Hostname: page-component-599cfd5f84-z6fpd Total loading time: 0 Render date: 2025-01-07T08:11:01.421Z Has data issue: false hasContentIssue false

The Era of RNA Awakening: Structural biology of RNA in the early years

Published online by Cambridge University Press:  29 July 2009

Alexander Rich*
Affiliation:
Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
*
*Author for correspondence: Dr. A. Rich, Department of Biology, Massachusetts Institute of Technology, 31 Ames Street, Cambridge, MA 02139, USA. Tel.: 617-253-4715; Fax: 617-253-8699

Abstract

In the mid-1950s, RNA was a somewhat mysterious molecule with unknown three-dimensional structure and little hard evidence of biological function. Changes began with the 1956 discoveries of the RNA double helix and the phenomenon of nucleic acid hybridization. Discovery of the DNA–RNA hybrid helix in 1960 opened the door to understanding biological information transfer. Single-crystal X-ray diffraction analysis made it possible to precisely define the RNA double helix, discover the novel L-shaped fold of transfer RNA (tRNA), and finally reveal the complete three-dimensional tRNA structure by 1974. By then, a functional understanding of protein synthesis had developed with an appreciation of the various roles of different RNA species. This was the era of RNA awakening.

Type
Review Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

12. References

Allen, F. W. (1954). Nucleic acids. Annual Reviews of Biochemistry 23, 99124.Google Scholar
Arnott, S., Wilkins, M. H. F., Hamilton, L. D. & Langridge, R. (1965). Fourier synthesis studies of lithium DNA. III. Hoogsteen models. Journal of Molecular Biology 11, 391402.Google Scholar
Arnott, S.Hukins, D. W. L. & Dover, S. D. (1972). Optimized parameters for RNA double helices. Biochemical and Biophysical Research Communications 48, 13921399.CrossRefGoogle Scholar
Brown, D. M. & Todd, A. R. (1955). Evidence on the nature of the chemical bonds in nucleic acids. In The Nucleic Acids, vol. 1 (eds. Chargaff, E. & Davidson, J. N.), pp. 409445. New York: Academic Press.Google Scholar
Conn, J. F., Kim, J. J., Suddath, F. L., Blattman, P. & Rich, A. (1974). Crystal and molecular structure of an osmium bispyridine ester of adenosine. Journal of the American Chemical Society 96, 71527153.CrossRefGoogle ScholarPubMed
Crick, F. H. C. & Rich, A. (1955). Structure of polyglycine II. Nature 176, 780781.CrossRefGoogle ScholarPubMed
Davies, D. R. & Rich, A. (1958). The formation of a helical complex between polyinosinic acid and polycyctidylic acid. Journal of the American Chemical Society 80, 1003.CrossRefGoogle Scholar
Day, R. O., Seeman, N. C., Rosenberg, J. M. & Rich, A. (1973). A crystalline fragment of the double helix: the structure of the dinucleoside phosphate guanylyl-3′,5′-cytidine. Proceedings of the National Academy of Sciences USA 70, 849853.CrossRefGoogle ScholarPubMed
Doty, P., Marmur, J., Eigner, J. & Schildkraut, C. (1960). Strand separation and specific recombination in deoxyribonucleic acids: physical chemical studies. Proceedings of the National Academy of Sciences USA 46, 461476.CrossRefGoogle ScholarPubMed
Egli, M., Usman, N., Zhang, S. & Rich, A. (1992). Crystal structure of an Okazaki fragment at 2-A resolution. Proceedings of the National Academy of Sciences USA 89, 534538.CrossRefGoogle Scholar
Felsenfeld, G. & Rich, A. (1957). Studies on the formation of two- and three-stranded poly ribonucleotides. Biochimica et Biophysica Acta 26, 457468.CrossRefGoogle Scholar
