Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2025-01-05T15:31:39.318Z Has data issue: false hasContentIssue false

Genes, pollutants and human diseases

Published online by Cambridge University Press:  17 March 2009

James E. Trosko
Affiliation:
Department of Human Development, College of Human Medicine, Michigan State University, E. Lansing, Michigan 48824
Chia-Cheng Chang
Affiliation:
Department of Human Development, College of Human Medicine, Michigan State University, E. Lansing, Michigan 48824

Extract

The use of traditional Western concepts of disease (i.e. the ‘germ’ theory) has guided the use of scientific knowledge and technologies in the Control of acute infectious diseases (Gori & Peters, 1975; Trosko & Chang, 1978c). The intervention of all sorts of technologies has prolonged the life expectancy, allowing more people to reach the limit of what appears to be a rather fixed life-span (Hayflick, 1976). At the same time, human beings have used technologies to alter out dependence on the natural enviroment We intervene on many levels to minimize threats to our dependence on natural forces for food (e.g. agricultural technology, food additives), for water (e.g. wells or dams), for health (e.g. instituting sanitary measures or using drugs), for protection against the elements (e.g. wearing clothes, building homes with heaters and air conditioners) and for pleasure (e.g. snowmobiles, etc.). It is now extremely clear that much of the ‘effluents of our technological affluence’ can be harmful to living systems.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1978

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Beavo, J. A., Rogers, N. L., Crofford, O. B., Hardman, J. G., Sutherland, E. W. & Newman, E. V. (1970). Effects of xanthine derivatives on lipolysis and adenosine 3′,5′-monophosphate phosphodiesterase activity. J. Mol. Pharmacol. 6, 597603.Google ScholarPubMed
Beikirch, H. (1977) Induction of unscheduled DNA synthesis by chemical mutagens in testicular cells of the mouse in vitro. Arch. Tox. 37, 195201.CrossRefGoogle ScholarPubMed
Belman, S. & Troll, W. (1972). The inhibition of croton oil-promoted mouse skin tumorigenesis by steroid hormones. Cancer Res. 32, 450454.Google ScholarPubMed
Belman, S. & Troll, W. (1974). Phorbol-12-myristate-13-acetate effect on cyclic adenosine 3′,5′-monophosphate levels in mouse skin and inhibition of phorbol-myristate-acetate-promoted tumorigenesis. Cancer Res. 34, 34463455.Google ScholarPubMed
Benditt, E. P. (1977). The origin of atherosclerosis. Scient. Am. 236, 7485.CrossRefGoogle ScholarPubMed
Boutwell, R. (1974). The function and mechanism of promoters of carcinogenesis. CRC Critical Rev. Toxicol. 2, 419443.CrossRefGoogle ScholarPubMed
Brody, H. (1973). A systems view of man: Implications for medicine, science and ethics. Perspect. Biol. Med. 17, 7192.CrossRefGoogle ScholarPubMed
Burnet, F. M. (1974 a). The biology of cancer. Chromosomes and Cancer (ed. German, J.), pp. 2138. New York: John Wiley.Google Scholar
Burnet, F. M. (1974 b). Intrinsic mutagenesis, an interpretation of the pathogenesis of xeroderma pigmentosum. Lancet ii, 495498.CrossRefGoogle Scholar
Cairns, J. (1975). Mutation, selection and natural history of cancer. Nature, Lond. 255, 197200.CrossRefGoogle ScholarPubMed
