, M. S., Harris-Warrick, R. M. & Kravitz, G. A. (1980). Serotonin and octopamine produce opposite postures in lobsters. Science, N. Y. 208, 7679.CrossRefGoogle ScholarPubMed
Lo, M. C. & Pak, W. L. (1981). Light-induced pigment granule migration in the retinullar cells of Drosophila melanogaster. Comparison of wild-type with ERG-defective mutants. J. gen. Physiol. 77, 155175.CrossRefGoogle ScholarPubMed
Lubinsky, S. & Bewley, G. C. (1979). Genetics of catalase in Drosophila melanogaster: rates of synthesis and degradation of the enzyme in flies aneuploid and euploid for the structural gene. Genetics 91, 723742.CrossRefGoogle ScholarPubMed
Lujan, D. (1981). A comparison of TSP's of Notchtsl, shibiretsl and the double mutants. Drosoph. Inf. Serv. 56, 86.Google Scholar
MacBean, I. T. & Parsons, P. S. (1967). Directional selection for duration of copulation in Drosophila melanogaster. Genetics 56, 233239.CrossRefGoogle ScholarPubMed
McCann, G. D. & Dill, J. C. (1969). Fundamental properties of intensity, form, and motion perception in the visual nervous systems of Calliphora Phaenicia and Musca domestica. J. gen. Physiol. 53, 385413.CrossRefGoogle ScholarPubMed
McCrady, E. III, (1966). In vivo culture of Drosophila melanogaster embryos containing the Notch deficiencies Df(1)N8 and Df(1)N264–40. J. exp. Zool. 161, 3752.CrossRefGoogle Scholar
McEwen, R. S. (1918). The reactions to light and to gravity in Drosophila and its mutants. J. exp. Zool. 25, 49106.CrossRefGoogle Scholar
McGuire, T. R. & Hirsch, J. (1977). Behavior-genetic analysis of Phormia regina: conditioning, reliable individual differences, and selection. Proc. natn. Acad. Sci. U.S.A. 74, 51935197.CrossRefGoogle ScholarPubMed
MacLusky, N. J. & Naftolin, F. (1981). Sexual differentiation of the central nervous system. Science, N. Y. 211, 12941303.CrossRefGoogle ScholarPubMed
Macagno, E. R. (1980). Genetic approaches to invertebrate neurogenesis. In Current Topics in Developmental Biology, vol. 15 (ed. Hunt, R. K.), pp. 319345. New York: Academic Press.Google Scholar
Manning, A. W. (1967 a). The control of sexual receptivity in female Drosophila. Anim. Behav. 15, 239250.CrossRefGoogle ScholarPubMed
Manning, A. W. (1967 b). Genes and evolution in insect behavior. In Behavior-Genetic Analysis (ed. Hirsch, J.), pp. 4460. New York: McGraw-Hill.Google Scholar
Marcey, D. J. (1981). The morphology and development of supernumerary compound eyes in D. melanogaster. Genetics 97, s68.Google Scholar
Markow, T. A. (1981 a). Light-dependent pupation site preferences in Drosophila: behavior of adult visual mutants. Behav. Neur. Biol. 31, 348353.CrossRefGoogle ScholarPubMed
Markow, T. A. (1981 b). Genetic and sensory aspects of mating success of phototactic strains of Drosophila melanogaster. Behav. Genet, 11, 273279.CrossRefGoogle ScholarPubMed
Markow, T. A. & Hanson, S. J. (1981). Multivariate analysis of Drosophila courtship. Proc. natn. Acad. Sci. U.S.A. 78, 43434.CrossRefGoogle ScholarPubMed
Markow, T. A. & Manning, M. (1980). Mating success of photoreceptor mutants of Drosophila melanogaster. Behav. Neur. Biol. 29, 276280.CrossRefGoogle ScholarPubMed
Markow, T. A. & Merriam, J. (1977). Phototactic and geotactic behavior of countercurrent defective mutants of Drosophila melanogaster. Behav. Genet. 7, 447455.CrossRefGoogle ScholarPubMed
Marler, P. (1981). Birdsong: the acquisition of a learned motor skill. Trends Neurosci. 4, 8894.CrossRefGoogle Scholar
Marx, J. L. (1981). Genes that control development. Science, N. Y. 213, 14851488.CrossRefGoogle ScholarPubMed
Matsumoto, H., O'Tousa, J. & Pak, W. L. (1981). Light-induced modification of Drosophila retinal polypeptides in vivo. Invest. Ophthalmol. Vis. Sci. 20 (Suppl.), 111.Google Scholar
Mergenhagen, D. (1980). Circadian rhythms in unicellular organisms. Curr. Topics Microbiol. Immunol. 90, 123147.CrossRefGoogle ScholarPubMed
Meyerowitz, C. M. & Kankel, D. R. (1978). A genetic analysis of visual system development in Drosophila melanogaster. Devl Biol. 62, 112142.CrossRefGoogle Scholar
Milani, R. (1967). Genetics of Musca domestica and other muscoid flies. In Genetics of Insect Vectors of Disease (ed. Wright, J. W. and Pal, R.), pp. 315369. Amsterdam: Elsevier.Google Scholar
Miller, G. F., Hansen, K. N. & Stark, W. S. (1981 a). Specific receptor input into phototaxis in Drosophila. Invest. Ophthalmol. Vis. Sci. 20 (Suppl.), 53.Google Scholar
Miller, G. V., Hansen, K. N. & Stark, W. S. (1981 b). Phototaxis in Drosophila: R1–6 input and interaction among ocellar and compound eye receptors. J. Insect Physiol. 27, 813819.CrossRefGoogle Scholar
Minke, B. (1982). Light-induced reduction in excitation efficiency in the trp mutant of Drosophila. J. gen. Physiol. 79, 361385.CrossRefGoogle ScholarPubMed
Minke, B. & Armon, E. (1980). Intermediate processes in phototransduction: a study in Drosophila mutants. Photochem. & Photobiol. 32, 553562.CrossRefGoogle Scholar
