Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-09T18:16:13.494Z Has data issue: false hasContentIssue false

Effects of Metal Binding on Protein Structure

Published online by Cambridge University Press:  17 March 2009

Felix Friedberg
Affiliation:
Department of Biochemistry, College of Medicine, Howard University, Washington, D.C. 20001

Extract

A distinction has been made between ‘metalloproteins’ and ‘metal-protein complexes’. The former exhibit high metal-ligand stability constants (the metal is not removed during the isolation of the protein), while the latter bind metal ions only loosely (Vallee, 1955). Actually, all proteins can be considered as existing as metal-protein complexes. Selectivity, however, among proteins in their tendency to combine with inorganic ions (both with regard to the type of ion as well as number of ions) suggests that particular configurations produce specific reactive sites. In turn, binding of ions to these sites alters the electronic and consequently the steric conformation of the protein. Thus, effects on macromolecular conformation may not only be due to structural changes of the solvent induced by ions, which modifies solvent-macromole interaction, but also to specific ligation of the ions to the protien which alters local molecular arrangement.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1974

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abita, J. P., Delaage, M., Lazdunski, M. & Savrda, J. (1969). The mechanism of activation of trypsinogen. Eur. J. Biochem. 8, 314–24.CrossRefGoogle ScholarPubMed
Adams, M. J., Liljas, A. & Rossman, M. G. (1973). Functional anion binding sites in dogfish M4 lactate dehydrogenase. J. molec. Biol. 76, 519–31.CrossRefGoogle ScholarPubMed
Aisen, J., Aasa, R., Malström, B. G. & Vänngård, T. (1967). Bicarbonate and the binding of iron to transferrin. J. biol. Chem. 242, 2484–90.CrossRefGoogle ScholarPubMed
Aisen, P., Leibman, A., Pinkowitz, R. A. & Pollack, S. (1973). Exchangeability of bicarbonate specifically∣bound to transferrin. Biochemistry, N.Y. 12, 3679–84.CrossRefGoogle Scholar
Andrews, L. J. & Forster, L. S. (1972). Protein difference spectra. Effect of solvent and charge on tryptophan. Biochemistry, N.Y. 11, 1875–79.CrossRefGoogle ScholarPubMed
Arai, K. & Watanabe, S. (1968). A study of troponin, a myofibrillar protein from rabbit skeletal muscle. J. biol. Chem. 243, 5670–8.CrossRefGoogle ScholarPubMed
Bais, R. & Keech, B. (1972). The magnesium ion (Mg2+) activation of sheep kidney pyruvate carboxylase. J. biol. Chem. 247, 3255–61.CrossRefGoogle Scholar
Benesch, R. E., Benesch, R. & Yu, C. I. (1969). The oxygenation of hemoglobin in the presence of 2,3-diphosphoglycerate. Effect of temperature, pH, ionic strength and hemoglobin concentration. Biochemistry, N.Y. 8, 2567–71.CrossRefGoogle Scholar
Benzonana, G., Capony, J.-P. & Pechère, J.-F. (1972). The binding of calcium to muscular parvalbumins. Biochim. biophys. Acta 278, 110–16.CrossRefGoogle ScholarPubMed
Blundell, T. L., Cutfield, J. F., Dodson, E. J., Hodgkins, D. C. & Mercola, D. A. (1971). The crystal structure of rhombohedral 2 zinc insulin. Cold Spring Harb. Symp. quart. Biol. 36, 233–41.CrossRefGoogle Scholar
