Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-22T14:49:32.915Z Has data issue: false hasContentIssue false

The emerging diversity of transpososome architectures

Published online by Cambridge University Press:  07 December 2012

Fred Dyda*
Affiliation:
Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
Michael Chandler
Affiliation:
Laboratoire de Microbiologie et Génétique Moléculaires Centre National de la Recherche Scientifique, 118 Route de Narbonne, 31062, Toulouse Cedex, France
Alison Burgess Hickman
Affiliation:
Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
*
*Author for correspondence: Fred Dyda, Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA. Tel: 301-402-4496; Fax: 301-496-0201; Email: [email protected]

Abstract

DNA transposases are enzymes that catalyze the movement of discrete pieces of DNA from one location in the genome to another. Transposition occurs through a series of controlled DNA strand cleavage and subsequent integration reactions that are carried out by nucleoprotein complexes known as transpososomes. Transpososomes are dynamic assemblies which must undergo conformational changes that control DNA breaks and ensure that, once started, the transposition reaction goes to completion. They provide a precise architecture within which the chemical reactions involved in transposon movement occur, but adopt different conformational states as transposition progresses. Their components also vary as they must, at some stage, include target DNA and sometimes even host-encoded proteins. A very limited number of transpososome states have been crystallographically captured, and here we provide an overview of the various structures determined to date. These structures include examples of DNA transposases that catalyze transposition by a cut-and-paste mechanism using an RNaseH-like nuclease catalytic domain, those that transpose using only single-stranded DNA substrates and targets, and the retroviral integrases that carry out an integration reaction very similar to DNA transposition. Given that there are a number of common functional requirements for transposition, it is remarkable how these are satisfied by complex assemblies that are so architecturally different.

Type
Review Article
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

5. References

Abdelhakim, A. H., Sauer, R. T. & Baker, T. A. (2010). The AAA+ ClpX machine unfolds a keystone subunit to remodel the Mu transpososome. Proceedings of the National Academy of Sciences of the United States of America 107, 24372442.CrossRefGoogle ScholarPubMed
Arciszewska, L. K., Drake, D. & Craig, N. L. (1989). Transposon Tn7. cis-acting sequences in transposition and transposition immunity. Journal of Molecular Biology 207, 3552.CrossRefGoogle ScholarPubMed
Arciszewska, L. K., Mckown, R. L. & Craig, N. L. (1991). Purification of TnsB, a transposition protein that binds to the ends of Tn7. Journal of Biological Chemistry 266, 2173621744.CrossRefGoogle Scholar
Augé-Gouillou, C., Hamelin, M. H., Demattei, M. V., Periquet, M. & Bigot, Y. (2001). The wild-type conformation of the Mos-1 inverted terminal repeats is suboptimal for transposition in bacteria. Molecular Genetics and Genomics 265, 5157.CrossRefGoogle ScholarPubMed
Augé-Gouillou, C., Brillet, B., Germon, S., Hamelin, M. H. & Bigot, Y. (2005a). Mariner Mos1 transposase dimerizes prior to ITR binding. Journal of Molecular Biology 351, 117130.CrossRefGoogle ScholarPubMed
Augé-Gouillou, C., Brillet, B., Hamelin, M. H. & Bigot, Y. (2005b). Assembly of the mariner Mos1 synaptic complex. Molecular and Cellular Biology 25, 28612870.CrossRefGoogle ScholarPubMed