Miyamoto, M. D. & Breckenridge, B. M. (1974). A cyclic adenosine monophosphate link in the catacholamine enhancement of transmitter release at the neuromuscular junction. J. gen. Physiol. 63, 609624.CrossRefGoogle Scholar
Mogami, K., Nonomura, Y. & Hotta, Y. (1981). Electronmicroscopic and electrophoretic studies of a Drosophila muscle mutant wings-upB. Jap. J. Genet. 56, 5165.CrossRefGoogle Scholar
Mogami, K. & Hotta, Y. (1981 a). Isolation and characterization of Drosophila indirect flight muscle mutants. Genetics 97, s74–s75.Google Scholar
Mogami, K. & Hotta, Y. (1981 b). Isolation of Drosophila flightless mutants which affect myofibrillar proteins of indirect flight muscles. Molec. & gen. Genet. 183, 409417.CrossRefGoogle Scholar
Mohler, J. D. (1977). Development genetics of the Drosophila egg. I. Identification of 59 sex-linked cistrons with maternal effects on embryonic development. Genetics 85, 259272.CrossRefGoogle ScholarPubMed
Morata, G. & Kerridge, S. (1981). Sequential functions of the bithorax complex of Drosophila. Nature, Lond. 290, 778781.CrossRefGoogle ScholarPubMed
Morata, G. & Lawrence, P. A. (1977). Homoeotic genes, compartments and cell determination in Drosophila. Nature, Lond. 265, 211216.CrossRefGoogle ScholarPubMed
Morata, G. & Lawrence, P. A. (1979). Development of the eye-antenna imaginal disc of Drosophila. Devl Biol. 70, 355371.CrossRefGoogle ScholarPubMed
Mortin, M. A. & Kaufman, T. C. (1981). A temperature-sensitive lethal mutation in a gene encoding a subunit of RNA polymerase II in Drosophila melanogaster. Genetics 97, s77.Google Scholar
Mortin, M. A. & Lefevre, G. Jr., (1981). An RNA polymerase II mutation in Drosophila melanogaster that mimics Ultrabithorax. Chromosoma 82, 237247.CrossRefGoogle ScholarPubMed
Morton, R. A. & Singh, R. S. (1980). Variation in Drosophila acetylcholinesterase. Biochem. Genet. 18, 439454.CrossRefGoogle ScholarPubMed
Morton, R. A. & Singh, R. S. (1982). The association between malathion resistance and acetylcholinesterase in Drosophila melanogaster. Biochem. Genet. 20, 179198.CrossRefGoogle ScholarPubMed
Narahashi, T. (1974). Chemicals as tools in the study of excitable membranes. Physiol. Rev. 54, 813889.CrossRefGoogle Scholar
Newman, S. M. Jr. & Wright, T. R. F. (1981). A histological and ultrastructural analysis of developmental defects produced by the mutation, lethal (1) myospheroid in Drosophila melanogaster. Devl Biol. 86, 393402.CrossRefGoogle ScholarPubMed
Niklas, J. A. & Cline, T. W. (1980). Vital genes neighboring the sex-lethal (sxl) locus of Drosophila melanogaster. Genetics 94, s76.Google Scholar
Nomura, M., Morgan, E. A. & Jaskunas, S. R. (1977). Genetics of bacterial ribosomes. A. Rev. Genet. 11, 297348.CrossRefGoogle ScholarPubMed
Nüsslein-Volhard, C. (1979). Maternal effect mutations that alter the spatial coordinates of the embryos of Drosophila melanogaster. In Determinants of Spatial Organization (ed. Subtelny, S. and Konigsberg, I. R.), pp. 185211. New York: Academic Press.CrossRefGoogle Scholar
Nüsslein-Volhard, C. & Wieschaus, E. (1980). Mutations affecting segment number and polarity in Drosophila. Nature, Lond. 287, 795801.CrossRefGoogle ScholarPubMed
O'Brien, S. J. & MacIntyre, R. J. (1978). Genetics and biochemistry of enzymes and specific proteins of Drosophila. In The Genetics and Biology of Drosophila, vol. 2a (ed. Ashburner, M. and Wright, T. R. F.), pp. 396551. London: Academic Press.Google Scholar
O'Shea, M. & Evans, P. D. (1979). Potentiation of neuromuscular transmission by an octopaminergic neuron in the locust. J. exp. Biol. 79, 169190.CrossRefGoogle Scholar
Ostroy, S. E. & Pak, W. L. (1973). Protein differences associated with a phototransduction mutant of Drosophila. Nature New Biol. 243, 120121.Google ScholarPubMed
Ouweneel, W. J. (1976). Developmental genetics of homoeosis. Adv. Genet. 18, 179248.CrossRefGoogle ScholarPubMed
Pak, W. L. (1975). Mutants affecting the vision of Drosophila melanogaster. In Handbook of Genetics, vol. 3 (ed. King, R. C.), pp. 703733. New York: Plenum Press.Google Scholar
Pak, W. L. (1979). Study of photoreceptor function using Drosophila mutants. In Neurogenetics: Genetic Approaches to the Nervous System (ed. Breakefield, X. O.), pp. 6799. New York: Elsevier/North-Holland.Google Scholar
Pak, W. L., Conrad, S. K., Kremer, N. E., Larrivee, D. C., Schinz, R. H. & Wong, F. (1980). Photoreceptor function. In Development and Neurobiology of Drosophila (ed. Siddiqi, O., Babu, P., Hall, L. M. and Hall, J. C.), pp. 331346. New York: Plenum Press.CrossRefGoogle Scholar
Pak, W. L. & Grabowski, S. R. (1978). Physiology of the visual and flight systems. In The Genetics and Biology of Drosophila, vol. 2a (ed. Ashburner, M. and Wright, T. R. F.), pp. 553604. London: Academic Press.Google Scholar
Pak, W. L., Ostroy, S. E., Deland, M. C. & Wu, C.-F. (1976). Photoreceptor mutant of Drosophila: Is protein involved in intermediate steps of phototransduction? Science, N. Y. 194, 956959.Google Scholar
