Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-25T02:30:03.271Z Has data issue: false hasContentIssue false

Feasibility of imaging living cells at subnanometer resolutions by ultrafast X-ray diffraction

Published online by Cambridge University Press:  11 December 2008

Magnus Bergh
Affiliation:
Laboratory of Molecular Biophysics, Institute of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
Gösta Huldt
Affiliation:
Laboratory of Molecular Biophysics, Institute of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
Nicusor Tîmneanu
Affiliation:
Laboratory of Molecular Biophysics, Institute of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
Filipe R. N. C. Maia
Affiliation:
Laboratory of Molecular Biophysics, Institute of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
Janos Hajdu*
Affiliation:
Laboratory of Molecular Biophysics, Institute of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden Stanford Linear Accelerator Center, Menlo Park, CA, USA
*
*Author for correspondence: J. Hajdu, Laboratory of Molecular Biophysics, Institute of Cell and Molecular Biology, Uppsala University, Box 596, 75124 Uppsala, Sweden. Tel.:+46-18-4714449; Fax: +46-18-511755; Email: [email protected]

Abstract

Detailed structural investigations on living cells are problematic because existing structural methods cannot reach high resolutions on non-reproducible objects. Illumination with an ultrashort and extremely bright X-ray pulse can outrun key damage processes over a very short period. This can be exploited to extend the diffraction signal to the highest possible resolution in flash diffraction experiments. Here we present an analysis of the interaction of a very intense and very short X-ray pulse with a living cell, using a non-equilibrium population kinetics plasma code with radiation transfer. Each element in the evolving plasma is modeled by numerous states to monitor changes in the atomic populations as a function of pulse length, wavelength, and fluence. The model treats photoionization, impact ionization, Auger decay, recombination, and inverse bremsstrahlung by solving rate equations in a self-consistent manner and describes hydrodynamic expansion through the ion sound speed. The results show that subnanometer resolutions could be reached on micron-sized cells in a diffraction-limited geometry at wavelengths between 0·75 and 1·5 nm and at fluences of 1011–1012 photons μm−2 in less than 10 fs. Subnanometer resolutions could also be achieved with harder X-rays at higher fluences. We discuss experimental and computational strategies to obtain depth information about the object in flash diffraction experiments.

Type
Review Article
Copyright
Copyright © 2008 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbey, B., Nugent, K. A., Williams, G. J., Clark, J. N., Peele, A. G., Pfeifer, M. A., de Jonge, M. & McNulty, I. (2008). Keyhole coherent diffractive imaging. Nature Physics 4, 394.CrossRefGoogle Scholar
Ayvazyan, V., Baboi, N., Bhr, J. et al. (2006). First operation of a free-electron laser generating GW power radiation at 32 nm wavelength. European Physical Journal D 37, 297.CrossRefGoogle Scholar
Bergh, M., Tîmneanu, N. & van der Spoel, D. (2004). A model for the dynamics of a water cluster in a X-ray FEL beam. Physical Review E 70, 051904.CrossRefGoogle Scholar
Bernal, J. D., Fankuchen, I. & Perutz, M. F. (1938). An x-ray study of chymotrypsin and haemoglobin. Nature 141, 523.CrossRefGoogle Scholar
Blake, C. C. F. & Phillips, D. C. (1962). Effects of X-irradiation on single crystals of myoglobin. In Biological Effects of Ionizing Radiations at the Molecular Level, p. 183191. Vienna: International Atomic Energy Agency.Google Scholar
Bortel, G. & Faigel, G. (2007). Classification of continuous diffraction patterns: a numerical study. Journal of Structural Biology 158, 1018.CrossRefGoogle ScholarPubMed