Chang, C. C., Philipps, C., Trosko, J. E. & Hart, R. W. (1977). Mutagenic and epigenetic influence of caffeine on the frequencies of UV-induced ouabain-resistance Chinese hamster cells. Mutation Res. 45, 125136.CrossRefGoogle Scholar
Chang, C. C., Trosko, J. E. & Warren, S. (1978). In vitro assay for tumour promoters and anti-promoters. J. Environ. Pathol. Toxicol. 2, 4364.Google ScholarPubMed
Cho-Chung, Y. S. & Gullino, P. M. (1974). In vivo inhibition of growth of two hormone-dependent mammary tumors by dibutyryl cyclic AMP. Science, N.Y. 183, 8788.CrossRefGoogle ScholarPubMed
Cho-Chung, Y. S. & Redler, R. (1977). Dibutyryl cyclic AMP mimics ovarietomy: nuclear protein phosphorylation in mammary tumor regression. Science, N.Y. 197, 272275.CrossRefGoogle Scholar
Chopra, D. P. & Wilkoff, L. J. (1977) β-retinoic acid inhibits and reverses testosterone-induced hyperplasia in mouse prostate organ cultures. Nature, Lond. 265, 339341.CrossRefGoogle ScholarPubMed
Cleaver, J. E. (1973). Xeroderma pigmentosum, DNA repair and carcinogenesis. Current Research in Oncology (eds. Anfinsen, C. B. and Potter, M.), pp. 1543. New York: Academic Press.Google Scholar
Cleaver, J. E. & Painter, R. B. (1975). Absence of specificity in inhibition of DNA repair replication by DNA-binding agents. Co-carcinogens and steroids in human cells. Cancer Res. 35, 17731778.Google Scholar
Copeland, D. D. (1977). Concepts of disease and diagnosis. Perspect Biol. Med. 20, 528538.CrossRefGoogle ScholarPubMed
Cotzias, G. L. & Tang, L. C. (1977). An adenylate cyclase of brain reflects propensity for breast cancer in mice. Science, N.Y. 197, 10941096.CrossRefGoogle ScholarPubMed
Cutler, R. G. (1975). Evolution of human longevity and the genetic complexity governing ageing rate. Proc. natn. Acad. Sci. U.S.A. 72, 46644668.CrossRefGoogle Scholar
Dixon-shanies, D. & Knittle, J. L. (1976). Effect of hormones on cyclic AMP levels in cultured human cells. Biochem. biophys. Res. Comm. 69, 982987.CrossRefGoogle Scholar
Donovan, P. J. & DiPaolo, J. (1974). Caffeine enhancement of chemical carcinogen-induced transformation of cultured Syrian hamster cells. Cancer Res. 34, 27302737.Google ScholarPubMed
Dubos, R. (1978). Health and creative adaptation. Human Nature 1, 7482.Google Scholar
Engel, G. L. (1977). The need for a new medical model: A challenge for biomedicine. Science, N.Y. 196, 129136.CrossRefGoogle Scholar
Epstein, J., Williams, J. R. & Little, J. (1973). Deficient DNA repair in human progeroid cells. Proc. natn. Acad. Sci. U.S.A. 170, 977981.CrossRefGoogle Scholar
Epstein, S. S. (1974). Environmental determinants of human cancer. Cancer Res. 34, 24252435.Google ScholarPubMed
Estensen, R. D., Hadden, J. W., Hadden, E. M., Touraine, F., Touraine, J. L., Haddox, M. K. & Goldberg, N. D. (1974) Phorbol myristate acetate: Effects of a tumor promoter on intracellular c-GMP in mouse fibroblasts and as a mutagen on human lymphocytes. Control of Pro-liferation in Animal Cells (eds.Clarkson, B. and Baserga, R.), pp. 627635. New York: Cold Spring Harbor Press.Google Scholar
Fialkow, P. J. (1977). Clonal origin and stem cell evolution of human tumour Genetics of Human Cancer (ed. Mulvihill, J. J., Miller, A. W. and Fraumeni, J. F.), pp. 439453. New York: Raven Press.Google Scholar
Freeman, R. G. & Knox, J. M. (1967). Skin cancer and the sun. CA, A Cancer J. for Clinicians. 17, 231238.CrossRefGoogle ScholarPubMed
Fujiwara, Y. & Tatsumi, M. (1975), Repair of mitomycin C damage to DNA in mammalian cells and its impairment in Fanconi's anemia cells. Biochem. biophys. Res. Commun. 66, 592598.CrossRefGoogle ScholarPubMed