Brewer, J. M. & Weber, G. (1966). The effect of magnesium on some physical properties of yeast enolase. J. biol. Chem. 241, 2550–7.CrossRefGoogle ScholarPubMed
Brill, A. S. & Venable, H. (1967). Effects of site symmetry and sequential metal binding upon protein titration (zinc insulin). J. Am. chem. Soc. 89, 3622–26.CrossRefGoogle Scholar
Cohen, S. R. & Wilson, I. B. (1966). Measurements of the zinc dissociation constants of alkaline phosphatase from E. coli by equilibration with zinc ion buffers. Biochemistry, N.Y. 5, 904.CrossRefGoogle Scholar
Cohlberg, J. A., Pigiet, V. P. Jr, & Schachman, H. K. (1972). Structure and arrangement of the regulatory subunits in aspartate transcarbamylase. Biochemistry, N.Y. II, 33963411.CrossRefGoogle Scholar
Coleman, J. E. & Vallee, B. L. (1960). Metallocarboxypeptidases. J. biol. Chem. 235, 390–5.CrossRefGoogle ScholarPubMed
Coleman, J. E. & Vallee, B. L. (1961). Metallocarboxypeptidases: Stability constants and enzymatic characteristics. J. biol. Chem. 236, 2244–9.CrossRefGoogle ScholarPubMed
Coleman, P. L. & Weiner, H. (1973a). Interaction of chloride ion with horse liver alcohol dehydrogenase – Reduced nicotinamide adenine dinucleotide complexes. Biochemistry, N.Y. 12, 1702–5.CrossRefGoogle ScholarPubMed
Coleman, P. L. & Weiner, H. (1973b). Simultaneous binding of competitive ligands to horse liver alcohol dehydrogenase. Biochemistry, N.Y. 12, 1705–9.CrossRefGoogle ScholarPubMed
Cottam, G. L. & Uyeda, K. (1973). Manganese substrate complexes of phosphofructokinase studied by pulsed magnetic resonance. Archs. Biochem. Biophys. 154, 683–90.CrossRefGoogle Scholar
Cotton, F. A., Bier, C. J., Day, V. W., Hazen, E. E. Jr & Larsen, S. (1971). Some aspects of the structure of staphylococcal nuclease. Cold Spring Harb. Symp. quant. Biol. 36, 243–9.CrossRefGoogle Scholar
Datta, P. & Gest, H. (1965). Homoserine dehydrogenase of rhodospirillum rubrum. J. biol. Chem. 240, 3023–33.CrossRefGoogle ScholarPubMed
Delaage, M. & Lazdunski, M. (1967). The binding of Ca2+ to trypsinogen and its relation to the mechanism of activation. Biochem. biophys. Res. Commun. 28, 390–4.CrossRefGoogle Scholar
Drum, D. E., HarrisonIV, J. H. IV, J. H., Li, T.-K., Bethune, J. L. & Vallee, B. L. (1967). Structural and functional zinc in horse liver alcohol dehydrogenase. Proc. natn Acad. Sci. U.S.A. 57, 1434–40.CrossRefGoogle ScholarPubMed
Ebashi, S. & Kodama, A. (1965). A new protein factor promoting aggregation of tropomyosin. J. Biochemistry Tokyo 58, 107–8.CrossRefGoogle ScholarPubMed
Ebashi, S., Ohtsuki, I. & Mihashi, K. (1972). Regulatory proteins of muscle with special reference to troponin. Cold Spring Harb. Symp. quant. Biol. 37, 215–23.CrossRefGoogle Scholar
Faloona, G. R. & Srere, P. A. (1969). Escherichia coli citrate synthase. Purification and the effect of potassium on some properties. Biochemistry, N.Y. 8, 44974503.CrossRefGoogle ScholarPubMed
Feder, J., Garrett, L. R. & Wildi, B. S. (1971). Studies on the role of calcium in thermolysin. Biochemistry, N.Y. 10, 4552–5.CrossRefGoogle ScholarPubMed