Palka, J. (1979). Mutants and mosaics: tools in insect developmental neurobiology. Soc. Neurosci. Symp. 4, 209227.Google Scholar
Palka, J. (1982). Genetic manipulation of sensory pathways in Drosophila. In Neuronal Development (ed. Spitzer, N. C.), pp. 121170. New York: Plenum Press. (In the Press.)CrossRefGoogle Scholar
Palka, J., Lawrence, P. A. & Hart, H. G. (1979). Neural projection patterns from homeotic tissue of Drosophila studied in bithorax mutants and mosaics. Devl Biol. 69, 549575.CrossRefGoogle ScholarPubMed
Palka, J. & Schubiger, M. (1980). Formation of central patterns by receptor cell axons. In Development and Neurobiology of Drosophila (ed. Siddiqi, O., Babu, P., Hall, L. M. and Hall, J. C.), pp. 223246. New York: Plenum Press.CrossRefGoogle Scholar
Palka, J., Schubiger, M. & Hart, H. S. (1981). The path of axons in Drosophila wings in relation to compartment boundaries. Nature, Lond. 294, 447449.CrossRefGoogle ScholarPubMed
Peterson, A. C. (1979). Mosaic analysis of dystrophic↔normal chimeras: an approach to mapping the site of gene expression. Ann. N. Y. Acad. Sci. 317, 630648.Google Scholar
Petters, R. M., Grosch, D. S. & Olson, C. S. (1978). A flightless mutation in the wasp Habrobracon juglandis. J. Hered. 69, 113116.CrossRefGoogle Scholar
Pinsker, W. & Doschek, E. (1979). On the role of light in the mating behavior of Drosophila subobscura. Z. Naturf. 34 c, 12531260.CrossRefGoogle Scholar
Pinsker, W. & Doschek, E. (1980). Courtship and rape: the mating behavior of Drosophila subobscura in light and in darkness. Z. Tierphyschol. 54, 5770.CrossRefGoogle Scholar
Pittendrigh, C. S. (1974). Circadian oscillations in cells and the circadian organization of multicellular systems. In The Neurosciences: Third Study Program (ed. Schmitt, F. O. and Worden, F. G.), pp. 437458. Cambridge, Mass.: MIT Press.Google Scholar
Plapp, F. W. (1976). Biochemical genetics of insecticide resistance. A. Rev. Ent. 21, 179197.CrossRefGoogle ScholarPubMed
Platt, S. A., Holliday, M. & Drudge, O. W. (1980). Discrimination learning of an instrumental response in individual Drosophila melanogaster. J. exp. Psychol. 6, 301311.Google ScholarPubMed
Pollack, G. S. & Hoy, R. R. (1979). Temporal pattern as a cue for species-specific calling song recognition in crickets. Science, N. Y. 204, 429432.CrossRefGoogle ScholarPubMed
Poodry, C. A. (1980 a). Imaginal discs: morphology and development. In The Genetics and Biology of Drosophila, vol. 2d (ed. Ashburner, M. and Wright, T. R. F.), pp. 407441. London: Academic Press.Google Scholar
Poodry, C. A. (1980 b). Epidermis: morphology and development. In The Genetics and Biology of Drosophila, vol. 2d (ed. M. Ashburner, and T. R. F. Wright), pp. 443497.Google Scholar
Poodry, C. A. & Edgar, L. (1979). Reversible alterations in the neuromuscular junctions of Drosophila melanogaster bearing a temperature-sensitive mutations, shibire. J. Cell Biol. 81, 520527.CrossRefGoogle ScholarPubMed
Poodry, C. A., Hall, L. & Suzuki, D. T. (1973). Developmental properties of shibiretsl, a pleiotropic mutation affecting larval and adult locomotion and development. Devl Biol. 32, 373386.CrossRefGoogle Scholar
Portin, P. (1981). Temperature-sensitivity of the pleiotropic effects of three lethal Abruptex mutations at the Notch locus of Drosophila melanogaster. Hereditas 94, 9398.CrossRefGoogle Scholar
Puro, J. & Nygrén, T. (1975). Mode of action of a homeotic gene in Drosophila melanogaster. Localization and dosage effects of Polycomb. Hereditas 81, 237248.CrossRefGoogle Scholar
Quinn, T. C. & Craig, G. B. (1971). Phenogenetics of the homeotic mutant proboscipedia in Aedes albopictus. J. Hered. 62, 312.CrossRefGoogle ScholarPubMed
Quinn, W. G., Harris, W. A. & Benzer, S. (1974). Conditioned behavior in Drosophila melanogaster. Proc. natn. Acad. Sci. U.S.A. 71, 708712.CrossRefGoogle ScholarPubMed
Quinn, W. G., Sziber, P. P. & Booker, R. (1979). The Drosophila memory mutant amnesiac. Nature, Lond. 277, 212214.CrossRefGoogle ScholarPubMed
Rizki, T. M. & Rizki, R. M. (1978). Larval adipose tissue of homeotic mutants of Drosophila. Devl Biol. 65, 476482.CrossRefGoogle Scholar
Ready, D. F., Hanson, T. E. & Benzer, S. (1976). Development of the Drosophila retina, a neurocrystalline lattice. Devl Biol. 53, 217240.CrossRefGoogle ScholarPubMed
Reichert, H. & Bicker, G. (1979). A visual learning study of brightness perception in two mutants of Drosophila melanogaster. J. comp. Physiol. 133, 283290.CrossRefGoogle Scholar
Rendel, J. (1951). Mating of ebony, vestigial and wild-type D. melanogaster in light and dark. Evolution 5, 226230.CrossRefGoogle Scholar
Richmond, R. C. & Senior, A. (1981). Esterase 6 of Drosophila melanogaster: kinetics of transfer to females, decay in females and male recovery. J. Insect Physiol. 27, 849853.CrossRefGoogle Scholar
