Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-23T02:37:46.442Z Has data issue: false hasContentIssue false

Excited electronic states in dark biological process

Published online by Cambridge University Press:  17 March 2009

G. Cilento
Affiliation:
Department of Biochemistry, Instituto de Química, Universidade de Sao Paulo, C.P. 20780, Sao Paulo, Brazil

Extract

It is well known that excited states may be generated chemically in biological systems as evidencex and by the phenomenon of bioluminescence and it is natural to suspect that they may also be generated and used in dark processes (Szent-Györgyi, 1941; Steele, 1963; Cilento, 1965; White & Wei, 1970; White et al. 1971). Förster (1967) has pointed out that electronic excitation and subsequent transfer processes may occur in biological dark systems despite the fact that the energy available from enzymic processes is too low to excite aromatic amino acids and other biochemical structures. Hastings (1968) suggests that in some organisms light emission is just an alternative to the formation of an active species.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1973

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adam, W. & Liu, J.-C. (1972). An α-peroxy lactone. Synthesis and chemiluminescence. J. Am. chem. Soc. 94, 2894.CrossRefGoogle Scholar
Allen, R. C., Stjernholm, R. L. & Steele, R. H. (1972). Evidence for the generation of an electronic excitation state(s) in human polymorphonuclear leukocytes and its participation in bactericidal activity. Biochem. biophys. Res. Commun. 47, 679.Google Scholar
Augusto, O., Bechara, E. J. H., Sanioto, D. L. & Cilento, G. (1973). The effect of o-diphenols upon the microsomal NADPH and NADH Oxidase Activities. Archs Biochem. Biophys. 158, 359.Google Scholar
Baldwin, J. E., Basson, H. H. & Kraus, H. Jun. (1968). The cleavage of aromatic nuclei with singlet oxygen: significance in biosynthetic processes. Chem. Commun. p. 984.Google Scholar
Brundett, R. B., Roswell, D. F. & White, E. H. (1972). Yields of chemically produced excited states. J. Am. chem. Soc. 94, 7536.CrossRefGoogle Scholar
Buu-Hoï, N. P. & Sung, S. S. (1970). A non-radiative photochemical model for polycyclic aromatic hydrocarbon-induced carciogenesis. Naturwissenschaften 57, 135.CrossRefGoogle Scholar
Camerman, N. & Camerman, A. (1972). Thyroid hormone structure: molecular conformation of triiodothyroproprionic acid. Biochem. biophys. Res. Commun. 48, 1433.CrossRefGoogle Scholar
Chandross, E. A. & Sonntag, F. I. (1966). Chemiluminescent electron transfer reactions of radical anions. J. Am. chem. Soc. 88, 1089.Google Scholar
Cilento, G. (1961). Heavy atom perturbation and the mechanism of action of thyroxine. International Biophysics Congress, Stockholm. Abstracts of contributed papers, no. 89.Google Scholar
Cilento, G. (1965). On the possibility of generation and transfer of electronic energy in biochemical systems. Photochem. Photobiol. 4, 1243.CrossRefGoogle ScholarPubMed
Cilento, G. & Berenholc, M. (1965). Heavy atom perturbation, molecular complexing and activity of thyroxine. Biochem. Biophys. Acta 94, 271.Google ScholarPubMed
Cilento, G., Sanioto, D. L., Zinner, K. & Berenholc, M. (1968). Heavy atom perturbation in molecules related to thyroxine. Photochem. & Photobiol. 7, 557.Google Scholar
Demopoulos, H. B. (1973). The basis of free radicalpathology. Fedn Proc. Fedn Am. Socs. exp. Biol. 32, 1859.Google Scholar
Diner, S. (1964). Electronic aspects of biochemical hydroxylation. In Electron Aspects of Biochemistry (ed. Pullman, B.), p. 237. New York and London: Academic Press.Google Scholar