Azaro, M. A. & Landy, A. (2002). λ Integrase and the λ Int family. In Mobile DNA II (eds. Craig, N. L., Craigie, R., Gellert, M. & Lambowitz, A.), pp. 118148. Washington: American Society of Microbiology.Google Scholar
Aziz, R. K., Breitbart, M. & Edwards, R. A. (2010). Transposases are the most abundant, most ubiquitous genes in nature. Nucleic Acids Research 38, 42074217.CrossRefGoogle ScholarPubMed
Baillie, J. K., Barnett, M. W., Upton, K. R., Gerhardt, D. J., Richmond, T. A., De Sapio, F., Brennan, P., Rizzu, P., Smith, S., Fell, M., Talbot, R. T., Gustincich, S., Freeman, T. C., Mattick, J. S., Hume, D. A., Heutink, P., Carninci, P., Jeddeloh, J. A. & Faulkner, G. J. (2011). Somatic retrotransposition alters the genetic landscape of the human brain. Nature 479, 534537.CrossRefGoogle ScholarPubMed
Bainton, R. J., Kubo, K. M., Feng, J. & Craig, N. L. (1993). Tn7 transposition: target DNA recognition is mediated by multiple Tn7-encoded proteins in a purified in vitro system. Cell 72, 931943.CrossRefGoogle Scholar
Barabas, O., Ronning, D. R., Guynet, C., Hickman, A. B., Ton-Hoang, B., Chandler, M. & Dyda, F. (2008). Mechanism of IS200/IS605 family DNA transposases: activation and transposon-directed target site selection. Cell 132, 208220.CrossRefGoogle ScholarPubMed
Barsoum, E., Martinez, P. & Åström, S. U. (2010). α3, a transposable element that promotes host sexual reproduction. Genes and Development 24, 3344.CrossRefGoogle ScholarPubMed
Baudry, C., Malinsky, S., Restituito, M., Kapusta, A., Rosa, S., Meyer, E. & Bétermier, M. (2009). PiggyMac, a domesticated piggyBac transposase involved in programmed genome rearrangements in the ciliate Paramecium tetraurelia. Genes and Development 23, 24782483.CrossRefGoogle ScholarPubMed
Bhasin, A., Goryshin, I. Y., Steiniger-White, M., York, D. & Reznikoff, W. S. (2000). Characterization of a Tn5 pre-cleavage synaptic complex. Journal of Molecular Biology 302, 4963.CrossRefGoogle ScholarPubMed
Biémont, C. (2010). A brief history of the status of transposable elements: from junk DNA to major players in evolution. Genetics 186, 10851093.CrossRefGoogle ScholarPubMed
Beese, L. S. & Steitz, T. A. (1991). Structural basis for the 3′-5′ exonuclease activity of Escherichia coli DNA polymerase I: a two metal ion mechanism. EMBO Journal 10, 2533.CrossRefGoogle ScholarPubMed
Bojja, R. S., Andrake, M. D., Weigand, S., Merkel, G., Yarychkivska, O., Henderson, A., Kummerling, M. & Skalka, A. M. (2011). Architecture of a full-length retroviral integrase monomer and dimer, revealed by small angle X-ray scattering and chemical cross-linking. Journal of Biological Chemistry 286, 1704717059.CrossRefGoogle ScholarPubMed
Braam, L. A. M., Goryshin, I. Y. & Reznikoff, W. S. (1999). A mechanism for Tn5 inhibition – carboxyl-terminal dimerization. Journal of Biological Chemistry 274, 8692.CrossRefGoogle Scholar
Britten, R. J. (2004). Coding sequences of functioning human genes derived entirely from mobile element sequences. Proceedings of the National Academy of Sciences of the United States of America 101, 1682516830.CrossRefGoogle ScholarPubMed
Bouuaert, C. C. & Chalmers, R. (2010). Transposition of the human Hsmar1 transposon: rate-limiting steps and the importance of the flanking TA dinucleotide in second strand cleavage. Nucleic Acids Research 38, 190202.CrossRefGoogle Scholar
Bouuaert, C. C., Liu, D. X. & Chalmers, R. (2011). A simple topological filter in a eukaryotic transposon as a mechanism to suppress genome instability. Molecular and Cellular Biology 31, 317327.CrossRefGoogle Scholar
Bundock, P. & Hooykaas, P. (2005). An Arabidopsis hAT-like transposase is essential for plant development. Nature 436, 282284.CrossRefGoogle ScholarPubMed