Gatti, R. A. & Good, R. A. (1971). Occurrence of malignancy in immunodeficiency diseases: A literature review. Cancer 28, 8998.3.0.CO;2-Q>CrossRefGoogle ScholarPubMed
Goerttler, K. & Loehrke, H. (1976). Diaplacental carcinogenesis: Initiation with the carcinogens dimethylbenzanthracene (DMBA) and urethane during fetal life and postnatal promotion with the phorbol ester TPA in a modified 2-stage Berenblum/Mottram experiment. Virchows Arch. path. Anat. Physiol. 372, 2938.CrossRefGoogle Scholar
Goldberg, M. L. (1975). Cyclic AMP mediates the activity of steroid hormones. Med. Hypotheses. 1, 69.CrossRefGoogle ScholarPubMed
Goodman, J., Trosko, J. E. & Yager, J. D. (1976). Studies on the mechanism of inhibition of 2-acetylaminofluorene toxicity by butylated hydroxytoluene. Chem.-Biol. Inter. 12, 171182.CrossRefGoogle ScholarPubMed
Gori, G. B. & Peters, J. A. (1975). Etiology and prevention of cancer. Preventive Med. 4, 239246.CrossRefGoogle ScholarPubMed
Goto, M., Kimura, T., Sato, H., Suzuki, S. & Suzuki, M. (1977). Altered growth behaviour and phenotypic expression of cells of mouse and hamster cell lines after treatment with polyanions. Tokoku J. exp. Med. 121, 143148.CrossRefGoogle ScholarPubMed
Hakama, M. (1971). Epidemiologic evidence for multi-stage theory of carcinogenesis. Int. J. Cancer 7, 557564.CrossRefGoogle ScholarPubMed
Harris, R. J. C. (1970). Cancer and the environment. Int. J. Environ. Stud. 1, 5965.CrossRefGoogle Scholar
Hayflick, L. (1976). The cell biology of human aging. New Engl.J. Med. 295, 13021308.CrossRefGoogle ScholarPubMed
Hicks, R. M. & Chowaniew, J. (1977). The importance of synergy between weak carcinogens in the induction of bladder cancer in experimental animals and humans. Cancer Res. 37, 29432949.Google Scholar
Huberman, E. & Sachs, L. (1976). Mutability of different genetic loci in mammalian cells by metabolically activated carcinogenic polycyclic hydrocarbons. Proc. natn. Acad. Sci. U.S.A. 73, 188197.CrossRefGoogle ScholarPubMed
Ide, T., Anzai, K. & Andoh, T. (1975). Enhancement of SV40 transformation by treatment of C3H2K cells with UV light and caffeine. Virology 66, 568578.CrossRefGoogle ScholarPubMed
Kennedy, A. R., Mondal, S., Heidelberger, C. & Little, J. B. (1978) Enhancement of X-ray transformation by 1 2-o-tetradecanoyl-phorboi-13-acetate in a cloned line of C3H mouse embryo cells. Cancer Res. 38, 439443.Google Scholar
Kersey, J. H & Spector, B. D. (1975). Immune deficiency diseases. Persons at High Risk of Cancer (ed. Joseph, E. Fraumeni), pp. 5567. New York: Academic Press.Google Scholar
Knudson, A. G. Jr. (1975). Mutation and childhood cancer: A probabilistic model for the incidence of retinoblastoma, Proc. natn. Acad. Sci. U.S.A. 72, 51165120.CrossRefGoogle Scholar
Knudson, A. G. Jr. (1977). Genetics and etiology of human cancer. Adv. Hum. Genet., N.Y. 8, 166.Google ScholarPubMed
Kondo, S. (1973). Evidence that mutations are induced by errors in repair and replication. Genetics 73, 109122.Google ScholarPubMed
Lankas, G. R., Baxter, C. S. & Christian, R. T. (1977). Effect of tumor-promoting agents on chemically-induced mutagenesis in cultured V79 Chinese hamster cells. Mutation Res. 45, 153156.CrossRefGoogle Scholar
Lasne, C., Gentil, A. & Chouroulinkov, I. (1974). Two stage malignant transformation of rat fibroblasts in tissue culture. Nature, Lond. 247, 490491.CrossRefGoogle ScholarPubMed
