Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-23T02:56:01.531Z Has data issue: false hasContentIssue false

Deuterium labelling in NMR structural analysis of larger proteins

Published online by Cambridge University Press:  17 March 2009

David M. LeMaster
Affiliation:
Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, Illinois 60208, USA

Extract

In the last few years since the early NMR structural studies of small proteins such as glucagon (Braun et al. 1983) and lac represser headpiece (Zuiderweg et al. 1984) the quality of the structure determinations have improved considerably. Of major importance has been the introduction of phase sensitive detection in the Tl dimension (States et al. 1982; Marion & Wüthrich, 1983) which has allowed for absorption presentation of 2D data with the resulting enhancement in resolution, accuracy of coupling constant measurements and accuracy of peak volume integrations. Introduction of new pulse sequences, advances in instrumentation and further developments in the structure calculation algorithms have also helped improve the quality of NMR structural analyses of proteins.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aberhart, D. J. (1983). Synthesis of (2S,4S)-[5-13C]leucine, (2R,4S)-[5-13C]leucine, and (2RS)-[1,2-13C2]leucine. J. Labelled Comp. Radiopharm. 20, 663668.CrossRefGoogle Scholar
Aberhart, D. J. & Russell, D. J. (1984). Steric course of ketopantoate hydroxy-methyltransferase in E. coli. J. Am. Chem. Soc. 106, 49024906.CrossRefGoogle Scholar
Ahmed, S. A., Martin, B. & Miles, E. W. (1986). β-elimination of indole from L-tryptophan catalyzed by bacterial tryptophan synthase: a comparison between reactions catalyzed by tryptophanase and tryptophan synthase. Biochemistry 25, 42334240.CrossRefGoogle ScholarPubMed
Aimoto, S., Mizoguchi, N., Hojo, H. & Yoshimura, S. (1989). Development of a facile method of polypeptide synthesis. Synthesis of bovine pancreatic trypsin inhibitor (BPTI). Bull. Chem. Soc. Jpn 62, 524531.CrossRefGoogle Scholar
Anglister, J., Frey, T. & McConnell, H. M. (1984). Magnetic resonance of a monoclonal anti-spin-label antibody. Biochemistry 23, 11381142.CrossRefGoogle Scholar
Anglister, J., Jacob, C., Assulin, O., Ast, G., Pinker, R. & Arnon, R. (1988). NMR study of the complexes between a synthetic peptide derived from the B subunit of cholera toxin and three monoclonal antibodies against it. Biochemistry 27, 717724.CrossRefGoogle Scholar
Anwer, M. K., Porter, R. A. & Spatola, A. F. (1987). Applications of ammonium formate - catalytic transfer hydrogenation. Int. J. Pept. Protein Res. 30, 489497.CrossRefGoogle ScholarPubMed
Battersby, A. R., Nicolette, M., Staunton, J. & Vieggaar, R. (1980). Studies of enzyme-mediated reactions. Part 13. Stereochemical course of the formation of histamine by decarboxylation of (2S) - histidine with enzymes from Clostridium welchii and Lactobacillus 30a. J. Chem. Soc. Perkin Trans. 1, 4351.CrossRefGoogle ScholarPubMed
Baum, J., Dobson, C. M., Evans, P. A. & Hanley, C. (1989). Characterization of a partly folded protein by NMR methods: Studies on the molten globule state of guinea pig α-lactalbamin. Biochemistry 28, 713.CrossRefGoogle Scholar
Bax, A. (1988). Correction of cross-peak intensities in 2D spin-locked NOE spectroscopy for offset and Hartmann-Hahn effects. J. magn. Reson. 77, 134147.Google Scholar