Fredericq, E. (1956). Études de interactions de proteins et d'ions, Thesis, Université de Liège Faculté de Sciences.Google Scholar
Floyd, B. F. & Friedberg, F. (1966). Ion binding by ATP-creatine phosphotransferase. J. biol. Chem. 241, 5533–6.CrossRefGoogle Scholar
Folk, J. E., Mullooly, J. P. & Cole, P. W. (1967). Mechanism of action of guinea pig liver transglutaminase. II. The role of metal in enzyme activation. J. biol. Chem. 242, 1838–44.CrossRefGoogle ScholarPubMed
Friedberg, F. & Emiola, L. O. (1968). Ion binding by metmyoglobin. Biochemistry, N.Y. 7, 2183–5.CrossRefGoogle ScholarPubMed
Friedberg, F. & Bose, S. (1969). Ion binding by alpha chymotrypsin. Biochemistry, N.Y. 8, 2564–7.CrossRefGoogle ScholarPubMed
Giroux, E. L. & Henkin, R. I. (1972). Competition for zinc among serum albumin and amino acids. Biochem. biophys. Acta 273, 6472.CrossRefGoogle ScholarPubMed
Grazi, E., Accorsi, A. & Pontremoli, S. (1971). Fructose-1,6-diphosphatase from rabbit liver. XIV. The sequential binding of substrate and cation to the enzyme in the catalytic process. J. biol. Chem. 246, 6651–4.CrossRefGoogle Scholar
Greaser, M. L., Yamaguchi, M., Brekke, C., Potter, J. & Gergely, T. (1972). Troponin subunits and their interactions. Cold Spring Harb. Symp. quant. Biol. 37, 235–49.CrossRefGoogle Scholar
Griffin, J. H., Rosenbusch, J. P., Blout, E. R. & Weber, K. K. (1973). Conformational changes in aspartate transcarbamylase. II. Circular dichroism evidence for the involvement of metal ions in allosteric interactions. J. biol. Chem. 248, 5057–62.CrossRefGoogle ScholarPubMed
Hanlon, D. P. & Westhead, E. W. (1965). Conformation changes of yeast phosphopyruvate hydratase (enolase) induced by activating and inhibiting metal ions. Biochim. biophys. Acta 96, 537540.CrossRefGoogle ScholarPubMed
Hanlon, D. P. & Westhead, E. W. (1969a). Equilibrium measurements of the interaction of yeast enolase with activating metal ions. Biochemistry, N.Y. 8, 4247–55.CrossRefGoogle ScholarPubMed
Hanlon, D. P. & Westhead, E. W. (1969b). Kinetic studies on the activation of yeast enolase by divalent cations. Biochemistry, N.Y. 8, 4255–60.CrossRefGoogle ScholarPubMed
Hardman, K. D. & Ainsworth, C. F. (1972). Structure of concanavalin A at 2·4Å resolution. Biochemistry, N.Y. II, 4910–19.CrossRefGoogle Scholar
Heck, H. D'A & Truffa-Bachi, P. (1970). Circular dichroic and optical rotatory dispersion spectra of the threonine – inhibited aspartokinase – homoserine dehydrogenase of Escherichia coli K 12. Effect of ligand binding and protein denaturation. Biochemistry, N.Y. 9, 2776–83.CrossRefGoogle Scholar
Himes, R. H. & Wilder, T. (1965). Formyltetrahydrofolate synthetase: Mechanism of cation activation. Biochim. biophys. Acta 99, 464–75.CrossRefGoogle ScholarPubMed
Hohne, W. E. & Rapoport, T. A. (1973). Slow conformational changes of the inorganic pyrophosphatase from baker's yeast induced by divalent metal ions. Eur. J. Biochem. 33, 323–31.CrossRefGoogle ScholarPubMed
Hsiu, J., Fischer, E. H. & Stein, E. A. (1964). Alpha-amylases as calciummetalloenzymes. II. Calcium and the catalyticactivity. Biochemistry, N.Y. 3, 61–6.CrossRefGoogle Scholar