Lee, T. P. & Reed, C. E. (1977) Effects of steroids on the regulation of the levels of cyclic AMP in human lymphocytes. Biochem. biophys. Res. Comm. 78, 9981004.CrossRefGoogle ScholarPubMed
Lehmann, A. R. (1974). Postreplication repair of DNA in mammalian cells. Life Sci. 15, 20052016.CrossRefGoogle ScholarPubMed
Lynch, H. T., Frichot, B. C. & Lynch, J. F. (1977). Cancer control in xeroderma pigmentosum. Arch. Derm. Syph. 113, 193195.CrossRefGoogle ScholarPubMed
Lynch, H. T., Guirgis, H., Lynch, P., Lynch, J. & Harris, R. (1977). Familial cancer syndromes: A survey. Cancer 39, 18671868.3.0.CO;2-Q>CrossRefGoogle ScholarPubMed
Lynch, H. T. & Kaplan, A. R. (1974). Cancer genetic problems: Host-environmental considerations. Immunol. Cancer Prog. exp. Tumor Res. 19, 332335.Google ScholarPubMed
Maher, V. M. & McCormick, J. J. (1976). Biology of Radiation Carcinogenesis (ed. Yuhas, J. M., Tennant, R. W. and Regan, J. E.), pp. 129145. New York: Raven Press.Google Scholar
Maher, V. M., Ouellotte, L. M., Curren, R. D. & McCormick, J. J. (1976). Caffeine enhancement of the cytotoxic and mutagenic effect of ultraviolet irradiation in a xeroderma pigmentosum variant strain of human cells. Biochem. biophys. Res. Comm. 71, 228234.CrossRefGoogle Scholar
Masui, Y. & Pederson, R. A. (1975) Ultraviolet light-induced unscheduled DNA synthesis in mouse oocytes during meiotic maturation. Nature, Lond. 257, 705706.CrossRefGoogle ScholarPubMed
McCann, J. & Ames, B. N. (1975). Detection of carcinogens as mutagens in the Salmonella/microsome test: Discussion. Proc. natn. Sci. Acad. U.S.A. 73, 950954.CrossRefGoogle Scholar
Mondal, S., Brankow, D. W. & Heidelberger, C. (1976). Two-stage chemical oncogenesis in cultures of C3H/10T 1/a cells. Cancer Res. 36, 22542260.Google Scholar
Mondal, S. & Heidelberger, C. (1976). Transformation of C3H/10T 1/2 CL 8 mouse embryo fibroblasts by ultraviolet irradiation and a phorbol ester. Nature, Lond. 260, 710711.CrossRefGoogle Scholar
Moon, R. C., Brubbs, C. V., Sporn, M. B. & Goodman, D. G. (1977). Retinyl acetate inhibits mammary carcinogenesis induced by N-methyl N-nitrosourea. Nature, Lond. 267, 620621.CrossRefGoogle ScholarPubMed
Mott, D. M., Fabisch, P. & Sorof, S. (1976). Cyclic AMP phosphodiesterase inhibitors depress production of plasminogen activator by Chinese hamster ovary cells. Biochem. biophys. Res. Comm. 70, 11501156.CrossRefGoogle ScholarPubMed
Mufson, R. A., Astrup, E. G., Simsiman, R. & Boutwell, R. K. (1977). Disassociation of increases in the level of 3′:5′-cyclic AMP and 3′:5′- cyclic GMP from induction of ornithine decarboxylase by the tumor promoter, 12–0-tetradecanoyl phorbol-13-acetate in mouse epidermis in vivo. Proc. natn. Acad. Sci. U.S.A. 74, 657661.CrossRefGoogle Scholar
Mulvihill, J. J. (1975) Congenital and genetic diseases. Persons at High Risk of Cancer (ed. Fraumeni, J. F. Jr.), pp. 337. New York: Academic Press.Google Scholar
Nagao, M. (1977). Joint Conf. US–Japan Environmental Mutagenic and Carcinogenesis Workshop, Williamsburg, VA., 10. 2426, 1977.Google Scholar
Nagao, M., Yahagi, T., Kawachi, T., Sugimura, T., Kosuge, T., Tsuji, K., Wakabayashi, K., Mizusaki, S. & Matsumoto, T. (1977). Co-mutagenic action of norharman and harman. Proc. Japan Acad. 53, 9598.CrossRefGoogle Scholar