Felsenfeld, G., Davies, D. R. & Rich, A. (1957). Formation of a three-stranded polynucleotide molecule. Journal of the American Chemical Society 79, 20232024.Google Scholar
Franklin, R. E. & Gosling, R. G. (1953). The structure of sodium thymodylate fibers, I. The influence of water content. Acta Crystallographica 6, 673677.CrossRefGoogle Scholar
Furth, J. J., Hurwitz, J. & Goldmann, M. (1961). The directing role of DNA in RNA synthesis. Biochemistry and Biophysics, Research Communication 4, 362367.CrossRefGoogle ScholarPubMed
Gamow, G. (1954). Possible relation between deoxyribonucleic acid and protein structures. Nature 173, 318.Google Scholar
Goodman, H. M. & Rich, A. (1962). Formation of a DNA-soluble RNA hybrid and its relation to the origin, evolution and degeneracy of soluble RNA. Proceedings of the National Academy of Sciences USA 48, 21012109.CrossRefGoogle Scholar
Grunberg-Manago, M., Ortiz, P. J. & Ochoa, S. (1955). Enzymatic synthesis of nucleic acidlike polynucleotides. Science 122, 907910.Google Scholar
Hall, B. D. & Spiegelman, S. (1961). Sequence complementarity of T2-DNA and T2-spedific RNA. Proceedings of the National Academy of Sciences USA 47, 137146.Google Scholar
Hoagland, M. B., Zamecnik, P. C. & Stephenson, M. L. (1957). Intermediate reactions in protein biosynthesis. Biochimica et Biophysica Acta 24, 215216.Google Scholar
Holley, R. W., Apgar, J., Everett, G. A., Madison, J. T., Marguisse, M., Merrill, S. H., Penwick, J. R. & Zamir, A. (1965). Structure of a ribonucleic acid. Science 147, 14621465.CrossRefGoogle ScholarPubMed
Hoogsteen, K. (1959). The crystal and molecular structure of a hydrogen-bonded complex between 1-methylthymine and 9-methyladenine. Acta Crystallographica 12, 822823.CrossRefGoogle Scholar
Katz, L., Tomita, K. & Rich, A. (1965). The molecular structure of the crystalline complex ethyladenine: methyl-bromouracil. Journal of Molecular Biology 13, 340350.Google Scholar
Kim, S.-H. & Rich, A. (1968). Single crystals of transfer RNA: an X-ray diffraction study. Science 162, 13811384.CrossRefGoogle ScholarPubMed
Kim, S.-H. & Rich, A. (1969). Crystalline transfer RNA: the three-dimensional Patterson function at 12-angstrom resolution. Science 166, 16211624.CrossRefGoogle ScholarPubMed
Kim, S.-H., Quigley, G., Suddath, F. L. & Rich, A. (1971). High resolution X-ray diffraction patterns of tRNA crystals showing helical regions of the molecule. Proceedings of the National Academy of Sciences USA 68, 841845.Google Scholar
Kim, S.-H., Quigley, G. J., Suddath, F. L., McPherson, A., Sneden, D., Kim, J. J., Weinzierl, J. & Rich, A. (1973). Three-dimensional structure of yeast phenylalanine transfer RNA: folding of the polynucleotide chain. Science 179, 285288.CrossRefGoogle ScholarPubMed
Kim, S.-H., Suddath, F. L., Quigley, G. J., McPherson, A., Sussman, J. L., Wang, A. H.-J., Seeman, N. C. & Rich, A. (1974a). Three-dimensional tertiary structure of yeast phenylalanine transfer RNA. Science 185, 435439.Google Scholar
Kim, S.-H., Sussman, J. L., Suddath, F. L., Quigley, G. J., McPherson, A., Wang, A. H.-J., Seeman, N. C. & Rich, A. (1974b). The general structure of transfer RNA molecules. Proceedings of the National Academy of Sciences USA 71, 49704974.CrossRefGoogle ScholarPubMed
Kornberg, A., Lehman, I. R., Bessman, M. J. & Simms, E. S. (1956). Enzymic synthesis of deoxyribonucleic acid. Biochimica et Biophysica Acta 21, 197198.Google Scholar