Jack, A., Weinzierl, J. & Kalb, A. J. (1971). An X-ray crystallographic study of demetallized concanavalin A. J. molec. Biol. 58, 389–95.CrossRefGoogle ScholarPubMed
Jaenicke, R., Koberstein, R. & Tenscher, B. (1971). The enzymically active unit of lactic dehydrogenase. Eur. J. Biochem. 23, 150–9.CrossRefGoogle ScholarPubMed
Kachmar, J. F. & Boyer, P. D. (1953). Kinetic analysis of enzyme reactions. II. The potassium activation and calcium inhibition of pyruvic phosphoferase. J. biol. Chem. 200, 669–82.CrossRefGoogle ScholarPubMed
Kannan, K. K., Liljas, A., Waara, I., Bergsten, P. C., Lövgren, S., Strandberg, B., Bengtsson, U., Carbom, U., Fridborg, K., Järup, L. & Petef, M. (1971). Crystal structure of human erythrocyte carbonic anhydrase C. VI. The three-dimensional structure at high resolution in relation to other mammalian carbonic anhydrases. Cold Spring Harb. quant. Symp Biol. 36, 221–31.CrossRefGoogle Scholar
Kayne, F. J. & Reuben, J. (1970). Thallium-205 nuclear magnetic resonance as a probe for studying metal ion binding to biological macromolecules. Estimate of the distance between the monovalent and divalent activators of pyruvate kinase. J. Am. chem. Soc. 92, 220–7.CrossRefGoogle Scholar
Kayne, F. J. & Suelter, C. H. (1965). Effects of temperature, substrate, and activating cations on the conformations of pyruvate kinase in aqueous solutions. J. Am. chem. Soc. 87, 897900.CrossRefGoogle ScholarPubMed
Keech, B. & Barritt, F. T. (1967). Allosteric activation of sheep kidney pyruvate carboxylase by the magnesium ion (Mg2+) and the magnesium adenosine triphosphate ion (Mg ATP2-). J. biol. Chem. 242, 1983–7.CrossRefGoogle Scholar
Kendrick-Jones, J., Lehman, W. & Szent-Györgyi, G. (1970). Regulation in molluscan muscle. J. molec. Biol. 54, 313–26.CrossRefGoogle Scholar
Kingdon, H. S., Hubbard, J. S. & Stadtman, E. R. (1968). Regulation of glutamine synthetase. XI. The nature and implications of a lag phase in the E. coli glutamine synthetase reaction. Biochemistry, N.Y. 7, 2136–42.CrossRefGoogle Scholar
Klotz, I. M. (1967). Energy changes in biochemical reactions. New York: Acad. Press.Google Scholar
Knox, J. R. & Wyckoff, H. W. (1973). A crystallographic study of alkaline phosphatase at 7·7 Å resolution. J. molec. Biol. 74, 533–45.CrossRefGoogle Scholar
Kolb, H. J. & Kolb, H. (1973). Magnetic resonance studies of the binding of manganese to D-fructose-1,6-diphosphate 1-phosphohydrotase (hexose-1,6-diphosphatase). Hoppe-Seyler's Z. physiol. Chem. 354, 331–6.CrossRefGoogle ScholarPubMed
Kretsinger, R. H. & Nockolds, C. E. (1973). Carp muscle calcium-binding protein. J. biol. Chem. 248, 3313–26.CrossRefGoogle ScholarPubMed
Levitzki, A. & Reuben, J. (1973). Abortive complexes of α-amylases with lanthanides. Biochemistry, N.Y. 12, 41–4.CrossRefGoogle Scholar
Lewis, M. S. & Saroff, H. A. (1957). The binding of ions to muscle proteins. Measurements of potassium and sodium ions to myosin A, myosin B and actin. J. Am. chem. Soc. 79, 2112–17.CrossRefGoogle Scholar
Lindskog, S. & Nyman, P. O. (1964). Metal-binding properties of human erythrocyte carbonic anhydrase. Biochim. biophys. Acta 85, 462–74.Google Scholar