Bax, A. & Sabramanian, S. (1986). Sensitivity enhanced two-dimensional heteronuclear shift correlation NMR spectroscopy. J. magn. Reson. 67, 565569.Google Scholar
Bax, A. & Summers, M. F. (1986). 1H and 13C assignments from sensitivity-enhanced detection of heteronuclear multiple-bond connectivity by 2D multiple quantum NMR. J. Am. Chem. Soc. 108, 20932094.CrossRefGoogle Scholar
Berberich, M. A. (1972). A glutamate-dependent phenotype in E. coli K12: the result of two mutations. Biochem. Biophys. Res. Commun. 47, 14981503.CrossRefGoogle Scholar
Billeter, M., Braun, W. & Wüthric, K. (1982). Sequential resonance assignments in protein 1H-nuclear magnetic resonance spectra. J. molec. Biol. 155, 321346.CrossRefGoogle ScholarPubMed
Birdsall, B., Feeney, J., Griffiths, D. V., Hammond, S., Kimber, B., King, R. W., Roberts, G. C. K. & Searle, M. (1984). The combined use of selective deuteration and double resonance experiments in assigning the 1H resonances of valine and tyrosine residues of dihydrofolate reductase. FEBS Lett. 175, 364368.CrossRefGoogle ScholarPubMed
Bothner-By, A. A. & Spevacek, J. (1982). Dynamics of Overhauser effects in macromolecules. Pure Appl. Chem. 54, 569574.CrossRefGoogle Scholar
Braun, W., Wider, G., Lee, K. H. & Wüthrich, K. (1983). Conformation of glucagon in a lipid-water interphase by 1H nuclear magnetic resonance. J. molec. Biol. 169, 921948.CrossRefGoogle Scholar
Braunschweiler, L., & Ernst, R. R. (1983). Coherence transfer by isotropic mixing: application to proton correlation spectroscopy. J. magn. Reson. 53, 521528.Google Scholar
Brown-Mason, A., Dobson, C. M. & Woodworth, R. C. (1981). Efficient incorporation of deuterated amino acids into quail egg white proteins for nuclear magnetic resonance studies. J. biol. Chem. 256, 15061509.CrossRefGoogle ScholarPubMed
Cahill, R., Crout, D. H. G., Gregorio, M. V. M., Mitchell, M. B. & Muller, U.S. (1983). Pyrrolizidine alkaloid biosynthesis: stereochemistry of the formation of isoleucine in senecio species and of its conversion into necic acids. J. Chem. Soc. Perkin Trans. I, 173180.CrossRefGoogle Scholar
Cardillo, R., Fuganti, C., Ghiringhelli, D., Grasselli, P. & Gatti, G. (1977). Pattern of incorporation of leucine samples asymmetrically labelled with 13C in the isopropyl unit into the C5-isoprenoid units of echinuline and flavoglaucine. J. Chem. Soc. Chem. Commun. 474476.CrossRefGoogle Scholar
Cavanagh, J. & Keeler, J. (1988). Suppression of HOHAHA and ‘false’ NOE cross peaks in camelspin spectra. J. magn. Reson. 80, 186194.Google Scholar
Cedel, T. E., Cottam, P. F., Meadows, M. D. & Ho, C. (1984). A high-resolution 1H NMR investigation of the histidine-binding protein J of Salmonella typhimurium. Biophys. Chem. 19, 279287.CrossRefGoogle ScholarPubMed
Crespi, H. L., Rosenberg, R. M. & Katz, J. J. (1968). Proton magnetic resonance of proteins fully deuterated except for 1H-leucine side chains. Science 161, 795796.CrossRefGoogle ScholarPubMed
Crespi, H. L., Daboll, H. F. & Katz, J. J. (1970). The biosynthesis of isotope hybrid proteins for high resolution nuclear magnetic resonance studies by incorporation of [1H]amino acids into fully deuterated algae. Biochim. biophys. Acta 200, 2633.CrossRefGoogle ScholarPubMed