Kyogoku, Y., Lord, R. & Rich, A. (1966). Hydrogen bonding specificity of nucleic acid purine and pyrimidines in solution. Science 154, 518520.CrossRefGoogle ScholarPubMed
Lee, R., Feinbaum, R. & Ambros, V. (1993). The heterochronic gene lin-4 of C. elegans encodes small RNAs with antisense complementarity in line-14. Cell 75, 843854.Google Scholar
Marmur, J. & Lane, D. (1960). Strand separation and specific recombination in deoxyribonucleic acids: biological studies. Proceedings of the National Academy of Sciences USA 46, 453461.CrossRefGoogle ScholarPubMed
Mathews, F. S. & Rich, A. (1964). The molecular structure of a hydrogen bonded complex of N-ethyl adenine and N-methyl uracil. Journal of Molecular Biology 8, 8995.CrossRefGoogle ScholarPubMed
Olby, R. (2003). Quiet debut for the double helix. Nature 421, 402405.CrossRefGoogle ScholarPubMed
Pauling, L. & Corey, R. B. (1956). Specific hydrogen-bond formation between pyrimidines and purines in deoxyribonucleic acids. Archives of Biochemistry and Biophysics 65, 164168.Google Scholar
Pley, H. W., Flaherty, K. M. & McKay, D. B. (1994). Three-dimensional structure of a hammerhead ribozyme. Nature 372, 6874.CrossRefGoogle ScholarPubMed
Quigley, G. J. & Rich, A. (1976). Structural domains of a transfer RNA molecule. Science 194, 796806.CrossRefGoogle Scholar
Quigley, G. J., Wang, A. H.-J., Seeman, N. C., Suddath, F. L., Rich, A., Sussman, J. L. & Kim, S. H. (1975). Hydrogen bonding in yeast phenylalanine transfer RNA. Proceedings of the National Academy of Sciences USA 72, 48664870.Google Scholar
Rich, A. (1957). The structure of synthetic polyribonucleotides and the spontaneous formation of a new two-stranded helical molecule. In The Chemical Basis of Heredity (eds. McElroy, W. D. & Glass, B.), pp. 557562. Baltimore, MD: Johns Hopkins University Press.Google Scholar
Rich, A. (1958a). Formation of two- and three-stranded helical molecules by polyinosinic acid and polyadenylic acid. Nature 181, 521625.Google Scholar
Rich, A. (1958b). The molecular structure of polyinosinic acid. Biochimica et Biophysica Acta 29, 502509.CrossRefGoogle ScholarPubMed
Rich, A. (1960). A hybrid helix containing both deoxyribose and ribose polynucleotides and its relation to the transfer of information between the nucleic acids. Proceedings of the National Academy of Sciences USA 46, 10441053.Google Scholar
Rich, A. (1961). The transfer of information between the nucleic acids, In Molecular and Cellular Synthesis, Proc. of the Soc. for the Study of Development and Growth. 19th Growth Symposium, ed. by Rudnick, D., Ronald Press, pp. 311.Google Scholar
Rich, A. (1962). On the problems of evolution and biochemical information transfer. In Horizons in Biochemistry (eds. Kasha, M. & Pullman, B.), pp. 103126. New York: Academic Press.Google Scholar
Rich, A. (1974). How transfer RNA may move inside the ribosome. In Ribosomes (eds. Nomura, M., Tissieres, A. & Lengyel, P.), pp. 871884. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.Google Scholar
Rich, A. (2003). The double helix: a tale of two puckers. Nature Structural Biology 10, 247249.Google Scholar
Rich, A. & Crick, F. H. C. (1955). The structure of collagen. Nature 176, 915916.CrossRefGoogle ScholarPubMed
Rich, A. & Davies, D. R. (1956). A new, two-stranded helical structure: polyadenylic acid and polyuridylic acid. Journal of the American Chemical Society 78, 3548.CrossRefGoogle Scholar