Lovrien, R. & Sturtevant, J. M. (1971). Calorimetric determination of the enthalpies of binding of ions to deionized bovine serum albumin. Biochemistry, N.Y. 10, 3811–15.CrossRefGoogle ScholarPubMed
Malström, B. G. (1961). Enolase, The Enzymes, vol. 5, Second Edition, pp. 471–94, Boyer, P. D., Lardy, H. and Myrback, K., Eds. N.Y.: Acad. Press.Google Scholar
Matthews, B. W., Coleman, P. M., Jansonius, J. N., Titani, K., Walsh, K. A. & Neurath, H. (1972). Structure of thermolysin. Nature (New Biol.) Lond. 238, 41–3.CrossRefGoogle ScholarPubMed
Meadows, D. H., Markley, J. L., Cohen, J. S. & Jardetzky, O. (1967). Nuclear magnetic resonance studies of the structure and binding sites of enzymes. I. Histidine residues. Proc. natn Acad. Sci. U.S.A. 58, 1307–13.CrossRefGoogle ScholarPubMed
Mildvan, A. S. & Cohn, M. (1965). Kinetic and magnetic resonance studies of the puruvate kinase reaction. J. biol. Chem. 240, 238–46.CrossRefGoogle Scholar
Mildvan, A. S. & Cohn, M. (1966). Kinetic and magnetic resonance studies of the pyruvate kinase reaction. J. biol. Chem. 241, 1178–93.CrossRefGoogle ScholarPubMed
Nagy, B., Greaser, M. L. & Gergely, J. (1973). Effects of divalent cations on the absorption. IV. Optical rotatory dispersion and circular dichroic spectra of the Ca2+ binding component of troponin (TN-C). Fedn Proc. Fedn Am. Socs exp. Biol. 32, Abstract 570.Google Scholar
Nandedkar, A. K. N., Basu, P. K. & Friedberg, F. (1973). Cobalt binding by plasma proteins. Bioinorg. Chem. 2, 149–57.CrossRefGoogle Scholar
Nandedkar, A. K. N., Nurse, C. E. & Friedberg, F. (1973). Mn++ binding by plasma proteins. Int. J. Peptide and Protein Res. 5, 279281.CrossRefGoogle ScholarPubMed
Nandi, D. L., Baker-Cohen, K. F. & Shemin, D. (1968). δ Aminolevulinic acid dehydratase of rhodopseudomonas spheroids. I. Isolation and properties. J. biol. Chem. 243, 1224–30.CrossRefGoogle Scholar
Nandi, D. L. & Shemin, D. (1968). δ Aminoelvulinic acid dehydratase of rhodopseudomonas spheroides. II. Association to polymers and dissociation to subunits. J. biol. Chem. 243, 1231–35.CrossRefGoogle ScholarPubMed
Nicolau, C. L., Kalb, A. J. & Yariv, J. (1969). Electron spin resonance study of the transition metal-binding site of concanavalin A. Biochim. biophys. Acta 194, 71–3.CrossRefGoogle ScholarPubMed
Nowak, T. & Mildvan, A. S. (1972). Nuclear magnetic resonance studies of the function of potassium in the mechanism of pyruvate kinase. Biochemistry, N.Y. 11, 2819–28.,CrossRefGoogle ScholarPubMed
Nowak, T., Mildvan, A. S. & Kenyon, G. L. (1973). Nuclear relaxation and kinetic studies of the role of Mn2+ in the mechanism of enolase. Biochemistry, N.Y. 12, 16901701.CrossRefGoogle Scholar
Peck, E. J. Jr & Ray, W. J. Jr (1969). Role of bivalent cations in the phosphoglucomutase system. II. Metal ion binding and the structure of binary enzyme-metal complexes. J. biol. Chem. 244, 3748–53.CrossRefGoogle ScholarPubMed
Perutz, M. F. (1970). Stereochemistry of cooperative effects in hemoglobin. Nature, Lond. 228, 726–39.CrossRefGoogle Scholar
Pulido, P., Kagi, J. H. R. & Vallee, B. L. (1966). Isolation and some properties of human metallothionein. Biochemistry, N.Y. 5, 1768–77.CrossRefGoogle ScholarPubMed