Nomura, T. (1976). Diminuation of tumorigenesis initiated by 4-nitro-quinoline-i-oxide by posttreatment with caffeine in mice. Nature, Lond. 260, 547549.CrossRefGoogle Scholar
Nowell, P. C. (1976). The clonal evolution of tumor cell populations. Science, N.Y. 194, 2328.CrossRefGoogle ScholarPubMed
O'Brien, T. G., Simsiman, R. C. & Boutwell, R. K. (1975). Induction of the polyamine-biosynthetic enzymes in mouse epidermis by tumor-promoting agents. Cancer Res. 35, 16621670.Google ScholarPubMed
Okuda, T., Vesell, E. S., Plotkin, E., Tarone, R., Bast, R. C. & Gelboin, H. V. (1977). Interindividual and intraindividual variations in aryl hydrocarbon hydroxylase in monocytes from monozygotic and dizygotic twins. Cancer Res. 37, 39043911.Google ScholarPubMed
Paigen, B., Gurtoo, H., Minowada, J., Houton, L., Vincent, R., Paigen, K., Parker, N., Ward, E. & Hayner, N. (1977). Questionable relation of aryl hydrocarbon hydroxylase to lung cancer risk. New Engl. J. Med. 297, 346350.CrossRefGoogle ScholarPubMed
Paterson, M. C., Smith, B. P., Lohman, P. H. M., Anderson, A. K. & Fishman, L. (1976). Defective excision repair of X-ray-damaged DNA in human (ataxia telangiectasia) fibroblasts. Nature, Lond. 26, 444447.CrossRefGoogle Scholar
Penn, I. (1974). Occurrence of cancer in immune deficiences. Cancer 34, 858866.3.0.CO;2-1>CrossRefGoogle Scholar
Periano, C., Fry, R. J. M., Staffeldt, E. & Christopher, J. P. (1975). Comparative enhancing effects of phenobarbital, Amobarbital, diphenylhydantoin, and dichloro-diphenyltrichloro-ethane on 2-acetylaminofluorene-induced hepatic tumorigenesis in the rat. Cancer Res. 35, 28842890.Google Scholar
Periano, C., Fry, R. J. M., Staffeldt, E. & Christopher, J. P. (1977). Enhancing effects of phenobarbital and butylated hydroxytoluene on 2-acetylaminofluorene-induced hepatic tumorigenesis in the rat. Fed. Cosmet. Toxicol. 15, 9396.CrossRefGoogle Scholar
Poirier, M. C., DeCicco, B. T. & Lieberman, M. W. (1975). Nonspecific inhibition of DNA repair synthesis by tumor promoters in human diploid fibroblasts damaged with N-acetoxy-2-acetylaminofluorene. Cancer Res. 35, 13921397.Google ScholarPubMed
Poon, P. K., O'Brien, R. L. & Parker, J. N. (1974). Defective DNA repair in Fanconi's anaemia. Nature, Lond. 250, 223225.CrossRefGoogle ScholarPubMed
Potter, V. R. (1978). Hormone induction of enzyme functions, cyclic AMP levels and AIB transport in Morris hepatomas and in normal liver systems. Morris Hepatomas: Mechanism.s of Regulation (eds. Morris, H. P., and Criss, W. E.), pp. 5987. New York: Plenum Press.CrossRefGoogle Scholar
Rabkin, J. G. & Struening, E. L. (1976). Life events, stress and illness. Science, N.Y. 194, 10131020.CrossRefGoogle ScholarPubMed
Rrinbow, A. J. & Howes, M. (1977). Decreased repair of gamma ray damaged DNA in progeria. Biochem. biophys. Res. Comm. 74, 714719.CrossRefGoogle Scholar
Robbins, J. H. (1974). Xeroderma pigmentosum: An inherited disease with sun sensitivity, multiple cutaneous neoplasma, and abnormal DNA repair. Ann. intern. Med. 80, 221248.CrossRefGoogle Scholar
Rothwell, K. (1974). Dose related inhibition of chemical carcinogenesis in mouse skin by caffeine. Nature, Lond. 252, 6970.CrossRefGoogle ScholarPubMed
Sasaki, M. S. (1973) DNA repair capacity and susceptibility to chromosome breakage in xeroderma pigmentosum cells. Mutation Res. 20, 291293.CrossRefGoogle ScholarPubMed
Schmickel, R. D., Chu, E. H. Y., Trosko, J. E. & Chang, C. C. (1977). Cockayne syndrome: A cellular sensitivity to ultraviolet light. Pediatrics 60, 135139.CrossRefGoogle ScholarPubMed