Robbins, L. G. (1980). Maternal-zygotic lethal interactions in Drosophila melanogaster: the effects of deficiencies in the zeste-white region of the X chromsome. Genetics 96, 187200.CrossRefGoogle Scholar
Rodrigues, V. (1980). Olfactory behavior of Drosophila melanogaster. In Development and Neurobiology of Drosophila (ed. Siddiqi, O., Babu, P., Hall, L. M. and Hall, J. C.), pp. 361369. New York: Plenum Press.CrossRefGoogle Scholar
Rodrigues, V. & Siddiqi, O. (1978). Genetic analysis of chemosensory pathway. Proc. Indian Acad. Sci. 87 B, 147160.CrossRefGoogle Scholar
Rodrigues, V. & Siddiqi, (1981). A gustatory mutants of Drosophila defective in pyranose receptors. Molec. & Gen. Genet. 181, 406408.CrossRefGoogle ScholarPubMed
Ross, M. H. (1964). Pronotal wings in Blatella germanica (L) and their possible evolutionary significance. Am. Midl. Nat. 71, 161180.CrossRefGoogle Scholar
Rudloff, E., Jiménez, F. & Bartels, J. (1980). Purification and properties of the nicotinic acetylcholine receptor of Drosophila melanogaster. In Receptors for Neurotransmitters, Hormones and Pheromones in Insects (ed. Satelle, D. B., Hall, L. M. and Hildebrand, J. G.), pp. 8592. New York: Elsevier/North-Holland.Google Scholar
Rushton, J. & Metcalfe, J. A. (1971). A behavioral mutant of Drosophila melanogaster: ‘Amiel’. Drosoph. Inf. Serv. 46, 61.Google Scholar
Russell, R. L., Johnson, C. D., Rand, J. B., Scherer, S. & Zwass, M. S. (1977). Mutants of acetylcholine metabolism in the nematode Caenorhabditis elegans. In Molecular Approaches to Eucaryotic Genetic Systems (ed. Wilcox, G., Abelson, J. and Fox, C. F.), pp. 359371). New York: Academic Press.Google Scholar
Salkoff, L. & Kelly, L. (1978). Temperature-induced seizure and frequency-dependent neuromuscular block in a ts mutant of Drosophila. Nature, Lond, 273, 156158.CrossRefGoogle Scholar
Salkoff, L. & Kelly, L. (1980). Amino-pyridines mimic mutant Drosophila developmental defects. Comp. Biochem. Physiol. 65C, 5963.Google Scholar
Salkoff, L. & Wyman, R. (1980). Facilitation of membrane electrical excitability in Drosophila. Proc. natn. Acad. Sci. U.S.A. 77, 62166220.CrossRefGoogle ScholarPubMed
Salkoff, L. & Wyman, R. (1981 a). Outward currents in developing Drosophila flight muscles. Science, N. Y. 212, 461463.CrossRefGoogle Scholar
Salkoff, L. & Wyman, R. (1981 b). Genetic modification of potassium channels in Drosophila Shaker mutants. Nature, Lond. 293, 228230.CrossRefGoogle ScholarPubMed
Salz, H. K., Davies, R. L. & Kiger, J. A. Jr. (1982). Genetic analysis of chromomere 3D4: the dunce and sperm-amotile genes in Drosophila melanogaster. Genetics 100, 587596.CrossRefGoogle ScholarPubMed
Sander, K. (1975). Pattern specification in the insect embryo. In Cell Patterning, Ciba Foundation 29, pp. 241263. Amsterdam: Elsevier/Excerpta Medica/North-Holland.Google Scholar
Sander, K., Lohs-Schardin, M. & Baumann, M. (1980). Embryogenesis in a Drosophila mutant expressing half the normal segment number. Nature, Lond. 287, 841843.CrossRefGoogle Scholar
Satow, Y. & Kung, C. (1980). Membrane currents of pawn mutants of the pwA group in Paramedium tetraurelia. J. exp. Biol. 84, 5771.CrossRefGoogle Scholar
Savvateeva, E. V. & Kamyshev, N. G. (1981). Behavioral effects of temperature sensitive mutations affecting metabolism of cAMP in Drosophila melanogaster. Pharmacol. Biochem. Behav. 14, 603611.CrossRefGoogle ScholarPubMed
Scalenghe, F., Turco, E., Edström, J. E., Pirrotta, V. & Melli, M. (1981). Microdissection and cloning of DNA from a specific region of Drosophila melanogaster polytene chromosomes. Chromosomu 82, 205216.CrossRefGoogle ScholarPubMed
Scavarda, N. J., O'Tousa, J. E. & Pak, W. L. (1981). Drosophila mutations displaying semidominant effects on rhodopsin concentration. Neurosci. Abstr. 7, 61.Google Scholar
Schalet, A. (1972). unc: uncoordinated, and uncl: uncoordinated-like. Drosophila Inform. Serv. 49, 36.Google Scholar
Schalet, A. & Roberts, P. A. (1973). arth: arthritic. Drosophila Inform. Serv. 50, 23.Google Scholar
Schilcher, F. V. (1976 a). The role of auditory stimuli in the courtship of Drosophila melanogaster. Anim. Behav. 24, 1826.CrossRefGoogle Scholar
Schilcher, F. V. (1976 b). The function of pulse song and sine song in the courtship of Drosophila melanogaster. Anim. Behav. 24, 622625.CrossRefGoogle Scholar
Schilcher, F. V. (1977). A mutation which changes courtship song in Drosophila melanogaster. Behav. Genet. 7, 251259.CrossRefGoogle Scholar
Schilcher, F. V. & Dow, M. (1977). Courtship behavior in Drosophila: sexual isolation or sexual selection? Z. Tierpsychol. 43, 304310.CrossRefGoogle Scholar
Schilcher, F. V. & Hall, J. C. (1979). Neural topography of courtship song in sex mosaics of Drosophila melanogaster. J. comp. Physiol. 129, 8595.Google Scholar
Schilcher, F. V. & Manning, , (1975). Courtship and mating speed in hybrids between Drosophila melanogaster and Drosophila simulans. Behav. Genet. 5, 395404.CrossRefGoogle Scholar