Burton, B. M. & Baker, T. A. (2003). Mu transpososome architecture ensures that unfolding by ClpX or proteolysis by ClpXP remodels but does not destroy the complex. Chemistry and Biology, 10, 463472.CrossRefGoogle Scholar
Campos-Olivas, R., Louis, J. M., Clérot, D., Gronenborn, B. & Gronenborn, A. M. (2002). The structure of a replication initiator unites diverse aspects of nucleic acid metabolism. Proceedings of the National Academy of Sciences of the United States of America 99, 1031010315.CrossRefGoogle ScholarPubMed
Castro, C., Smidansky, E. D., Arnold, J. J., Maksimchuk, K. R., Moustafa, I., Uchida, A., Götte, M., Konigsberg, W. & Cameron, C. E. (2009). Nucleic acid polymerases use a general acid for nucleotidyl transfer. Nature Structural and Molecular Biology 16, 212218.CrossRefGoogle ScholarPubMed
Churchward, G. (2002). Conjugatve transposons and related mobile elements. In Mobile DNA II (eds. Craig, N. L., Craigie, R., Gellert, M. & Lambowitz, A.), pp. 177191. Washington: American Society of Microbiology.Google Scholar
Copeland, N. G. & Jenkins, N. A. (2010). Harnessing transposons for cancer gene discovery. Nature Reviews. Cancer 10, 696706.CrossRefGoogle ScholarPubMed
Cordaux, R., Udit, S., Batzer, M. A. & Feschotte, C. (2006). Birth of a chimeric primate gene by capture of the transposase gene from a mobile element. Proceedings of the National Academy of Sciences of the United States of America 103, 81018106.CrossRefGoogle ScholarPubMed
Coufal, N. G., Garcia-Perez, J. L., Peng, G. E., Yeo, G. W., Mu, Y., Lovci, M. T., Morell, M., O'shea, K. S., Moran, J. V. & Gage, F. H. (2009). L1 retrotransposition in human neural progenitor cells. Nature 460, 11271131.CrossRefGoogle ScholarPubMed
Craigie, R. (2001). HIV integrase, a brief overview from chemistry to therapeutics. Journal of Biological Chemistry 276, 2321323216.CrossRefGoogle ScholarPubMed
Curcio, M. J. & Derbyshire, K. M. (2003). The outs and ins of transposition: from Mu to kangaroo. Nature Reviews. Molecular Cell Biology 4, 865877.CrossRefGoogle ScholarPubMed
Datta, S., Larkin, C. & Schildbach, J. F. (2003). Structural insights into single-stranded DNA binding and cleavage by F factor TraI. Structure 11, 13691379.CrossRefGoogle ScholarPubMed
Davies, D. R., Goryshin, I. Y., Reznikoff, W. S. & Rayment, I. (2000). Three-dimensional structure of the Tn5 synaptic complex transposition intermediate. Science 289, 7785.CrossRefGoogle ScholarPubMed
Dawson, A. & Finnegan, D. J. (2003). Excision of the Drosophila mariner transposon Mos1: comparison with bacterial transposition and V(D)J recombination. Molecular Cell 11, 225235.CrossRefGoogle ScholarPubMed
Demattei, M., Hedhili, S., Sinzelle, L., Bressac, C., Casteret, S., Moiré, N., Cambefort, J., Thomas, X., Pollet, N., Gantet, P. & Bigot, Y. (2011). Nuclear importation of/Mariner/transposases among eukaryotes: motif requirements and homo-protein interactions. PLoS One 6, e23693.CrossRefGoogle ScholarPubMed
Derbyshire, K. M., Kramer, M. & Grindley, N. D. F. (1990). Role of instability in the cis action of the insertion sequence IS903 transposase. Proceedings of the National Academy of Sciences of the United States of America, 87, 40484052.CrossRefGoogle ScholarPubMed
Duret, L., Cohen, J., Jubin, C., Dessen, P., GoÛt, J.-F., Mousset, S., Aury, J.-M., Jaillon, O., Noël, B., Arnaiz, O., Bétermier, M., Wincker, P., Meyer, E. & Sperling, L. (2008). Analysis of sequence variability in the macronuclear DNA of Paramecium tetraurelia: a somatic view of the germline. Genome Research 18, 585596.CrossRefGoogle ScholarPubMed