Quiocho, F. A. & Lipscomb, W. N. (1971). Carboxypeptidase A: A protein and an enzyme. Adv. Protein chem. 25, 178.CrossRefGoogle ScholarPubMed
Rapoport, T. A., Höhne, W. E., Heitmann, P. & Rapoport, S. (1973). Binding of ligands to the inorganic pyrophosphatase of bakers' yeast. Eur. J. Biochem. 33, 341–47.CrossRefGoogle Scholar
Ray, W. T. Jr (1969). Role of bivalent cations in the phosphoglucomutase system. I. Characterization of enzyme metal complexes. J. biol. Chem. 244, 3740–7.CrossRefGoogle Scholar
Reuben, J. & Cohn, M. (1970). Magnetic resonance studies of manganese (II) binding sites of pyruvate kinase. J. biol. Chem. 245, 6539–46.CrossRefGoogle ScholarPubMed
Reynolds, F. H., Burkhead, R. K. & Mueller, D. D. (1973). A calorimetric investigation of the copper-bovine plasma albumin interaction. Biochemistry, N.Y. 12, 359–64.CrossRefGoogle ScholarPubMed
Reynolds, J. A. & Schlesinger, M. T. (1968). Hydrogen ion equilibria of conformational states of E. coli alkaline phosphatase. Biochemistry, N.Y. 7, 2080–5.CrossRefGoogle Scholar
Reynolds, J. A. & Schlesinger, M. T. (1969). Alterations in the structure and function of E. coli. alkaline phosphatase due to Zn2+ binding. Biochemistry, N.Y. 8, 588–93.CrossRefGoogle ScholarPubMed
Robyt, J. F. & Ackerman, R. J. (1973). Structureand function of amylases. II. Multiple forms of Bacillus subtilis α-amylase. Archs Biochem. Biophys. 155, 445–51.CrossRefGoogle Scholar
Rosenbusch, J. P. & Weber, K. (1971). Localization of the zinc binding site of aspartate transcarbamylase in the regulatory subunit. Proc. natn Acad. Sci. U.S.A. 68, 1019–23.CrossRefGoogle Scholar
Saroff, H. A. & Carroll, W. R. (1962). The binding of chloride and sulfate ions to ribonuclease. J. biol. Chem. 237, 3384–7.CrossRefGoogle ScholarPubMed
Schechter, A. N., Morávek, L. & Anfinsen, C. B. (1968). Suppression of hydrogen exchange in Staphylococcal nuclease by ligands. Proc. natn Acad. Sci. U.S.A. 61, 1478–93.CrossRefGoogle ScholarPubMed
Scott, J. M. & Rabinowitz, J. C. (1962).′ The association-dissociation of formyltetrahydrofolate synthetase and its relation to monovalent cation activation of catalytic activity. Biochem. biophys. Res. Commun. 29, 418–23.CrossRefGoogle Scholar
Scrutton, M. C., Utter, M. F. & Mildvan, A. S. (1966). Pyruvate carboxylase. VI. The presence of tightly bound manganese. J. biol. Chem. 241, 3480–7.CrossRefGoogle ScholarPubMed
Shapiro, B. M. & Ginsburg, A. (1968). Effects of specific divalent cations on some physical and chemical properties of glutamine synthetase from Escherichia coil. Taut and relaxed enzyme forms. Biochemistry, N.Y. 7, 2153–67.CrossRefGoogle Scholar
Shoham, M., Kalb, A. J. & Pecht, I. (1973). Specificity of metal ion interaction with concanavalin A. Biochemistry, N.Y. 12, 1914–17.CrossRefGoogle ScholarPubMed
Smiley, K. L. & Suelter, C. H. (1967). Univalent cations as allosteric activators of muscle adenosine 5′ phosphates deaminase. J. biol. Chem. 242, 1980–1.CrossRefGoogle ScholarPubMed
Smolka, G. E., Birnbaum, E. R. & Darnall, D. W. (1971). Rare earth metal ions as substitutes for the calcium ion in Bacillus subtilis α-amylase. Biochemistry, N.Y. 10, 4556–61.CrossRefGoogle Scholar