Schinz, R., Lo, M.-V. C., Larrivee, D. C. & Pak, W. L. (1982). Freezefracture study of the Drosophila photoreceptor membrane: mutations affecting membrane particle density. J. Cell. Biol. (In the Press.)Google Scholar
Schmidt-Glenewinkel, T., Venkatesh, T. R., Schmidt-Nielson, B. K. & Hall, L. M. (1982). Subunit composition of the α-bungarotoxin receptor from the central nervous system of Drosophila melanogaster. Submitted to J. biol. Chem.Google Scholar
Schmidt-Nielson, B. K., Gepner, J. E., Teng, N. N. H. & Hall, L. M. (1977). Characterization of an α-bungarotoxin binding component from Drosophila melanogaster. J. Neurochem. 29, 10131029.CrossRefGoogle Scholar
Schmidt-Nielson, B. K. & Hall, L. M. (1977). An abnormal walking mutant associated with a translocation. Drosoph. Inf. Serv. 52, 7172.Google Scholar
Sharma, R. P. (1977). Light-independent homosexual activity in males of mutant Drosophila melanogaster. Experientia 33, 171173.CrossRefGoogle Scholar
Shatz, C. J. (1979). Abnormal connections in the visual system of Siamese cats. Soc. Neurosci. Symp. 4, 121141.Google Scholar
Shellenbarger, D. L. & Mohler, J. D. (1978). Temperature-sensitive periods and autonomy of pleiotropic effects of l(1)Ntsl, a conditional Notch lethal in Drosophila. Devl Biol. 62, 432446.CrossRefGoogle Scholar
Shimihara, T. & Tauc, L. (1977). Cyclic AMP induced by serotonin modulates the activity of an identified synapse in Aplysia. by facilitating the active permeability to calcium. Brain Res. 127, 168172.CrossRefGoogle Scholar
Sibitani, A. (1980). Wing homeosis in Ledidoptera: a survey. Devl Biol. 79, 118.CrossRefGoogle Scholar
Siddiqi, O. & Rodrigues, V. (1980). Genetic analysis of a complex chemoreceptor. In Development and Neurobiology of Drosophila (ed. Siddiqi, O., Babu, P., Hall, L. M. and Hall, J. C.), pp. 347359. New York: Plenum Press.CrossRefGoogle Scholar
Siddiqi, O. & Benzer, S. (1976). Neurophysiological defects in temperature-sensitive paralytic mutants of Drosophila melanogaster. Proc. natn. Acad. Sci. U.S.A. 73, 32533257.CrossRefGoogle ScholarPubMed
Siegel, R. W. & Hall, J. C. (1979). Conditioned responses in courtship behavior of normal and mutant Drosophila. Proc. natn. Acad. Sci. U.S.A. 76, 34303434.CrossRefGoogle ScholarPubMed
Siegel, R. W., Tompkins, L., Gailey, D. A. & Hall, J. C. (1982). Chemosensory cues in conditioned male courtship of Drosophila melanogaster. Submitted to Behav. Neur. Biol.Google Scholar
Singh, S. & Siddiqi, O. (1981). torpid a new sex linked paralytic mutation in Drosophila melanogaster. Molec. & Gen. Genet. 181, 400402.CrossRefGoogle ScholarPubMed
Slemmon, J. R., Salvaterra, P. M., Crawford, G. D. & Roberts, E. (1982). Purification of choline acetyltransferase from Drosophila melanogaster. J. biol. Chem. 257, 38473852.CrossRefGoogle ScholarPubMed
Smith, R. F. & Konopka, R. J. (1981). Circadian clock phenotypes of chromosome aberrations with a breakpoint at the per locus. Molec. & Gen. Genet. 183, 243251.CrossRefGoogle ScholarPubMed
Smith, R. F. & Konopka, R. J. (1982). Effects of dosage alterations at the per locus on the period of the circadian clock of Drosophila. Molec. & Gen. Genet. 185, 3036.CrossRefGoogle Scholar
Søndergaard, L. (1979). Dominant cold paralytic mutations on the X-chromosome of Drosophila melanogaster. Hereditas 90, 93101.CrossRefGoogle Scholar
Søndergaard, L. (1980). Dominant cold paralytic mutations on the autosomes of Drosophila melanogaster. Hereditas 92, 335340.CrossRefGoogle Scholar
Spassky, B. & Dobzhansky, Th. (1950). Comparative genetics of D. willistoni. Heredity 4, 201215.CrossRefGoogle Scholar
Spradling, A. & Pederson, L. (1980). The structure and expression of Drosophila chorion genes. Yb. Carnegie Instn Wash. no. 79, pp. 7378.Google Scholar
Srdic, Z. & Frei, H. (1980). Development capacities of mixed normal and neoplastic l(3)gl imaginal disc and neuroblast tissue in Drosophila hydei. Differentiation 17, 187192.CrossRefGoogle ScholarPubMed
Stark, W. S., Frayer, K. L. & Johnson, M. A. (1979). Photopigment and receptor properties in Drosophila compound eye and ocellar receptors. Biophys. Struct. Mechanism 5, 197209.CrossRefGoogle ScholarPubMed
Stark, W. S. & Koch, W. J. (1980). Properties of the ‘third eye’ of the Drosophila mutant extra eye. In Recent Advances in Vision: Technical Digest, p. ThA12. Washington, D.C.: Optical Society of America.Google Scholar
Stark, W. S., Sullivan, G. B. & Frayer, K. L. (1980). Electrophysiology and microspectrophotometry of the interaction of visual excitation mutants of Drosophila. Invest. Ophthamol. Vis. Sci. 19 (Suppl.), 284.Google Scholar
Stent, G. S. (1980). The genetic approach to developmental neurobiology. Trends Neurosci. 3, 4951.CrossRefGoogle Scholar
Stent, G. S. (1981). Strength and weakness of the genetic approach to the development of the nervous system. A. Rev. Neurosci. 4, 163194.CrossRefGoogle Scholar