Duval-Valentin, G. & Chandler, M. (2011). Co-translational control of DNA transposition: a window of opportunity. Molecular Cell 44, 989996.CrossRefGoogle Scholar
Dyda, F., Hickman, A. B., Jenkins, T. M., Engelman, A., Craigie, R. & Davies, D. R. (1994). Crystal structure of the catalytic domain of HIV-1 integrase: similarity to other polynucleotidyl transferases. Science 266, 19811986.CrossRefGoogle ScholarPubMed
Engelman, A., Mizuuchi, K. & Craigie, R. (1991). HIV-1 DNA integration – mechanism of viral-DNA cleavage and DNA strand transfer. Cell 67, 12111221.CrossRefGoogle ScholarPubMed
Finnegan, D. J. (1989). Eukaryotic transposable elements and genome evolution. Trends in Genetics 5, 103107.CrossRefGoogle ScholarPubMed
Gratias, A., Lepère, G., Garnier, O., Rosa, S., Duharcourt, S., Malinsky, S., Meyer, E. & Bétermier, M. (2008). Developmentally programmed DNA splicing in Paramecium reveals short-distance crosstalk between DNA cleavage sites. Nucleic Acids Research 36, 32443251.CrossRefGoogle ScholarPubMed
Guasch, A., Lucas, M., Moncalián, G., Cabezas, M., Pérez-Luque, R., Gomis-Rüth, F. X., De La Cruz, F. & Coll, M. (2003). Recognition and processing of the origin of transfer DNA by conjugative relaxase TrwC. Nature Structural Biology 10, 10021010.CrossRefGoogle ScholarPubMed
Grabundzija, I., Irgang, M., Mátés, L., Belay, E., Matrai, J., Gogol-Döring, A., Kawakami, K., Chen, W., Ruiz, P., Chuah, M. K. L., Vandendriessche, T., Izsvák, Z. & Ivics, Z. (2010). Comparative analysis of transposable element vector systems in human cells. Molecular Therapy 18, 12001209.CrossRefGoogle ScholarPubMed
Grindley, N. D. F. & Joyce, C. M. (1980). Analysis of the structure and function of the kanamycin-resistance transposon Tn903. Cold Spring Harbor Symposia on Quantitative Biology 45, 125133.CrossRefGoogle Scholar
Grundy, G. J., Ramón-Maiques, S., Dimitriadis, E. K., Kotova, S., Biertümpfel, C., Heymann, J. B., Steven, A. C., Gellert, M. & Yang, W. (2009). Initial stages of V(D)J recombination: the organization of RAG1/2 and RSS DNA in the postcleavage complex. Molecular Cell 35, 217227.CrossRefGoogle ScholarPubMed
Guynet, C., Hickman, A. B., Barabas, O., Dyda, F., Chandler, M. & Ton-Hoang, B. (2008). In vitro reconstitution of a single-stranded transposition mechanism of IS608. Molecular Cell 29, 302312.CrossRefGoogle ScholarPubMed
Guynet, C., Achard, A., Ton-Hoang, B., Barabas, O., Hickman, A. B., Dyda, F. & Chandler, M. (2009). Resetting the site: redirecting integration of an insertion sequence in a predictable way. Molecular Cell 34, 612619.CrossRefGoogle Scholar
Haniford, D. B. (2006). Transpososome dynamics and regulation in Tn10 transposition. Critical Reviews in Biochemistry and Molecular Biology 41, 407424.CrossRefGoogle ScholarPubMed
Hare, S., Gupta, S. S., Valkov, E., Engelman, A. & Cherepanov, P. (2010). Retroviral intasome assembly and inhibition of DNA strand transfer. Nature 464, 232237.CrossRefGoogle ScholarPubMed
Haren, L., Polard, P., Ton-Hoang, B. & Chandler, M. (1998). Multiple oligomerization domains in the IS911 transposase: a leucine zipper motif is essential for activity. Journal of Molecular Biology 283, 2941.CrossRefGoogle Scholar
He, S., Hickman, A. B., Dyda, F., Johnson, N. P., Chandler, M. & Ton-Hoang, B. (2011). Reconstitution of a functional IS608 single-strand transpososome: role of non-canonical base pairing. Nucleic Acids Research 39, 85038512.CrossRefGoogle ScholarPubMed
Hickman, A. B., Li, Y., Mathew, S. V., May, E. W., Craig, N. L. & Dyda, F. (2000). Unexpected structural diversity in DNA recombination: the restriction endonuclease connection. Molecular Cell 5, 10251034.CrossRefGoogle ScholarPubMed