Endo, M., Kajiwara, M. & Nakanishi, K. (1970). Fluorescent constituents and cultivation of Lampteromyces janponicus. Chem. Commun. p. 309.Google Scholar
Finazzi, Agró A., Giovagnoli, C., De Sole, P., Calabrese, L., Rotiilo, G. & Mondoví, B. (1972). Erythrocuprein and singlet oxygen. FEBS Lett. 21, 183.Google Scholar
Foote, C. S., Chang, Y. C. & Denny, R. W. (1970). Chemistry of singlet oxygen. X. Carotenoids quenching parallels biological protection. J. Am. chem. Soc. 92, 5216.CrossRefGoogle ScholarPubMed
Förster, T. H. (1967). Mechanism of energy transfer. In Comprehensive Biochemistry (ed. Florkin, M. and Stotz, E. H.) 22, 61. Amsterdam: Elsevier.Google Scholar
Freed, D. J. & Faulkner, L. R. (1972). Near unit efficiency of triplet production in an electron-transfer reaction. J. Am. chem. Soc. 94, 4790.CrossRefGoogle Scholar
Garssen, G. J., Vliegenthart, J. F. G. & Boldingh, J. (1971). An anaerobic reaction between lipoxygenase, linoleic acid and its hydroperoxides. Biochem. J. 122, 327.Google Scholar
Gersmann, H. R. & Bickel, A. F. (1971). Autoxidation of ketones and esters in basic solution. J. chem. Soc. (B) 2230.Google Scholar
Grams, G. W. & Eskins, K. (1972). Dye-sensitized photo-oxidation of tocopherols. Correlation between singlet oxygen reactivity and vitamin E activity. Biochemistry, N.Y. II, 606.Google Scholar
Gunsten, H. & Ullman, E. F. (1970). Chemical sensitization. The chemical initiation of photochemical reactions in the absence of light. Chem. Commun. p. 28.Google Scholar
Haines, R. M., Pryce, A. & Shields, C. (1970). Electron spin resonance of transient negative ions in the formation of D–A charge transfer complexes of solvent tetracyanoethylene systems. J. chem. Soc. (B) 820.CrossRefGoogle Scholar
Hastings, J. W. (1968). Bioluminescence. A. Rev. Biochem. 37, 597.Google Scholar
Hayaishi, O. (1969). Enzymic hydroxylation. A. Rev. Biochem. 38, 21.CrossRefGoogle ScholarPubMed
Hercules, D. M. (1969). Chemiluminescence from electron transfer reactions. Acc. Chem. Res. 2, 301.CrossRefGoogle Scholar
Holtzman, J. L. & Carr, M. L. (1972). Inhibition by deuterated water of the mixed-function oxidases of hepatic microsomes of the male rat. Mol. Pharmacol. 8, 481.Google Scholar
Howard, J. A. & Ingold, K. U. (1968). The self reaction of sec. butyl peroxy radicals. Confirmation of the Russel mechanism. J. Am. chem. Soc. 90, 1056.CrossRefGoogle Scholar
Howes, R. M. & Steele, R. H. (1972). Microsomal chemiluminescence induced by NADPH and its relation to aryl-hydroxylations. Res. Commun. Chem. Pathol. & Pharmacol. 3, 349.Google ScholarPubMed
Itada, N. (1965). 18O Investigation of pyrocatechase reaction: mode of attack of molecular oxygen. Biochem. biophys. Res. Commun. 20, 149.Google Scholar
Jorgensen, E. C. & Block, P. Jr (1973). Thyromimetic activity of 3, 5, 3'- trimethyl-L-thyronine. J. Med. Chem. 16, 306.Google Scholar
Kearns, D. R. (1971). Physical and chemical properties of singlet molecular oxygen. Chem. Rev. 71, 395.Google Scholar
Kellog, R. E. (1969). Mechanism of chemiluminescence from peroxy radicals. J. Am. chem. Soc. 91, 5433.Google Scholar
Keys, R. T. & Carper, W. R. (1967). Kinetics of the free radicals formation in TCNE and various donors as studied by ESR. J. chem. Phys. 47, 3682.Google Scholar
Khan, A. U. (1970). Singlet molecular oxygen from superoxide anion and sensitized fluorescence of organic molecules. Science, N.Y. 168, 476.CrossRefGoogle ScholarPubMed
Kopecky, K. R. & Mumford, C. (1969). Luminescence in the thermal decomposition of 3, 3, 4-trimethyl-I,2-dioxetane. Can. J. Chem. 47, 709.Google Scholar