Stephenson, R. S. & Pak, W. L. (1980). Heterogenic components of a first electrical potential in Drosophila compound eye and their relation to visual pigment photoconversion. J. gen. Physiol. 75, 353379.CrossRefGoogle Scholar
Stephenson, R. S. & Pak, W. L. (1981). Drosophila visual mutants defective in vitamin A utilization. Invest. Ophthalmol. Vis. Sci. 20 (Suppl.), 112.Google Scholar
Stern, C. (1969). Somatic recombination within the white locus of Drosophila melanogaster. Genetics 62, 573581.CrossRefGoogle ScholarPubMed
Stocker, R. F. (1977). Gustatory stimulation of a homeotic mutant appendage, Antennapedia, in Drosophila melanogaster. J. comp. Physiol. 115, 351361.CrossRefGoogle Scholar
Stocker, R. F. (1979). Fine structure comparison of the antennal nerve in the homeotic mutant Antennapedia with the wild-type antennal and second leg nerves of Drosophila melanogaster. J. Morph. 160, 209222.CrossRefGoogle ScholarPubMed
Stocker, R. F. (1982). Genetically displaced sensory neurons in the head of Drosophila project via different pathways into the same specific brain regions. Submitted to Devl Biol.CrossRefGoogle Scholar
Stocker, R. F. & Lawrence, P. A. (1981). Sensory projections from normal and homeotically transformed antennae in Drosophila. Devl Biol. 82, 224237.CrossRefGoogle Scholar
Stocker, R. F. & Schorderet, M. (1981). Cobalt filling of sensory projections from internal and external mouthparts in Drosophila. Cell & Tiss. Res. 216, 513523.CrossRefGoogle ScholarPubMed
Strausfeld, N. J. (1980). Male and female visual neurones in dipterous insects. Nature, Lond. 283, 381383.CrossRefGoogle Scholar
Strausfeld, N. J. & Singh, R. N. (1980). Peripheral and central nervous system projections in normal and mutant (bithorax) Drosophila melanogaster. In Development and Neurobiology of Drosophila (ed. Siddiqi, O., Babu, P., Hall, L. M. and Hall, J. C.), pp. 267290. New York: Plenum Press.CrossRefGoogle Scholar
Streisinger, G. (1948). Experiments on sexual isolation in Drosophila. IX. Behavior of males with etherized females. Evolution 2, 187188.CrossRefGoogle Scholar
Sturtevant, A. H. (1915). Experiments on sex recognition and the problems of sex selection in Drosophila. J. Anim. Behav. 5, 351366.CrossRefGoogle Scholar
Sturtevant, A. H. (1945). A gene in Drosophila melanogaster that transforms females into males. Genetics 30, 297299.CrossRefGoogle ScholarPubMed
Sturtevant, A. H. & Novitski, E. (1941). The homologies of chromosome elements in the genus Drosophila. Genetics 26, 517541.CrossRefGoogle ScholarPubMed
Struhl, G. (1981). A gene product required for correct initiation of sequential determination in Drosophila. Nature, Lond. 293, 3640.CrossRefGoogle Scholar
Sulston, J. E. & Horvitz, H. R. (1981). Abnormal cell lineages in mutants of the nematode Caenorhabditis elegans. Devl Biol. 82, 4155.CrossRefGoogle ScholarPubMed
Suzuki, D. T., Grigliatti, T. & Williamson, R. (1971). Temperature-sensitive mutations in Drosophila melanogaster. VII. A mutation (parats) causing reversible adult paralysis. Proc. natn. Acad. Sci. U.S.A. 68, 890893.CrossRefGoogle ScholarPubMed
Suzuki, D. T., Kaufman, T. & Falk, D. (1976). Temperature-sensitive mutations in Drosophila melanogaster. In The Genetics and Biology of Drosophila, vol. 1a (ed. Ashburner, M. and Novitski, E.), pp. 208263. London: Academic Press.Google Scholar
Swanson, G. J. & Cosens, D. (1981). A comparative study of specific chromatic adaptation of the wildtype and trp mutant of Drosophila melanogaster. J. Insect. Physiol. 27, 215223.CrossRefGoogle Scholar
Swanson, M. M. & Poodry, C. A. (1980). Pole cell formation in Drosophila melanogaster. Devl Biol. 75, 419430.CrossRefGoogle ScholarPubMed
Sweeny, B. M. & Prézelin, B. B. (1978). Circadian rhythms. Photochem. & Photobiol. 27, 841847.CrossRefGoogle Scholar
Szabad, J. & Fajszi, C. (1982). Control of female reproduction in Drosophila: genetic dissection using gynandromorphs. Genetics. 100, 6178.CrossRefGoogle ScholarPubMed
Takamura, T. & Watanabe, T. K. (1980). Further studies of the lethal hybrid rescue (Lhr) gene of Drosophila simulans. Jap. J. Genet. 55, 405408.CrossRefGoogle Scholar
Tanaka, Y. (1953). Genetics of the silkworm Bombyx mori. Adv. Genet. 5, 240313.Google Scholar
Tanimura, T., Isono, K. & Kikuchi, T. (1978). Partial ‘sweet taste blindness’ and configurational rearrangement of stimulants in a Drosophila mutant. Jap. J. Genet. 53, 7173.CrossRefGoogle Scholar
Tanimura, T., Kitamura, K., Fukada, T. & Kikuchi, T. (1979). Purification and partical characterization of three forms of α-glucosidase from the fruit fly Drosophila melanogaster. J. Biochem. 85, 123130.CrossRefGoogle Scholar
Tanimura, T. & Shimada, I. (1981). Multiple receptor proteins for sweet taste in Drosophila discriminated by papain treatment. J. comp. Physiol. 141, 265269.CrossRefGoogle Scholar
Tanouye, M. A., Ferrús, A. & Fugita, S. C. (1981). Abnormal action potentials associated with the Shaker complex locus of Drosophila. Proc. natn. Acad. Sci. U.S.A. 78, 65486552.CrossRefGoogle ScholarPubMed