Hickman, A. B., Ronning, D. R., Kotin, R. M. & Dyda, F. (2002). Structural unity among viral origin binding proteins: crystal structure of the nuclease domain of adeno-associated virus Rep. Molecular Cell 10, 327337.CrossRefGoogle ScholarPubMed
Hickman, A. B., Perez, Z. N., Zhou, L. Q., Musingarimi, P., Ghirlando, R., Hinshaw, J. E., Craig, N. L. & Dyda, F. (2005). Molecular architecture of a eukaryotic DNA transposase. Nature Structural and Molecular Biology 12, 715721.CrossRefGoogle ScholarPubMed
Hickman, A. B., Chandler, M. & Dyda, F. (2010a). Integrating prokaryotes and eukaryotes: DNA transposases in light of structure. Critical Reviews in Biochemistry and Molecular Biology 45, 5069.CrossRefGoogle ScholarPubMed
Hickman, A. B., James, J. A., Barabas, O., Pasternak, C., Ton-Hoang, B., Chandler, M., Sommer, S. & Dyda, F. (2010b). DNA recognition and the precleavage state during single-stranded DNA transposition in D. radiodurans. EMBO Journal 29, 38403852.CrossRefGoogle ScholarPubMed
Holder, J. W. & Craig, N. L. (2010). Architecture of the Tn7 posttransposition complex: an elaborate nucleoprotein structure. Journal of Molecular Biology 401, 167181.CrossRefGoogle ScholarPubMed
Ivics, Z., Li, M. A., Mátés, L., Boeke, J. D., Nagy, A., Bradley, A. & Izsvák, Z. (2009). Transposon-mediated genome manipulation in vertebrates. Nature Methods 6, 415422.CrossRefGoogle ScholarPubMed
Jain, C. & Kleckner, N. (1993a). IS10 mRNA stability and steady state levels in Escherichia coli: indirect effects of translation and role of rne function. Molecular Microbiology 9, 233247.CrossRefGoogle ScholarPubMed
Jain, C. & Kleckner, N. (1993b). Preferential cis action of IS10 transposase depends upon its mode of synthesis. Molecular Microbiology 9, 249260.CrossRefGoogle ScholarPubMed
Jaskolski, M., Alexandratos, J. N., Bujacz, G. & Wlodawer, A. (2009). Piecing together the structure of retroviral integrase, an important target in AIDS therapy. FEBS Journal 276, 29262946.CrossRefGoogle ScholarPubMed
Jenkins, T. M., Engelman, A., Ghirlando, R. & Craigie, R. (1996). A soluble active mutant of HIV-1 integrase – involvement of both the core and carboxyl-terminal domains in multimerization. Journal of Biological Chemistry 271, 77127718.CrossRefGoogle ScholarPubMed
Jones, J. M. & Gellert, M. (2004). The taming of a transposon: V(D)J recombination and the immune system. Immunological Reviews 200, 233248.CrossRefGoogle ScholarPubMed
Kapitonov, V. V. & Jurka, J. (2005). RAG1 core and V(D)J recombination signal sequences were derived from Transib transposons. PLoS Biology 3, e181.CrossRefGoogle ScholarPubMed
Kersulyte, D., Velapatiño, B., Dailide, G., Mukhopadhyay, A. K., Ito, Y., Cahuayme, L., Parkinson, A. J., Gilman, R. H. & Berg, D. E. (2002). Transposable element ISHp608 of Helicobacter pylori: nonrandom geographic distribution, functional organization, and insertion specificity. Journal of Bacteriology 184, 9921002.CrossRefGoogle ScholarPubMed
Klenchin, V. A., Czyz, A., Goryshin, I. Y., Gradman, R., Lovell, S., Rayment, I. & Reznikoff, W. S. (2008). Phosphate coordination and movement of DNA in the Tn5 synaptic complex: role of the (R)YREK motif. Nucleic Acids Research 36, 58555862.CrossRefGoogle Scholar
Kobryn, K., Watson, M. A., Allison, R. G. & Chaconas, G. (2002). The Mu three-site synapse: a strained assembly platform in which delivery of the L1 transposase binding site triggers catalytic commitment. Molecular Cell 10, 659669.CrossRefGoogle ScholarPubMed
Koonin, E. V. & Ilyina, T. V. (1993). Computer-assisted dissection of rolling circle DNA replication. Biosystems 30, 241268.CrossRefGoogle ScholarPubMed