Bragg, L. & Perutz, F. M. (1952). The structure of haemoglobin. Proceedings of the Royal Society of London, Series A 213, 425.Google Scholar
Cannon, T. M. & Fenimore, E. E. (1979). Tomographical imaging using uniformly redundant arrays. Applied Optics 18(7), 10521057.Google Scholar
Chapman, H. N., Barty, A., Bogan, M. J., Boutet, S., Frank, M., Hau-Riege, S. P., Marchesini, S., Woods, B. W., Bajt, S., London, R. A., Plönjes, E., Kuhlmann, M., Treusch, R., Düsterer, S., Tschentscher, T., Schneider, J. R., Spiller, E., Möller, T., Bostedt, C., Hoener, M., Shapiro, D. A., Hodgson, K. O., van der Spoel, D., Burmeister, F., Bergh, M., Caleman, C., Huldt, G., Seibert, M. M., Maia, F. R. N. C., Lee, R. W., Szoke, A., Tîmneanu, N. & Hajdu, J. (2006a). Femtosecond diffractive imaging with a soft-x-ray free-electron laser. Nature Physics 12, 839843.CrossRefGoogle Scholar
Chapman, H. N., Barty, A., Marchesini, S., Noj, A., Cui, C., Howells, M. R., Rosen, R., He, H., Spence, J. C. H., Weierstall, U., Beetz, T., Jacobsen, C. & Shapiro, D. (2006b). High-resolution ab initio three-dimensional x-ray diffraction microscopy. Journal of the Optical Society of America. A, Optics and Image Science 23, 1179.CrossRefGoogle ScholarPubMed
Chapman, H. N., Hau-Riege, S. P., Bogan, M., Bajt, S., Barty, A., Boutet, S., Marchesini, S., Frank, M., Woods, B. W., Benner, W. H., London, R. A., Rohner, U., Szöke, A., Spiller, E. A., Müller, T., Bostedt, C., Shapiro, D. A., Plönjes, E., Kuhlmann, M., Hodgson, K. O., Burmeister, F., Bergh, M., Caleman, C., Huldt, G., Seibert, M. M. & Hajdu, J. (2007). Femtosecond time-delay x-ray holography. Nature 448, 676.CrossRefGoogle ScholarPubMed
Cullen, D. E., Perkins, S. T. & Rathkopf, J. A. (1990). The 1989 Livermore Evaluated Photon Data Library (EPDL), UCRL-ID-103424. Livermore, CA: Lawrence Livermore National Laboratory.CrossRefGoogle Scholar
Debye, P. (1914). Interferenz von Röntgenstrahlen und Wärmebewegung. Annalen der Physik (Leipzig) 348, 4992.Google Scholar
Delone, N. B. & Krainov, V. P. (2000). Multiphoton Processes in Atoms, p. 92. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Faure, J., Glinec, Y., Puhkov, A., Kiselev, S., Gordienko, S., Lefebvre, E., Rousseau, J. P., Burgy, F. & Malka, V. (2004). A laser-plasma accelerator producing monoenergetic electron beams. Nature 431, 541.CrossRefGoogle ScholarPubMed
Fenimore, E. E. & Cannon, T. M. (1978). Coded aperture imaging with uniformly redundant arrays. Applied Optics 17(3), 337.CrossRefGoogle ScholarPubMed
Frank, J. (1995). Three-Dimensional Electron Microscopy of Macromolecular Assemblies. San Diego, CA: Academic Press.Google Scholar
Geddes, C. G. R., van Tilborg, J., Toth, Cs., Esarey, E., Schroeder, C. B., Bruhwiler, D., Nieter, C., Cary, J. & Leemans, W. P. (2004). High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding. Nature 431, 538.CrossRefGoogle ScholarPubMed
Goodman, J. W. (1996). Introduction to Fourier Optics, 2nd edn. McGraw-Hill.Google Scholar
Grüner, F., Becker, S., Schramm, U., Eichner, T., Fuchs, M., Weingartner, R., Habs, D., Meyer ter vehn, J., Geissler, M., Ferrario, M., Serafini, L., van der Geer, B., Backe, H., Lauth, W. & Reiche, S. (2007). Design considerations for table-top, laser-based vuv and x-ray free electron lasers. Applied Physics B, Lasers and Optics 86, 431.CrossRefGoogle Scholar
Hajdu, J., Machin, P. A., Campbell, J. W., Greenhough, T. J., Clifton, I. J., Zurek, S., Gover, S., Johnson, L. N. & Elder, M. (1987). Millisecond X-ray diffraction: first electron density map from Laue photographs of a protein crystal. Nature 329, 178.CrossRefGoogle ScholarPubMed
Hajdu, J. & Andersson, I. (1993). Fast x-ray crystallography and time-resolved structures. Annual Review of Biophysics and Biomolecular Structure 22, 467.CrossRefGoogle ScholarPubMed