Tanouye, M. A. & Wyman, R. J. (1980). Motor outputs of giant nerve fiber in Drosophila. J. Neurophysiol. 44, 405421.CrossRefGoogle ScholarPubMed
Tazima, Y. (1964). The Genetics of the Silkworm Moth. New York: Academic Press.Google Scholar
Technau, G. & Heisenberg, M. (1982). Neural reorganization during metamorphosis of the corpora pedunculata in Drosophila melanogaster Nature, Lond. 295, 405407.CrossRefGoogle ScholarPubMed
Tempel, B. T., Dawson, D. R. & Quinn, W. G. (1982). Reward learning in normal and mutant Drosophila. Submitted to J. comp. Physiol.Google Scholar
Tempel, B. T. & Livingstone, M. S. (1981). A mutation in Drosophila that reduces dopamine and serotonin synthesis abolishes associative learning. Neurosci. Abstr. 7, 351.Google Scholar
Teugels, E. & Ghysen, A. (1981). Two mechanisms for the establishment of sensory projections in Drosophila. Submitted for publication.Google Scholar
Thesleff, S. (1980). Animopyridines and synaptic transmission. Neuroscience 5, 14131419.CrossRefGoogle ScholarPubMed
Thomas, J. B. (1980). Mutations affecting the giant fiber system of Drosophila. Neursci. Abstr. 6, 742.Google Scholar
Thomas, J. B. & Wyman, R. J. (1982). A mutation in Drosophila alters normal connectivity between two identified neurones. Nature, Lond. 298, 650651.CrossRefGoogle ScholarPubMed
Thompson, S. S. (1977). hk 73: hyperkinetic-73. Drosoph. Inf. Serv. 52, 2.Google Scholar
Thörig, G. E. W., Heinstra, P. W. H. & Scharloo, W. (1981). The action of the Notch locus in Drosophila melanogaster. Molec. & Gen. Genet. 182, 3138.CrossRefGoogle ScholarPubMed
Tompkins, L. (1979). Developmental analysis of two mutations affecting chemotactic behavior in Drosophila melanogaster. Devl Biol. 73, 174177.CrossRefGoogle ScholarPubMed
Tompkins, L., Cardosa, M. J., White, F. V. & Sanders, T. G. (1979). Isolation and analysis of chemosensory behavior mutants in Drosophila melanogaster. Proc. natn. Acad. Sci. U.S.A. 76, 884886.CrossRefGoogle ScholarPubMed
Tompkins, L., Hall, J. C. & Hall, L. M. (1980). Courtship-stimulating volatile compounds from normal and mutant Drosophila. J. Insect Physiol. 26, 689697.CrossRefGoogle Scholar
Tompkins, L. & Hall, J. C. (1981 a). The different effects on courtship of volatile compounds from mated and virgin Drosophila females. J. Insect Physiol. 27, 1721.CrossRefGoogle Scholar
Tompkins, L., Gross, A. C., Hall, J. C., Gailey, D. A. & Siegel, R. W. (1982). The role of female movement in the sexual behavior of Drosophila melanogaster. Behav. Genet. 12, 295307.CrossRefGoogle ScholarPubMed
Tompkins, L. & Hall, J. C. (1981 b). Drosophila males produce a pheromone which inhibits courtship. Z. Naturf. 36c, 694696.CrossRefGoogle Scholar
Trout, W. E. III & Kaplan, W. D. (1970). A relationship between longevity, metabolic rate, and activity in shaker mutants of Drosophila melanogaster. Exp. Gerontol. 5, 8393.CrossRefGoogle Scholar
Trout, W. E. III & Kaplan, W. D. (1973). Genetic manipulation of motor output in shaker mutants of Drosophila. J. Neurobiol. 4, 495512.CrossRefGoogle ScholarPubMed
Trout, W. E. & Kaplan, W. D. (1981). Mosaic mapping of foci associated with longevity in neurological mutants of Drosophila melanogaster. Genetics 97, S105.Google Scholar
Truman, J. W. (1976). Extraretinal photoreception in insects. Photochem. & Photobiol. 23, 215225.CrossRefGoogle ScholarPubMed
Uzzan, A. & Dudai, Y. (1982). Aminergic receptors in Drosophila melanogaster: responsiveness of adenylate cyclase to putative neurotransmitters. J. Neurochem. 38, 15421550.CrossRefGoogle ScholarPubMed
Vandervorst, P. & Ghysen, A. (1980). Genetic control of sensory connections in Drosophila. Nature, Lond. 286, 6567.CrossRefGoogle ScholarPubMed
Venard, R. (1980). Attractants in the courtship behavior of Drosophila melanogaster. In Development and Neurobiology of Drosophila (ed. Siddiqi, O., Babu, P., Hall, L. M. and Hall, J. C.), pp. 457465. New York: Plenum Press.CrossRefGoogle Scholar
Venard, R. & Jallon, J.-M. (1980). Evidence for an aphrodisiac pheromone of female Drosophila. Experientia 36, 211213.CrossRefGoogle Scholar
Voelker, R. A., Langley, C. H., Brown, A. J. L., Unishi, S., Dickson, B., Montgomery, E. & Smith, S. C. (1980). Enzyme null alleles in natural populations of Drosophila melanogaster. Proc. natn. Acad. Sci. U.S.A. 77, 10901–1095.CrossRefGoogle ScholarPubMed
Wadephul, M. & Huber, R. (1979). Elicitation of singing and courtship movements by electrical stimulation of the brain. Naturwissenschaften 66, 320322.CrossRefGoogle Scholar
Wakimoto, B. T. & Kaufman, T. C. (1981). Analysis of larval segmentation in lethal genotypes associated with the Antennapedia gene complex in Drosophila melanogaster. Devl Biol. 81, 5164.CrossRefGoogle ScholarPubMed
Wehner, R., Gartenmann, G. & Jungi, T. (1969). Contrast perception in eye color mutants of Drosophila melanogaster and Drosophila simulans. J. Insect Physiol. 15, 815823.CrossRefGoogle Scholar