Kumaki, K., Hata, S. I., Mizuno, K. & Tomioka, S. (1969). Relation between the hydroxylated position of aromatic compounds by monooxygenases and various electronic reactivity indexes. Chem. pharm. Bull. Tokyo 17 (8), 1751. Chem. Abstr. 71, 98539W.CrossRefGoogle Scholar
Lamola, A. A. (1971). Production of pyrimidine dimers in DNA in the dark. Biochem. biophys. Res. Commun. 43, 893.Google Scholar
Lehmann, P. A. (1972). Intramolecular aryl-iodine π-complex formation and its relation to thyromimetic activity. J. Med. Chem. 15, 404.Google Scholar
McCapra, F. (1970). The chemiluminescence of organic compounds. Photo- chemistry 3, 611.Google Scholar
McGlynn, S. P., Smith, F. J. & Cilento, G. (1964). Some aspects of the triplet state. Photochem. & Photobiol. 3, 269.Google Scholar
Martin, R. O. & Stumpf, P. K.Fat metabolism in higher plants. XII. a-Oxidation of long chain fatty acids. J. biol. Chem. 234, 2548.Google Scholar
Milligan, L. P. & Baldwin, R. L. (1967). The conversion of acetoacetate to pyruvaldehyde. J. biol. Chem. 242, 1095.CrossRefGoogle ScholarPubMed
Moore, T. A. & Song, P.-S. (1969). A model for biological quantum conversion involving the photooxidative dephosphorylation of menadiol diphosphate. Photochem. & Photobiol. 10, 13.Google Scholar
Morimoto, H., Imada, I., Murata, T. & Matsumoto, N. (1967). Über die Sterine von Candida utilis. Justus Liebigs Annin Chem. 708, 230.Google Scholar
Neifakh, Y. A. (1971). Free radical mechanism of ultra-weak chemiluminescence coupled with peroxide oxidation of unsaturated fatty acids. Biophysics. 16, 584.Google Scholar
Nelson, E. C., Mayberry, M., Reid, R. & John, K. U. (1971). The decarboxylation of retinoic acid by horseradish peroxidase and an acetone butanol-ether-dried liver powder. Biochem. J. 121, 731.Google Scholar
Nilsson, R. & Kearns, D. R. (1973). A remarkable deuterium effect on the rate of photosensitized oxidation of alcohol dehydrogenase and trypsin. Photochem. & Photobiol. 17, 65.CrossRefGoogle ScholarPubMed
Nishinaga, A., Cahnmann, H. J., Kon, H. & Matsura, T. (1968). Model reactions for the biosynthesis of thyroxine. XII. The nature of a thyroxine precursor formed in the synthesis of thyroxine from diiodotyroxine and its keto acid analog. Biochemistry, N.Y. 7, 388.CrossRefGoogle ScholarPubMed
Pederson, T. C. & Aust, S. D. (1972). NADPH-dependent lipid peroxidation catalyzed by purified NADPH-cytochrome c reductase from rat liver microsomes. Biochem. biophys. Res. Commun. 48, 789.Google Scholar
Pettus, J. A. Jr & Moore, R. E. (1970). Isolation and structure determination of an undeca-1, 3,5,8-tetraene and dictyopterene B from algae of the genus Dictyopteris. J. Chem. Soc. (D) 1093.Google Scholar
Politzer, I. R., Griffin, G. W. & Laseter, J. L. (1971). Singlet oxygen and biological systems. Chemico-Biol. Interactions 3, 73.Google Scholar
Proctor, P. (1972). Electron-transfer factors in psychosis and dyskinesia. Physiol. Chem. Physics. 4, 349.Google Scholar
Rauhut, M. M. (1969). Chemiluminescence from concerted peroxide decomposition reactions. Ace. Chem. Res. 2, 80.Google Scholar
Roberts, A. B. & Deluca, H. F. (1968). Oxidative decarboxylation of retinoic acid in microsomes of rat liver and kidney. J. Liplid Res. 9, 501.Google Scholar
Schulte, K. E., Rocker, G. & Fachmann, H. (1968). Ergosta-4, 6, 8(14), 22- tetraenon-(3) als inhalts-stoff des Lärchenschwammes. Tetrahedron Lett. 4763.Google Scholar
Seliger, H. H. & McElroy, W. D. (1960). Spectral emission and quantum yield of firefly bioluminescence. Archs Biochem. Biophys. 88, 136.Google Scholar