Clore, G. M., Nilges, M., Sukumaran, D. K., Brünger, A. T., Karplus, M. & Gronenborn, A. M. (1986). The three-dimensional structure of α1-purothionin in solution: combined use of nuclear magnetic resonance, distance geometry and restrained molecular dynamics. EMBO J. 5, 27292735.CrossRefGoogle ScholarPubMed
Clore, G. M., Sukumaran, D. K., Nilges, M., Zarbock, J. & Gronenborn, A. M. (1987). The conformation of hirudin in solution: a study using nuclear magnetic resonance, distance geometry and restrained molecular dynamics. EMBO J. 6, 529537.CrossRefGoogle ScholarPubMed
Cronan, J. E. Jr. & Rock, C. O. (1987). Biosynthesis of membrane lipids. In Escherichia coli and Salmonella typhimurium: cellular and molecular biology (ed. Neidhardt, F. C.), pp. 474497. Washington, D.C.: American Society for Microbiology.Google Scholar
Cruickshank, D. W. J. (1949). The accuracy of electron-density maps in x-ray analysis with special reference to dibenzyl. Acta Crystallogr. 2, 6582.CrossRefGoogle Scholar
Csonka, L. N. (1977). Use of 3H and 14C double-labelled glucose to assess in vivo pathways of amino acid biosynthesis in Escherichia coli. J. biol. Chem. 252, 33923398.CrossRefGoogle Scholar
Davis, D. G. & Bax, A. (1985). Assignment of complex 1H-NMR spectra via two-dimensional homonuclear Hartmann-Hahn spectroscopy. J. Am. chem. Soc. 107, 28202821.CrossRefGoogle Scholar
DeGrado, W. F. & Kaiser, E. T. (1980). Polymer-bound oxime esters as supports for solid-phase peptide synthesis. Preparation of protected peptide fragments. J. org. Chem. 45, 12951300.CrossRefGoogle Scholar
Dill, K. A. (1985). Theory for the folding and stability of globular proteins. Biochemistry 24, 15011509.CrossRefGoogle ScholarPubMed
Dolgikh, D. A., Gilmanshin, R. I., Brazhnikov, E. V., Bychkova, V. E., Semi-Sotnov, G. V., Venyaminov, S. Yu. & Ptitsyn, O. B. (1981). α-Lactalbumin: compact state with fluctuating tertiary structure? FEES Lett. 136, 311315.CrossRefGoogle ScholarPubMed
Dolgikh, D. A., Abaturov, L. V., Bolotina, I. A., Brazhnikov, E. V., Bychkova, V. E., Gilmanshin, R. I., Lebedev, Yu. O., Semisotnov, G. V., Tiktopulo, E. I. & Ptitsyn, O. B. (1985). Compact state of a protein molecule with pronounced small-scale mobility: bovine α-lactalbumin. Eur. Biophys. J. 13, 109121.CrossRefGoogle ScholarPubMed
Driscoll, P. C., Gronenborn, A. M. & Clore, G. M. (1989). The influence of stereospecific assignments on the determination of three-dimensional structures of proteins by nuclear magnetic resonance spectroscopy. FEBS Lett. 243, 223233.CrossRefGoogle ScholarPubMed
Englander, S. W. & Wand, A. J. (1987). Main-chain-directed strategy for the assignment of 1H-NMR spectra of proteins. Biochemistry 26, 59535958.CrossRefGoogle ScholarPubMed
Falkinham, J. O. (1977). Escherichia coli K-12 mutant with alternate requirements for vitamin B-6 or branched-chain amino acids and lacking transaminase C activity. J. Bacterial. 130, 566568.CrossRefGoogle ScholarPubMed
Feeney, J., Roberts, G. C. K., Birdsall, B., Griffiths, D. V., King, R. W., Scudder, P. & Burgen, A. (1977). 1H nuclear magnetic resonance studies of the tyrosine residues of selectively deuterated Lactobacillus casei dihydrofolate reductase. Proc. R. Soc. Land. B196, 267290.Google Scholar
Feeney, J., Birdsall, B., Akiboye, J., Tendler, S. J. B., Barbero, J. J., Ostler, G., Arnold, J. R. P., Roberts, G. C. K., Kühn, A. & Roth, K. (1989). Optimizing selective deuteration of proteins for 2D 1H-NMR detection and assignment studies. FEBS Lett. 248, 5761.CrossRefGoogle Scholar