Rich, A., Davies, D. R., Crick, F. H. C. & Watson, J. D. (1961). The molecular structure of polyadenylic acid. Journal of Molecular Biology 3, 7186.Google Scholar
Rich, A. & Watson, J. D. (1954a). Physical studies on ribonucleic acid. Nature 173, 995996.CrossRefGoogle ScholarPubMed
Rich, A. & Watson, J. D. (1954b). Some relations between DNA and RNA. Proceedings of the National Academy of Sciences USA 40, 759764.CrossRefGoogle ScholarPubMed
Robertus, J. D., Ladner, J. E., Finch, J. T., Rhodes, D., Brown, R. S., Clark, B. F. C. & Klug, A. (1974). Structure of yeast phenylalanine tRNA at 3 Å resolution. Nature 250, 546551.Google Scholar
Rosenberg, J. M., Seeman, N. C., Day, R. O. & Rich, A. (1976). RNA double helices generated from crystal structures of double helical dinucleoside phosphates. Biochemical and Biophysical Research Communications 69, 979987.Google Scholar
Rosenberg, J. M., Seeman, N. C., Kim, J. J. P., Suddath, F. L., Nicholas, H. B. & Rich, A. (1973). Double helix at atomic resolution. Nature 243, 150154.Google Scholar
Sobell, H. M., Tomita, K. & Rich, A. (1963). The crystal structure of an intermolecular complex containing a guanine and a cytosine derivative. Proceedings of the National Academy of Sciences USA 49, 885892.Google Scholar
Spencer, M., Fuller, W., Wilkins, M. H. F. & Brown, G. L. (1962). Determination of the helical configuration of ribonucleic acid molecules by X-ray diffraction study of crystalline amino-acid – transfer ribonucleic acid. Nature 194, 10141020.CrossRefGoogle ScholarPubMed
Tener, G. M., Khorana, H. G., Markham, R. & Pol, E. H. (1958). Studies in polynucleotides. II. The synthesis and characterization of linear and cyclic thymidine oligonucleotides. Journal of the American Chemical Society 80, 62236230.Google Scholar
Tomita, K., Katz, L. & Rich, A. (1967). Crystal structure of the intermolecular complex 9-ethyladenine: 1-methyl-5-fluorouracil. Journal of Molecular Biology 30, 545549.Google Scholar
Voet, D. & Rich, A. (1970). The crystal structure of purine, pyrimidines and their intermolecular complexes. Progress in Nucleic Acids Research and Molecular Biology 10, 183265.Google Scholar
Wang, A. H.-J., Fujii, S., van Boom, J. H., van der Marel, G. A., van Boeckel, S. A. A. & Rich, A. (1982). Molecular structure of r(GCG)d(TATACGC): a DNA–RNA hybrid helix joined to double helical DNA. Nature 299, 601604.Google Scholar
Warner, R. C. (1956). Ultraviolet spectra of enzymatically synthesized polynucleotides. Federation Proceedings 15, 379.Google Scholar
Warner, J. R., Knopf, P. M. & Rich, A. (1963). A multiple ribosomal structure in protein synthesis. Proceedings of the National Academy of Sciences USA 149, 122129.Google Scholar
Warner, J. R. & Rich, A. (1964). The number of soluble RNA molecules on reticulocyte polyribosomes. Proceedings of the National Academy of Sciences USA 51, 11341341.Google Scholar
Warner, J. R., Rich, A. & Hall, C. E. (1962). Electron microscope studies of ribosomal clusters synthesizing hemoglobin. Science 138, 13991403.Google Scholar
Watson, J. D. & Crick, F. H. C. (1953). A structure for deoxyribose nucleic acid. Nature 171, 738.Google ScholarPubMed
Wightman, B., Ha, I. & Ruvkun, G. (1993). Post-transcriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75, 855862.Google Scholar
Yusupova, G. Z., Yusupova, M. M., Cate, J. H. D. & Noller, H. F. (2001). The path of messenger RNA through the ribosome. Cell 106, 233241.Google Scholar