Stauff, J. (1964). Lumineszenz und Energieubertragung angeregter Zustande von Proteinen. Z. Elektrochem. 68, 773.Google Scholar
Stauff, J. & Ostrowski, J. (1967). Chemilumineszenz von Mitochondrien. Z. Naturf 22 b, 734.Google Scholar
Steele, R. H. (1963). A photoinduced chemiluminescence of riboflavin in water containing hydrogen peroxide. I. The primary photochemical phase. Biochemistry, N.Y. 2, 529.Google Scholar
Sternson, L. A. & Wiley, R. A. (1972). Studies concerning the possible involvement of singlet oxygen in the microsomal oxidation of aromatic substrates. Chemico-Biol. Interactions 5, 317.Google Scholar
Stewart, F. E. & Eisner, M. (1967). Spectrophotometric and E.P.R. study of TCNE charge-transfer complexes. Molec. Phys. 12, 173.CrossRefGoogle Scholar
Szent-Györgyi, A. (1941). Towards a new Biochemistry? Science, N.Y. 93, 609.CrossRefGoogle ScholarPubMed
Turro, N. J. & Lechtken, P. (1973). Thermal and photochemical generation of electronically excited organic molecules. Tetramethyl-1, 2-dioxetane naphthvalene. Pure. appl. Chem. 33, 363.CrossRefGoogle Scholar
Vassil'ev, R. F. (1967). Chemiluminescence in liquid phase reactions. Prog. React. Kinet. 4, 305.Google Scholar
Vaudo, A. F. & Hercules, D. M. (1970). Triplet—singlet energy transfer in fluid solution. J. Am. chem. Soc. 92, 3573.CrossRefGoogle Scholar
Vladimirov, Yu. A., Korchagina, M. V. & Olenev, V. I. (1971). Chemiluminescence coupled with the formation of lipid peroxides in biological membranes. Reaction accompanied by luminescence. Biophysics 16, 994.Google Scholar
Wampler, J. E., Hori, K., Lee, J. W. & Cornier, M. J. (1971). Structured bioluminescence. Two emitters during both the ‘in vitro’ and the ‘in vivo’ bioluminescence of the sea pansy Renilla. Biochemistry, N. Y. 10, 2903.Google ScholarPubMed
Wei, C. C. & White, E. H. (1965). An efficient chemiluminescent hydrazide: benzo(ghi) perylene- 1, 2-dicarboxylic acid hydrazide. Tetrahedron Lett. no. 3559.Google Scholar
White, E. H. & Harding, J. C. (1965). Chemiluminescence in liquid solutions: the chemiluminescence of lophine and its derivatives. Photochem. & Photobiol. 4, 1129.Google Scholar
White, J. D., Perkins, D. W. & Taylor, S. I. (1973). Biosynthesis of Ergosta-4, 6, 8( 14), 22-tetraen-3 -one. A novel oxygenative pathway. Bioorg. Chem. 2, 163.Google Scholar
White, E. H., Rapaport, E., Seliger, H. H. & Hopkins, T. A. (1971). The chemi- and bioluminescence of firefly luciferin: an efficient chemical production of electronically excited states. Bioorg. Chem. I, 92.Google Scholar
White, E. H., Roswell, D. F., Wei, C. C. & Wildes, P. D. (1972). Differences between excited states produced chemically and photochemically. Ion pairs of excited states. J. Am. chem. Soc. 94, 6223.CrossRefGoogle Scholar
White, E. H. & Wei, C. C. (1970). A possible role for chemically produced excited states in biology. Biochem. biophys. Res. Commun. 39, 1219.Google Scholar
White, E. H., Wiecko, J. & Roswell, D. F. (1969). Photochemistry without light. J. Am. chem. Soc. 91, 5194.Google Scholar
White, E. H., Wiecko, J. & Wei, C. C. (1970). Utilization of chemically generated excited species. J. Am. chem. Soc. 92, 2167.CrossRefGoogle Scholar
Wilson, T. & Schaap, A. P. (1971). The chemiluminescence from cisdiethyoxy-1, 2-dioxetane. J. Am. chem. Soc. 93, 4126.Google Scholar
Yamamoto, S., Nakazawa, T. & Hayaishi, O. (1972). Studies on monooxygenases. IV. Anaerobic formation of an α-ketoacid by L-lysine monooxygenases. J. biol. Chem. 247, 3434.Google Scholar