Schwartz, A. G. & Perantoni, A. (1975) Protective effect of dehydroepiandrosterone against aflatoxin B, and 7,1 2-dimethylbenz(a)anthraceneinduced cytotoxicity and transformation in cultured cells. Cancer Res. 35, 24822487.Google Scholar
Sega, G. A. (1974). Unscheduled DNA synthesis in the germ cells of male mice exposed in vivo to the chemical mutagen ethyl methane-sulfonate. Proc. natn. Acad. Sci. U.S.A. 71, 49554959.CrossRefGoogle Scholar
Segaloff, A. (1975). Steroids and carcinogenesis. J. Steroid Biochem. 6, 171175j.CrossRefGoogle ScholarPubMed
Setlow, R. B. (1974). The wavelengths in sunlight effective in producing skin cancer: A theoretical analysis. Proc. natn. Acad. Sd. U.S.A. 71, 33633366.CrossRefGoogle ScholarPubMed
Sporn, M. B., Dunlop, N. M., Newton, D. C. & Smith, J. M. (1976). Prevention of chemical carcinogenesis by vitamin A and its synthetic analogs (retinoids). Fed. Proc. Fedn. Am. Socs exp. Biol. 35, 13321338.Google ScholarPubMed
Strong, L. C. (1977). Genetic and environmental interactions. Cancer 40, 18611866.3.0.CO;2-9>CrossRefGoogle ScholarPubMed
Swenberg, J. A., Petzold, G. L. & Harbach, P. R. (1976). In vitro DNA damage/alkaline elution assay for predicting carcinogenic potential. Biochem. biophys. Res. Comm. 72, 732738.CrossRefGoogle ScholarPubMed
Takebe, H., Miki, Y., Kozuka, T., Furuyama, J. I., Tanaka, K., Saski, M. S., Fujiwara, Y. & Akiba, H. (1977). DNA repair characteristics and skin cancers of xeroderma pigmentosum patients in Japan. Cancer Res. 37, 490495.Google ScholarPubMed
Temin, H. M. (1974). On the origin of the genes for neoplasia. Cancer Res. 34, 28352841.Google ScholarPubMed
Thorgeirsson, S. S. & Nebert, D. W. (1977). The Ah Locus and the metabolism of chemical carcinogens and other foreign compounds. Adv. Cancer Res. 25, 149193.CrossRefGoogle Scholar
Trosko, J. E. & Chang, C. C. (1976). Role of DNA repair in mutation and cancer production. In Aging, Carcinogenesis and Radiation Biology (ed. Smith, K. C.), pp. 399444. New York: Plenum Press.CrossRefGoogle Scholar
Trosko, J. E. & Chang, C. C. (1978 a). The role of mutagenesis in carcinogenesis. In Photochemical and Photobiological Reviews, (ed. Smith, K. C.), pp. 135162. New York: Plenum Press.CrossRefGoogle Scholar
Trosko, J. E. & Chang, C. C. (1978 b). Chemical carcinogenesis as a consequence of alterations in the structure andfunction of DNA. Chemical Carcinogens and DNA (ed. Grover, P. L.), Cleveland: CRC Press. (In the Press.)Google Scholar
Trosko, J. E. & Chang, C. C. (1978 c). Environmental carcinogenesis: an integrative model. Q. Rev. Biol. 53, 115141.CrossRefGoogle ScholarPubMed
Trosko, J. E., Chang, C. C. & Glover, T. (1977 a). Analysis of experimental evidence of the relation between mutagenesis and carcinogenesis: Role of DNA repair in carcinogenesis. Mécanismes D'Alteration et de Reparation du DNA, Relations avec la Mutagénèse et la Cancerogenese Chimique (ed. Daudel, P.), pp. 353388. Paris: Centre National de Ia Recherche Scientifique.Google Scholar
Trosko, J. E., Chang, C. C., Yotti, L. P. & Chu, E. H. Y. (1977 b). Effect of phorbol myristate acetate on the recovery of spontaneous and ultraviolet light-induced 6-thioguanine and ouabain-resistant Chinese hamster cells. Cancer Res. 37, 188193.Google ScholarPubMed