Snodgrass, P. H., Vallee, B. L. & Hoch, F. L. (1960). Effects of silver and mercurials on yeast alcohol dehydrogenase. J. biol. Chem. 235, 504–8.CrossRefGoogle ScholarPubMed
Suelter, C. H. & Melander, W. (1963). Use of protein difference spectrophotometry to determine enzyme – cofactor dissociation constants. J. biol. Chem. 236, PC 4108–9.CrossRefGoogle Scholar
Sugiyama, T., Nakayama, N. & Akazawa, T. (1968). Activation of spinach leaf ribulose-1,5 diphosphate carboxylase activities by magnesium ions. Biochem. biophys. Res. Commun. 30, 118–23.CrossRefGoogle ScholarPubMed
Summerell, J. M., Osmand, A. & Howard-Smith, G. (1965). An equilibrium- dialysis study of the binding of zinc to insulin. Biochem. J. 95, 31 P.Google Scholar
Takagi, T. & Isemura, Y. (1965). Necessity of calcium for the renaturation of reduced taka-amylase A. J. Biochem. Tokyo 57, 8995.CrossRefGoogle ScholarPubMed
Tenn, J.-P., Viratelle, O. M. & Yon, J. (1972). Kinetic study of the activation process of galactosidase from E. coli by Mg2+. Eur. J. Biochem. 26, 112–18.CrossRefGoogle Scholar
Teo, T. S. & Wang, J. H. (1973). Mechanism of activation of cyclic adenosine 3′, 5′-monophosphate phosphodiesterase from bovine heart by calcium ions. Identification of the protein activator as a Ca2+ binding protein. J. biol. Chem. 248, 5950–5.CrossRefGoogle ScholarPubMed
Ulmer, D. D. (1970). Effects of metals on protein structure In Effects of metals on cells, subcellular elements and macromolecules. Maniloff, J., Coleman, J. R. and Miller, M. J., Eds. Thomas, Charles C., Springfield.Google Scholar
Vallee, B.L. (1955). Zinc and metallo-enzymes. Adv. Protein, Chem. 10, 317–60.CrossRefGoogle Scholar
Van Eerd, J. P. & Kawasaki, Y. (1972). Ca2+ induced conformational changes in the Ca2+ binding component of troponin. Biochem. biophys. Res. Commun. 47, 859–65.CrossRefGoogle Scholar
Wasserman, R. H., Corradino, R. A. & Taylor, A. N. (1968). Vitamin D-dependent calcium-binding protein. J. biol. Chem. 243, 3978–86.CrossRefGoogle ScholarPubMed
Wells, M. A. (1973a). Spectral perturbations of crotalus adamanteus phospholipase A2 induced by divalent cation binding. Biochemistry, N.Y. 12, 1080–5.CrossRefGoogle ScholarPubMed
Wells, M. A. (1973b). Effects of chemical modification on the activity of crotalus phospholipase A2. Evidence for an essential amino group. Biochemistry, N.Y. 12, 1086–93.CrossRefGoogle ScholarPubMed
Wilson, R. H., Evans, H. J. & Becker, R. R. (1967). The effect of univalent cation salts on the stability and on certain physical properties of pyruvate kinase. J. biol. Chem. 242, 3825–32.CrossRefGoogle ScholarPubMed
Yankeelov, J. A. Jr & Koshland, D. E. Jr (1965). Evidence for conformation changes induced by substrates of phosphoglucomutase. J. biol. Chem. 240, 15931602.CrossRefGoogle ScholarPubMed
Zimmerman, A. H., Kells, D. I. C. & Yip, C. (1972). Physical and biological properties of guinea pig insulin. Biochem. biophys. Res. Commun. 46, 2127–33.CrossRefGoogle ScholarPubMed
Zisapel, N. & Sokolovsky, M. (1973). Metallocarboxypeptidases: a cadiumcarboxypeptidase B with peptidase activity. Biochem. biophys. Res. Commun. 53, 722–9.CrossRefGoogle ScholarPubMed