Wehrhahn, C. (1979). Sex specific differences in the chasing behavior of free-flying houseflies (Musca). Biol. Cybern. 32, 239241.CrossRefGoogle Scholar
Weiss, P. A. (1955). Nervous system (neurogenesis). In Analysis of Development (ed. Willier, B. H., Weiss, P. A. and Hamburger, V.), pp. 346401. New York: Hafner.Google Scholar
Weiztel, G. & Rensing, L. (1981). Evidence for cellular circadian rhythms in isolated fluorescent dye-labelled salivary glands of wild type and an arrhythmic mutant of Drosophila melanogaster. J. comp. Physiol. 143, 229235.Google Scholar
West, G. J. & Catterall, W. A. (1979). Variant neuroblastoma clones with missing or altered sodium channels. Proc. natn. Acad. Sci. U.S.A. 76, 41364140.CrossRefGoogle ScholarPubMed
White, K. (1980). Defective neural development in Drosophila melanogaster embryos deficient for the tip of the X chromosome. Devl Biol. 80, 332344.CrossRefGoogle ScholarPubMed
White, K. (1982). Imaginal neural development in an imaginal disc mutant of Drosophila melanogster. Devl Genet. (In the Press.)CrossRefGoogle Scholar
Wieschaus, E. (1980). A combined genetic and mosaic approach to the study of oogenesis in Drosophila. In Development and Neurobiology of Drosophila (ed. Siddiqi, O., Babu, P., Hall, L. M. and Hall, J. C.), pp. 8594. New York: Plenum Press.CrossRefGoogle Scholar
Wilcock, J. (1969). Gene action and behavior: an evaluation of major gene phiotropism. Psychol. Bull. 72, 129.CrossRefGoogle Scholar
Williams, J. M. (1981). Tumorigenesis in Drosophila melanogaster bearing the temperature-sensitive mutation shibiretsl. Drosoph. Inf. Serv. 56, 158161.Google Scholar
Williamson, R. (1979). Lithium stops hereditary shuddering in Drosophila melanogaster. Psychopharmacology 76, 265268.CrossRefGoogle Scholar
Williamson, R., Kaplan, W. D. & Dagan, D. (1974). A fly's leap from paralysis. Nature, Lond. 252, 224226.CrossRefGoogle ScholarPubMed
Wolf, B., Gebhardt, B., Gademann, R. & Heisenberg, M. (1980). Polarization sensitivity of course control in Drosophila melanogaster. J. comp. Physiol. 139, 177191.CrossRefGoogle Scholar
Wood, D. & Ringo, J. M. (1980). Male mating discrimination of Drosophila melanogaster, Drosophila simulans and their hybrids. Evolution 34, 320329.CrossRefGoogle ScholarPubMed
Wright, T. R. F. (1970). The genetics of embryogenesis in Drosophila. Adv. Genet. 15, 261395.CrossRefGoogle ScholarPubMed
Wright, T. R. F. (1977). The genetics of dopa decarboxylase and α-methyl dopa sensitivity in Drosophila melanogaster. Am. Zool. 17, 707721.CrossRefGoogle Scholar
Wright, T. R. F., Beermann, W., Marsh, J. L., Bishop, C. P., Steward, R., Black, B. C., Tomsett, A. D. & Wright, E. Y. (1981 a). The genetics of dopa decarboxylase in Drosophila melanogaster. IV. The genetics and cytology of the 37B10–37D1 region. Chromosoma 83, 4558.CrossRefGoogle ScholarPubMed
Wright, T. R. F. & Bentley, K. W. (1979). The effects of a temperature sensitive dopa decarboxylase deficient allele on female sterility in Drosophila. Genetics 94, s139–s140.Google Scholar
Wright, T. R. F., Steward, R., Bentley, K. W. & Adler, P. N. (1981 b). The genetics of dopa decarboxylase in Drosophila melanogaster. III. Effects of a temperature sensitive dopa decarboxylase deficient mutation on female fertility. Devl Genet. 2, 223235.CrossRefGoogle Scholar
Wu, C.-F. & Ganetzky, B. (1980). Genetic alteration of nerve membrane excitability in temperature-sensitive paralytic mutants of Drosophila melanogaster. Nature, Lond. 286, 814816.CrossRefGoogle ScholarPubMed
Wu, C.-F., Ganetzky, B., Jan, L. Y., Jan, Y.-N. & Benzer, S. (1978). A Drosophila mutant with a temperature-sensitive block in nerve conduction. Proc. natn. Acad. Sci. U.S.A. 75, 40474051.CrossRefGoogle ScholarPubMed
Wu, C.-F. & Wong, F. (1977). Frequency characteristics in the visual system of Drosophila: genetic dissection ofelectroretinogram components. J. gen. Physiol. 69, 705724.CrossRefGoogle ScholarPubMed
Young, M. W. & Judd, B. H. (1978). Nonessential sequences, genes, and the polytene chromosome bands of Drosophila melanogaster. Genetics 88, 723742.CrossRefGoogle ScholarPubMed
Zhimulev, I. F., Belyaeva, E. S., Polkolkova, G. V., Kotchneva, G. V., Fomina, O. V., Bgatov, A. V., Khudyakov, J. U., Patzevich, I., Semeshin, V. F., Britcheva, E. M., Aizenzon, M. G., Kramers, P. & Eeken, J. (1981). Report of newmutants. Drosoph. Inf. Serv. 56, 192196.Google Scholar
Zingde, S. & Krishnan, K. S. (1980). The acetylcholinesterase from Drosophila melanogaster. In Development and Neurobiology of Drosophila (ed. Siddiqi, O., Babu, P., Hall, L. M. and Hall, J. C.), pp. 305311. New York: Plenum Press.CrossRefGoogle Scholar
Zuidervaart, H., Stavenga, D. G., Stark, W. S. & Bernard, G. D. (1979). Pupillary responses revealing receptor characteristics in wild-type and mutant Drosophila. Neurosci. Abstr. 5, 814.Google Scholar