Hau-Riege, S. P., London, R. A. & Szoke, A. (2004). Dynamics of biological molecules irradiated by short X-ray pulses. Physical Review E 69, 051906.Google Scholar
Hau-Riege, S. P., London, R. A., Huldt, G. & Chapman, H. N. (2005). Pulse requirements for x-ray diffraction imaging of single biological molecules. Physical Review E 71, 061919.CrossRefGoogle ScholarPubMed
Hau-Riege, S. P., London, R. A., Chapman, H. N. & Bergh, M. (2007a). Soft-x-ray free-electronlaser interaction with materials. Physical Review E 76(4), 046403.CrossRefGoogle ScholarPubMed
Hau-Riege, S. P., London, R. A., Chapman, H. N., Szoke, A. & Timneanu, N. (2007b). Encapsulation and diffraction-pattern-correction methods to reduce the effect of damage in X-ray diffraction imaging of single biological molecules. Physical Review Letters 98, 1983021.CrossRefGoogle ScholarPubMed
Henderson, R. (1990). Cryoprotection of protein crystals against radiation-damage in electron and x-ray diffraction. Proceedings of the Royal Society of London, Series B 241, 6.Google Scholar
Henderson, R. (1995). The potential and limitations of neutrons, electrons and x-rays for atomic resolution microscopy of unstained biological molecules. Quarterly Reviews of Biophysics 28, 171.CrossRefGoogle ScholarPubMed
Hendrickson, W. A. (1976). Radiation damage in protein crystallography. Journal of Molecular Biology 106, 889.CrossRefGoogle ScholarPubMed
Henke, B., Gullikson, E. & Davis, J. (1993). X-ray interactions: photoabsorption, scattering, transmission, and reflection at E=50–30,000 eV, Z=1–92. Atomic Data and Nuclear Data Tables 54, 181.CrossRefGoogle Scholar
Howells, M., Beetz, T., Chapman, H. N., Cui, C., Holton, J. M., Jacobsen, C. J., Kirz, J., Lima, E., Marchesini, S., Miao, H., Sayre, D., Shapiro, D. A. & Spence, J. C. H. (2005). An assessment of the resolution limitation due to radiation-damage in x-ray diffraction microscopy. http://arxiv.org/abs/physics/0502059 [accessed in 2005].Google Scholar
Huldt, G., Szoke, A. & Hajdu, J. (2003). Diffraction imaging of single particles and biomolecules. Journal of Structural Biology 144, 171.Google Scholar
Jurek, Z., Faigel, G. & Tegze, M. (2004a). Dynamics in a cluster under the influence of intense femtosecond hard X-ray pulses. European Physical Journal D 29, 217229.Google Scholar
Jurek, Z., Oszlányi, G. & Faigel, G. (2004b). Imaging atom clusters by hard x-ray free-electron lasers. Europhysics Letters 65, 491497.Google Scholar
London, R. A., Rosen, M. R. & Trebes, J. E. (1989). Wavelength choice for soft x-ray laser holography of biological samples. Applied Optics 28, 3397.CrossRefGoogle ScholarPubMed
Marchesini, S., Boutet, S., Sakdinawat, A. E., Bogan, M. J., Bajt, S., Barty, A., Chapman, H. N., Frank, M., Hau-Riege, S. P., Szoke, A., Cui, C., Howells, M. R., Shapiro, D. A., Spence, J. C. H., Shaevitz, J. W., Lee, J. Y., Hajdu, J. & Seibert, M. M. (2008). Massively parallel X-ray holography. Nature Photonics 2, 560563.Google Scholar
Meidinger, N., Andritschke, R., Hälker, O., Hartmann, R., Hasinger, G., Herrmann, S., Holl, P., Kimmel, N., Pfeffermann, E., Predehl, P., Reich, C., Schächner, G., Soltau, H. & Strüder, L. (2007). Fast large-area spectroscopic and imaging CCD detectors for X-ray astronomy with eROSITA and for exploration of the nanocosmos. Proceedings – Society of Photo-Optical Instrumentation Engineers 6686, 0H1, http://www.hll.mpg.de/07_publication/2007/SPIE_6686-16_nom10.pdf.Google Scholar
Miao, J., Sayre, D. & Chapman, H. N. (1998). Phase retrieval from the magnitude of the fourier transforms of nonperiodic objects. Journal of the Optical Society of America. A, Optics and Image Science 15, 1662.CrossRefGoogle Scholar