Kunze, R. & Starlinger, P. (1989). The putative transposase of transposable element Ac from Zea mays L. interacts with subterminal sequences of Ac. EMBO Journal 8, 31773185.CrossRefGoogle ScholarPubMed
Levchenko, I., Luo, L. & Baker, T. A. (1995). Disassembly of the Mu transposase tetramer by the ClpX chaperone. Genes and Development 9, 23992408.CrossRefGoogle ScholarPubMed
Li, M., Mizuuchi, M., Burke, T. R. & Craigie, R. (2006). Retroviral DNA integration: reaction pathway and critical intermediates. EMBO Journal 25, 12951304.CrossRefGoogle ScholarPubMed
Li, X., Krishnan, L., Cherepanov, P. & Engelman, A. (2011). Structural biology of retroviral DNA integration. Virology 411, 194205.CrossRefGoogle ScholarPubMed
Liu, D., Bischerour, J., Siddique, A., Buisine, N., Bigot, Y. & Chalmers, R. (2007). The human SETMAR protein preserves most of the activities of the ancestral Hsmar1 transposase. Molecular and Cellular Biology 27, 11251132.CrossRefGoogle ScholarPubMed
Lovell, S., Goryshin, I. Y., Reznikoff, W. R. & Rayment, I. (2002). Two-metal active site binding of a Tn5 transposase synaptic complex. Nature Structural Biology 9, 278281.CrossRefGoogle ScholarPubMed
Maertens, G. N., Hare, S. & Cherepanov, P. (2010). The mechanism of retroviral integration from X-ray structures of its key intermediates. Nature 468, 326329.CrossRefGoogle ScholarPubMed
Mátés, L., Chuah, M. K. L., Belay, E., Jerchow, B., Manoj, N., Acosta-Sanchez, A., Grzela, D. P., Schmitt, A., Becker, K., Matrai, J., Ma, L., Samara-Kuko, E., Gysemans, C., Pryputniewicz, D., Miskey, C., Fletcher, B., Vandendriessche, T., Ivics, Z. & Izsvák, Z. (2009). Molecular evolution of a novel hyperactive Sleeping Beauty transposase enables robust stable gene transfer in vertebrates. Nature Genetics 41, 753761.CrossRefGoogle ScholarPubMed
McClintock, B. (1950). The origin and behavior of mutable loci in maize. Proceedings of the National Academy of Sciences of the United States of America 36, 344355.CrossRefGoogle ScholarPubMed
Mahillon, J. & Chandler, M. (1998). Insertion sequences. Microbiology and Molecular Biology Reviews 62, 725774.CrossRefGoogle ScholarPubMed
Mhammedi-Alaoui, A., Pato, M., Gama, M.-J. & Toussaint, A. (1994). A new component of bacteriophage Mu replicative transposition machinery: the Escherichia coli ClpX. Molecular Microbiology 11, 11091116.CrossRefGoogle ScholarPubMed
Miskey, C., Papp, B., Mátés, L., Sinzelle, L., Keller, H., Izsvák, Z. & Ivics, Z. (2007). The ancient mariner sails again: transposition of the human Hsmar1 element by a reconstructed transposase and activities of the SETMAR protein on transposon ends. Molecular and Cellular Biology 27, 45894600.CrossRefGoogle ScholarPubMed
Mizuuchi, K. (1992). Transpositional recombination: mechanistic insights from studies of Mu and other elements. Annual Review of Biochemistry 61, 10111051.CrossRefGoogle ScholarPubMed
Montaño, S. P. & Rice, P. A. (2011). Moving DNA around: DNA transposition and retroviral integration. Current Opinion in Structural Biology 21, 370378.CrossRefGoogle ScholarPubMed
Namgoong, S. Y. & Harshey, R. M. (1998). The same two monomers within a MuA tetramer provide the DDE domains for the strand cleavage and strand transfer steps of transposition. EMBO Journal 17, 37753785.CrossRefGoogle ScholarPubMed
Naumann, T. A. & Reznikoff, W. S. (2000). Trans catalysis in Tn5 transposition. Proceedings of the National Academy of Sciences of the United States of America 97, 89448949.CrossRefGoogle ScholarPubMed
Normand, C., Duval-Valentin, G., Haren, L. & Chandler, M. (2001). The terminal inverted repeats of IS911: requirements for synaptic complex assembly and activity. Journal of Molecular Biology 308, 853871.CrossRefGoogle ScholarPubMed