Fesik, S. W. & Zuiderweg, E. R. P. (1988). Heteronuclear three-dimensional NMR spectroscopy. A strategy for the simplification of homonuclear two-dimensional NMR spectra. J. magn. Reson. 78, 588593.Google Scholar
Field, S. J. & Young, D. W. (1979). Synthesis of (2S,3S)-[3-2H1]-,(2S,3R)-[2,3-2H2]-, (2S,3S,4RS)-[3-2H1,4-3H1]-, and (2S,3R,4RS)-[2,3,-2H2,4-3H1]glutamic acids. J. Chem. Soc. Chem. Commun. 11631165.CrossRefGoogle Scholar
Fisher, J., Primrose, W. U., Roberts, G. C. K., Dekker, N., Boelens, R., Kaptein, R. & Slotboom, A. J. (1989). 1H-NMR studies of bovine and porcine phospholipase A2: assignment of aromatic resonances and evidence for a conformational equilibrium in solution. Biochemistry 28, 59395946.CrossRefGoogle ScholarPubMed
Floss, H. G., Schleicher, E. & Potts, R. (1976). Stereochemistry of the formation of cysteine by o-acetylserine sulfhydrase. J. biol. Chem. 251, 54785482.CrossRefGoogle ScholarPubMed
Frey, T., Anglister, J. & McConnell, H. M. (1988). Line-shape analysis of NMR difference spectra of an anti-spin-label antibody. Biochemistry 27, 51615165.CrossRefGoogle ScholarPubMed
Fuganti, C., Ghiringhelli, D., Giangrasso, D. & Grasselli, P. (1974 a). Stereo-chemical course of the enzymic synthesis of i-tyrosine from phenol and L-serine catalysed by tyrosine phenol lyase from Escherichia intermedia. J. Chem. Soc. Chem. Commun. 726727.CrossRefGoogle Scholar
Fuganti, C., Ghiringhelli, D., Giangrasso, D. & Grasselli, P. & Amisano, A. S. (1974 b). Stereochemical course of the synthesis of L-tryptophan from indole and L-serine catalyzed by the enzyme tryptophan synthase from Escherichia coli. Chim. Ind. (Milan) 56, 424428.Google Scholar
Gelbard, A. S., Nieves, E., Filcderi, S. & Rosenspire, K. C. (1986). Enzymatic synthesis of L-[N-13]tyrosine. J. Labelled Comp. Radiopharm. 23, 10551060.Google Scholar
Gelfand, D. H. & Steinberg, R. A. (1977). Escherichia coli mutants deficient in the aspartate and aromatic amino acid aminotransferases. J. Bacterial. 130, 429440.CrossRefGoogle ScholarPubMed
Gettins, P. & Dwek, R. A. (1981). Strategies for spectral assignment in the 1H-NMR spectra of a 25000 Mr murine antibody fragment. FEES Lett. 124, 248252.CrossRefGoogle Scholar
Gramatica, P., Manitto, P., Manzocchi, A. & Santaniello, E. (1981). Synthesis of (2S,5R)-[5–2H]proline. J. Labelled Comp. Radiopharm. 18, 955962.CrossRefGoogle Scholar
Greenaway, W. & Whatley, F. R. (1975). Enzymatic synthesis of i-glutamic acid N-is and 4-aminobutyric acid N-15 and preparation of 1-pyroglutamic acid N-15. J. Labelled Comp. Radiopharm. 11, 395400.CrossRefGoogle Scholar
Griesinger, C., Søorensen, O. W. & Ernst, R. R. (1987 a). A practical approach to three-dimensional NMR spectroscopy. J. magn. Reson. 73, 574579.Google Scholar
Griesinger, C., Sørensen, O. W. & Ernst, R. R. (1987 b). Novel three-dimensional NMR techniques for studies of peptides and biological macromolecules. J. Am. chem. Soc. 109, 72277228.CrossRefGoogle Scholar
Griesinger, C., Sørensen, O. W. & Ernst, R. R. (1985). Two-dimensional correlation of connected NMR transitions. J. Am. chem. Soc. 107, 63946396.CrossRefGoogle Scholar