More, R. (1982). Electronic energy-levels in dense plasmas. Journal of Quantitative Spectroscopy & Radiative Transfer 27, 345.Google Scholar
Nantel, M., Ma, G., Gu, S., Coté, C. Y., Itatani, J. & Umstadter, D. (1998). Pressure ionisation and line merging in strongly coupled plasmas produced by 100-fs laser pulses. Physical Review Letters 20, 4442.Google Scholar
Nave, C. (1995). Radiation-damage in protein crystallography. Radiation Physics and Chemistry 45, 483.Google Scholar
Neutze, R., Wouts, R., van der Spoel, D., Weckert, E. & Hajdu, J. (2000). Potential for biomolecular imaging with femtosecond X-ray pulses. Nature 406, 752757.Google Scholar
Nilsen, J. & Scofield, J. H. (2004). Plasmas with an index of refraction greater than 1. Optics Letters 29, 2677.CrossRefGoogle ScholarPubMed
Quiney, H. M., Peele, A. G., Cai, Z., Paterson, D. & Nugent, K. A. (2006). Diffractive imaging of highly focused X-ray fields. Nature Physics 2, 101.Google Scholar
Sayre, D. (1952). Some implications of a theorem due to Shannon. Acta Crystallographica 5, 843.CrossRefGoogle Scholar
Scott, H. A. (2001). Cretin-a radiative transfer capability for laboratory plasmas. Journal of Quantitative Spectroscopy & Radiative Transfer 71, 689.CrossRefGoogle Scholar
Scott, H. A. & Mayle, R. W. (1994). GLF – a simulation code for x-ray lasers. Applied Physics. B, Lasers and Optics 58, 35.Google Scholar
Shannon, C. E. (1949). Communications in the presence of noise. Proceedings of the Institute of Radio Engineers 37, 10.Google Scholar
Shen, Q., Bazarov, I. & Thibault, P. (2004). Diffractive imaging of nonperiodic materials with future coherent x-ray sources. Journal of Synchrotron Radiation 11, 432.Google Scholar
Solem, J. C. & Baldwin, G. C. (1982). Microholography of living organisms. Science 218, 229.Google Scholar
Spence, J. C. H., Weierstall, U. & Howells, M. (2002). Phase recovery and lensless imaging by iterative methods in optical; X-ray and electron diffraction. Philosophical Transactions of the Royal Society of London. Series A: Mathematical and Physical Sciences 360, 875.CrossRefGoogle ScholarPubMed
Starodub, D., Rez, P., Hembree, G., Howells, M., Shapiro, D., Chapman, H. N., Fromme, P., Schmidt, K., Weierstall, U., Doak, R. B. & Spence, J. C. H. (2008, Jan). Dose, exposure time and resolution in serial X-ray crystallography. Journal of Synchrotron Radiation 15(1): 6273.Google Scholar
Stewart, J. C. & Pyatt, K. D. (1966). Lowering of ionization potentials in plasmas. Astrophysical Journal 144, 1203.CrossRefGoogle Scholar
Thibault, P., Elser, V., Jacobsen, C., Sayre, D. & Shapiro, D. (2006). Reconstruction of a yeast cell from X-ray diffraction data. Acta Crystallographica. Section A, Crystal Physics, Diffraction, Theoretical And General Crystallography 62, 248.CrossRefGoogle ScholarPubMed
Timneanu, N., Caleman, C., Hajdu, J. & van der Spoel, D. (2004). Auger electron cascades in water and ice. Chemical Physics 299, 277283.Google Scholar
van Heel, M., Gowan, B., Matadeen, R., Orlova, E. V., Finn, R., Pape, T., Cohan, D., Stark, H., Schmidt, R., Schatz, M. & Patwardhan, A. (2000). Single-particle electron cryomicroscopy: towards atomic resolution. Quarterly Reviews of Biophysics 33, 307.Google Scholar
Waller, I. (1923). Zur Frage der Einwirkung der Wärmebewegung auf die Interferenz von Röntgenstrahlen. Zeitschrift für Physik 17, 389408.Google Scholar
Watson, J. P. (1987). Molecular Biology of the Gene, 4th edn.Wiley-Interscience.Google Scholar
Williams, G. J., Quiney, H. M., Dhal, B. B., Tran, C. Q., Nugent, K. A., Peele, A. G., Paterson, D. & de Jonge, M. D. (2006). Fresnel coherent diffractive imaging. Physical Review Letters 97, 025506.Google Scholar
Zamyatnin, A. A. (1984). Amino acid, peptide, and protein volume in solution. Annual Review of Biophysics and Bioengineering 13, 145.Google Scholar