North, S. H. & Nakai, H. (2005). Host factors that promote transpososome disassembly and the PriA-PriC pathway for restart primosome assembly. Molecular Microbiology 56, 16011616.CrossRefGoogle ScholarPubMed
Nowacki, M., Higgins, B. P., Maquilan, G. M., Swart, E. C., Doak, T. G. & Landweber, L. F. (2009). A functional role for transposases in a large eukaryotic genome. Science 324, 935938.CrossRefGoogle Scholar
Peters, J. E. & Craig, N. L. (2001). Tn7: smarter than we thought. Nature Reviews. Molecular Cell Biology 2, 806814.CrossRefGoogle ScholarPubMed
Reznikoff, W. S. (2008). Transposon Tn5. Annual Review of Genetics 42, 269286.CrossRefGoogle ScholarPubMed
Richardson, J. M., Dawson, A., O'hagan, N., Taylor, P., Finnegan, D. J. & Walkinshaw, M. D. (2006). Mechanism of Mos1 transposition: insights from structural analysis. EMBO Journal 25, 13241334.CrossRefGoogle ScholarPubMed
Richardson, J. M., Colloms, S. D., Finnegan, D. J., & Walkinshaw, M. D. (2009). Molecular architecture of the Mos1 paired-end complex: the structural basis of DNA transposition in a eukaryote. Cell 138, 10961108.CrossRefGoogle Scholar
Rodgers, K. K., Villey, I. J., Ptaszek, L., Corbett, E., Schatz, D. G. & Coleman, J. E. (1999). A dimer of the lymphoid protein RAG1 recognizes the recombination signal sequence and the complex stably incorporates the high mobility group protein HMG2. Nucleic Acids Research 27, 29382946.CrossRefGoogle ScholarPubMed
Ronning, D. R., Guynet, C., Ton-Hoang, B., Perez, Z. N., Ghirlando, R., Chandler, M. & Dyda, F. (2005). Active site sharing and subterminal hairpin recognition in a new class of DNA transposases. Molecular Cell 20, 143154.CrossRefGoogle Scholar
Rosta, E., Nowotny, M., Yang, W. & Hummer, G. (2011). Catalytic mechanism of RNA backbone cleavage by ribonuclease H from quantum mechanics/molecular mechanics simulations. Journal of the American Chemical Society 133, 89348941.CrossRefGoogle ScholarPubMed
Roth, D. B., Menetski, J. P., Nakajima, P. B., Bosma, M. J. & Gellert, M. (1992). V(D)J recombination: broken DNA molecules with covalently sealed (hairpin) coding ends in scid mouse thymocytes. Cell 70, 983991.CrossRefGoogle ScholarPubMed
Rousseau, P., Normand, C., Loot, C., Turlan, C., Alazard, R., Duval-Valentin, G. & Chandler, M. (2002). Transposition of IS911. In Mobile DNA II (eds. Craig, N. L., Craigie, R., Gellert, M. & Lambowitz, A.), pp. 366383. Washington: American Society of Microbiology.Google Scholar
Sakai, J., Chalmers, R. M. & Kleckner, N. (1995). Identification and characterization of a pre-cleavage synaptic complex that is an early intermediate in Tn10 transposition. EMBO Journal 14, 43744383.CrossRefGoogle ScholarPubMed
Sarnovsky, R. J., May, E. W. & Craig, N. L. (1996). The Tn7 transposase is a heteromeric complex in which DNA breakage and joining activities are distributed between different gene products. EMBO Journal 15, 63486361.CrossRefGoogle ScholarPubMed
Schoeberl, U. E. & Mochizuki, K. (2011). Keeping the soma free of transposons: programmed DNA elimination in ciliates. Journal of Biological Chemistry 286, 3704537052.CrossRefGoogle ScholarPubMed
Sinzelle, L., Izsvák, Z. & Ivics, Z. (2009). Molecular domestication of transposable elements: from detrimental parasites to useful host genes. Cellular and Molecular Life Sciences 66, 10731093.CrossRefGoogle ScholarPubMed
Skelding, Z., Sarnovsky, R. & Craig, N. L. (2002). Formation of a nucleoprotein complex containing Tn7 and its target DNA regulates transposition initiation. EMBO Journal 21, 34943504.CrossRefGoogle ScholarPubMed