Griffey, R. H., Redfield, A. G., Loomis, R. E. & Dahlquist, F. W. (1985). Nuclear magnetic observation and dynamics of specific amide protons in T4 lysozyme. Biochemistry 24, 817822.CrossRefGoogle ScholarPubMed
Griffiths, D. V., Feeney, J., Roberts, G. C. K. & Burgen, A. S. V. (1976). Preparation of selectively deuterated aromatic amino acids for use in 1H-NMR studies of proteins. Biochim. biophys. Acta 446, 479485.CrossRefGoogle ScholarPubMed
Güntert, P., Braun, W., Billeter, M. & Wüthrich, K. (1989). Automated stereospecific 1H-HMR assignments and their impact on precision of protein structure determinations in solution. J. Am. chem. Soc. 111, 39974004.CrossRefGoogle Scholar
Guyer, M. S., Reed, R. R., Steitz, J. A. & Low, K. B. (1981). Identification of a sex-factor affinity site in Escherichia coli as gamma delta. Cold Spring Harbor Symp. quant. Biol. 45, 135140.CrossRefGoogle ScholarPubMed
Hädener, A. & Tamm, C. (1987). Synthesis of specifically labelled L-phenylalanines using phenylalanine ammonia lyase activity. J. Labelled Comp. Radiopharm. 24, 12911306.CrossRefGoogle Scholar
Halldin, C. & Langstrom, B. (1986). Synthesis of [3-11C]phenylpyruvic acid and its use in enzymatic transamination to [3-11C]phenylalanine. J. Labelled Comp. Radiopharm. 23, 715722.CrossRefGoogle Scholar
Hansen, P. E. (1988). Isotope effects in nuclear shielding. Prog. in NMR Spectroscopy 20, 207255.CrossRefGoogle Scholar
Haruyama, H. & Wüthrich, K. (1989). Conformation of recombinant desulfatohiridin in aqueous solution determined by nuclear magnetic resonance. Biochemistry 28, 43014312.CrossRefGoogle ScholarPubMed
Holmgren, A., Söderberg, B. O., Eklund, H. & Branden, C. I. (1975). Three-dimensional structure of Escherichia coli thioredoxin-S2 to 2·8 Å resolution. Proc. natn. Acad. Sci. USA 72, 23052309.CrossRefGoogle ScholarPubMed
Hughes, L. T., Cohen, J. S., Szabo, A., Niu, C. H. & Matsuura, S. (1984). 13C-NMR studies of the molecular dynamics of selectively 13C-enriched ribonuclease complexes. Biochemistry 23, 43904394.CrossRefGoogle ScholarPubMed
Humbert, R. & Simoni, R. D. (1980). Genetic and biochemical studies demonstrating a second gene coding for asparagine synthetase in Escherichia coli. J. Bacterial. 142, 212220.CrossRefGoogle Scholar
Inagaki, F., Shimada, I., Kawaguchi, K., Hirano, M., Terasawa, I., Ikura, T. & Go, N. (1989). Structure of mellitin bound to perdeuterated dodecylphosphocholine micelles as studied by two-dimensional NMR and distance geometry calculations. Biochemistry 28, 59855991.CrossRefGoogle Scholar
Jackson, E. N. & Yanofsky, C. (1973). The region between the operator and the first structural gene of the tryptophan operon of Escherichia coli may have a regulatory function. J. molec. Biol. 76, 89101.CrossRefGoogle ScholarPubMed
Jordan, P. M. & Akhtar, M. (1970). The mechanism of action of serine trans-hydroxymethylase. Biochem. jf. 116, 277286.CrossRefGoogle Scholar
Kainosho, M. & Tsuji, T. (1982). Assignment of the three methionine carbonyl carbon resonances in streptomyces subtilisin inhibitor by a carbon-13 and nitrogen-15 double-labeling technique. A new strategy for structural studies of proteins in solution. Biochemistry 21, 62736279.CrossRefGoogle ScholarPubMed
Kalbitzer, H. R., Leberman, R. & Wittinghofer, A. (1985). 1H-NMR spectroscopy on elongation factor Tu from Escherichia coli. FEBS Lett. 180, 4042.CrossRefGoogle Scholar