Trosko, J. E. & Chu, E. H. Y. (1975). The role of DNA repair and somatic mutation in carcinogenesis. In Advances in Cancer Research (ed. Klein, G., Weinhouse, S. and Haddow, A.), pp. 391425. New York: Academic Press.Google Scholar
Trosko, J. E. & Hart, R. W. (1976). DNA mutation frequencies in mammals. Interdiscipl. Topics Geront. 9, 168197.CrossRefGoogle Scholar
Trosko, J. E., Isoun, M. & Kraus, D. (1970). Sunlight-induced pyrimidine dimers in human cells in vitro. Nature, Lond. 228, 358359.CrossRefGoogle ScholarPubMed
Trosko, J. E., Yager, J. D., Bowden, G. T. & Butcher, F. R. (1975). The effects of several croton oil constituents on two types of DNA repair and cyclic nucleotide levels in mammalian cells in vitro. Chem. -Biol. Interactions 11, 191205.CrossRefGoogle ScholarPubMed
Urbach, F., Rose, D. B. & Bonnem, M. (1972). Genetic and environmental interactions in skin carcinogenesis. Environment and Cancer, pp. 355371. Baltimore: Williams and Wilkins.Google Scholar
VanDuuren, B. L. Duuren, B. L. & Goldschmidt, B. M. (1976). Cocarcinogenic and tumor-promoting agents in tobacco carcinogenesis. J. natn. Cancer Inst. 56, 12371242.Google Scholar
Verma, A. K. & Boutwell, B. K. (1977). Vitamin A acid; a potent inhibitor of 12–0-tetradecanoyl-phorbol- 13-acetate-induced ornithine decarboxylase activity in mouse epidermis. Cancer Res. 37, 21962201.Google Scholar
Viaje, A., Slaga, T. J., Wigler, M. & Weinstein, I. B. (1977). Effects of anti-inflammatory agents on mouse skin tumor promotion, epidermal DNA synthesis, phorbol ester-induced cellular proliferation, and production of plasminogen activator. Cancer Res. 37, 15301536.Google ScholarPubMed
Voorhees, J. J., Colburn, N. H., Stawiski, M., Duell, E. A., Haddox, M. & Goldberg, N. D. (1974). Imbalanced cyclic AMP and cyclic GMP levels in rapidly dividing, incompletely differentiated epidermis of psoriasis. Control of Proliferation of Animal Cells (ed. Clarkson, B. and Beserga, R.), pp. 635648. New York: Cold Spring Harbor Laboratory Press.Google Scholar
Wattenberg, L. W., Loub, W. D., Lain, L. K. & Speier, J. L. (1976). Dietary constituents altering the responses to chemical carcinogens. Fedn Proc. 35, 13271331.Google ScholarPubMed
Weichselbaum, R. R., Nove, J. & Little, J. B. (1977). Skin fibroblasts from a D-deletion type retinoblastoma patient are abnormally X-ray sensitive. Nature, Lond. 226, 726727.CrossRefGoogle Scholar
Wigler, M. & Weinstein, I. B. (1976) Tumour promoter induces plasminogen activator. Nature, Lond. 259, 232233.CrossRefGoogle ScholarPubMed
Wigler, M., Ford, J. P. & Weinstein, I. B. (1975). Glucocorticoid inhibition of the fibrinolytic activity of tumor cells. Proteases and Biological Control (ed. Reich, E., Rifkin, D. B. and Shaw, E.), pp. 849856. New York: Cold Spring Harbor Laboratory Press.Google Scholar
Yasui, T. & Takasugi, N. (1977). Prevention by vitamin A of the occurrence of permanent vaginal changes in neonatally estrogen-treated mice. Cell Tiss. Res. 179, 475482.CrossRefGoogle ScholarPubMed
Yuspa, S. H., Lichti, U., Ben, T., Patterson, E., Hennings, H., Slaga, T. J., Colburn, N. & Kelsey, W. (1976). Phorbol esters stimulate DNA synthesis and ornithine decarboxylase activity in mouse epidermal cell cultures. Nature, Lond. 262, 402404.CrossRefGoogle ScholarPubMed
Zajdela, F. & Laterjet, R. (1973). Inhibitory effect of caffeine on induction of skin cancer by ultraviolet rays in the mouse. C.R.Acad. Sci. Ser D. 277, 1073–6.Google ScholarPubMed