Steiniger-White, M., Bhasin, A., Lovell, S., Rayment, I. & Reznikoff, W. S. (2002). Evidence for “unseen” transposase-DNA contacts. Journal of Molecular Biology 322, 971982.CrossRefGoogle ScholarPubMed
Tang, M., Cecconi, C., Kim, H., Bustamante, C. & Rio, D. C. (2005). Guanosine triphosphate acts as a cofactor to promote assembly of initial P-element transposase-DNA synaptic complexes. Genes and Development 19, 14221425.CrossRefGoogle ScholarPubMed
Ton-Hoang, B., Turlan, C. & Chandler, M. (2004). Functional domain of the IS1 transposase: analysis in vivo and in vitro. Molecular Microbiology 53, 15291543.CrossRefGoogle ScholarPubMed
Ton-Hoang, B., Guynet, C., Ronning, D. R., Cointin-Marty, B., Dyda, F. & Chandler, M. (2005). Transposition of ISHp608, member of an unusual family of bacterial insertion sequences. EMBO Journal 24, 33253338.CrossRefGoogle ScholarPubMed
Valkov, E., Gupta, S. S., Hare, S., Helander, A., Roversi, P., Mcclure, M. & Cherepanov, P. (2009). Functional and structural characterization of the integrase from the prototype foamy virus. Nucleic Acids Research 37, 243255.CrossRefGoogle ScholarPubMed
Wicker, T., Sabot, F., Hua-Van, A., Bennetzen, J. L., Capy, P., Chalhoub, B., Flavell, A., Leroy, P., Morgante, M., Panaud, O., Paux, E., Sanmiguel, P. & Schulman, A. H. (2007). A unified classification system for eukaryotic transposable elements. Nature Reviews. Genetics 8, 973982.CrossRefGoogle ScholarPubMed
Williams, T. L., Jackson, E. L., Carritte, A. & Baker, T. A. (1999). Organization and dynamics of the Mu transpososome: recombination by communication between two active sites. Genes and Development 13, 27252737.CrossRefGoogle ScholarPubMed
Yanagihara, K. & Mizuuchi, K. (2003). Progressive structural transitions within Mu transpositional complexes. Molecular Cell 11, 215224.CrossRefGoogle ScholarPubMed
Yin, Z. Q., Suzuki, A., Lou, Z., Jayaram, M. & Harshey, R. M. (2007). Interactions of phage mu enhancer and termini that specify the assembly of a topologically unique interwrapped transpososome. Journal of Molecular Biology 372, 382396.CrossRefGoogle ScholarPubMed
York, D. & Reznikoff, W. S. (1996). Purification and biochemical analyses of a monomeric form of Tn5 transposase. Nucleic Acids Research 24, 37903796.CrossRefGoogle ScholarPubMed
Yu, K. F. & Lieber, M. R. (2000). The nicking step in V(D)J recombination is independent of synapsis: implications for the immune repertoire. Molecular and Cellular Biology 20, 79147921.CrossRefGoogle Scholar
Yuan, J. F., Beniac, D. R., Chaconas, G., & Ottensmeyer, F. P. (2005). 3D reconstruction of the Mu transposase and the Type 1 transpososome: a structural framework for Mu DNA transposition. Genes and Development 19, 840852.CrossRefGoogle ScholarPubMed
Yuan, Y. & Wessler, S. R. (2011). The catalytic domain of all eukaryotic cut-and-paste transposase superfamilies. Proceedings of the National Academy of Sciences of the United States of America 108, 78847889.CrossRefGoogle ScholarPubMed
Yusa, K., Zhou, L., Li, M. A., Bradley, A. & Craig, N. L. (2011). A hyperactive piggyBac transposase for mammalian applications. Proceedings of the National Academy of Sciences of the United States of America 108, 15311536.CrossRefGoogle ScholarPubMed
Zerbib, D., Jakowec, M., Prentki, P., Galas, D. J. & Chandler, M. (1987). Expression of proteins essential for IS1 transposition: specific binding of InsA to the ends of IS1. EMBO Journal 6, 31633169.CrossRefGoogle Scholar
Zhou, L., Mitra, R., Atkinson, P. W., Hickman, A. B., Dyda, F. & Craig, N. L. (2004). Transposition of hAT elements links transposable elements and V(D)J recombination. Nature 432, 9951001.CrossRefGoogle ScholarPubMed