Kaplan, M. M. & Flavin, M. (1965). Threonine biosynthesis: on the pathway in fungi and bacteria and the mechanism of the isomerization reaction. J. biol. Chem. 240, 39283933.CrossRefGoogle ScholarPubMed
Karplus, M. (1960). Note on the internal-rotation barrier in ethanic compounds. J. chem. Phys. 33, 316317.CrossRefGoogle Scholar
Katti, S., LeMaster, D. M. & Eklund, H. (1989). Crystal structure of thioredoxin from E. coli at 1·68 Å resolution. J. molec. Biol. (in the press).Google Scholar
Kay, L. E., Scarsdale, J. N., Hare, D. R. & Prestegard, J. H. (1986). Simulation of two-dimensional cross-relaxation spectra in strongly coupled spin systems. J. magn. Reson. 68, 515525.Google Scholar
Keeler, J., Neuhaus, D. & Williamson, M. P. (1987). The nuclear overhauser effect in strongly coupled spin systems. J. magn. Reson. 73, 4569.Google Scholar
Keepers, J. W. & James, T. L. (1984). A theoretical study of distance determinations from NMR. Two-dimensional nuclear overhauser effect spectra. J. magn. Reson. 57, 404426.Google Scholar
Keller, R. M., Baumann, R., Hunziker-Kwik, E. H., Joubert, F. J. & Wüthrich, K. (1983). Assignment of the 1H-nuclear magnetic resonance spectrum of the trypsin inhibitor homologue K from Dendroaspis polylepis polylepis. J. molec. Biol. 163, 623646.CrossRefGoogle ScholarPubMed
Kessler, H., Griesinger, C. & Wagner, K. (1987). Peptide conformations. 42. Conformation of side chains in peptides using heteronuclear coupling constants obtained by two-dimensional NMR spectroscopy. J. Am. Chem. Soc. 109, 69276933.CrossRefGoogle Scholar
Kirby, G. W. & Michael, J. (1973). Stereoselective β-labelling of aromatic amino-acids with deuterium and tritium. J. Chem. Soc. Perkin Trans. 1, 115120.CrossRefGoogle Scholar
Kline, A. D., Braun, W. & Wüthrich, K. (1986). Studies by 1H nuclear magnetic resonance and distance geometry of the solution conformation of the α-amylase inhibitor tendamistat. J. molec. Biol 189, 377382.CrossRefGoogle ScholarPubMed
Kline, A. D., Braun, W. & Wüthrich, K. (1988). Determination of the complete three-dimensional structure of the α-amylase inhibitor tendamistat in aqueous solution by nuclear magnetic resonance and distance geometry. J. molec. Biol. 204, 675724.CrossRefGoogle ScholarPubMed
Kluender, H., Huang, F. C., Fritzberg, A., Schnoes, H., Sih, C. J., Fawcett, P. & Abraham, E. P. (1974). Studies on the incorporation of (2S,3R)-[4,4,4-2H3]valine and (2S,3S)-[4,4,4-2H3]valine into B-lactam antibiotics. J. Am. Chem. Soc. 96, 40544056.CrossRefGoogle Scholar
Kuriyan, J., Petsko, G. A., Levy, R. M. & Karplus, M. (1986). Effect of anisotropy and anharmonicity on protein crystallographic refinement. J. molec. Biol. 190, 227254.CrossRefGoogle ScholarPubMed
Lautie, M. F. (1979). Syntheses of specifically deuterated indoles. J. Labelled Comp. Radiopharm. 16, 735744.CrossRefGoogle Scholar
LeMaster, D. M. (1987). Chiral β and random fractional deuteration for the determination of protein sidechain conformation by NMR, FEES Lett. 223, 191196.CrossRefGoogle ScholarPubMed
LeMaster, D. M. (1988). Protein NMR resonance assignment by isotropic mixing experiments on random fractionally deuterated samples. FEES Lett. 233, 326330.CrossRefGoogle ScholarPubMed
LeMaster, D. M. (1989). Deuteration in protein proton magnetic resonance. Methods in Enzymology 177, 2343.CrossRefGoogle ScholarPubMed
LeMaster, D. M. & Cronan, J. E. Jr., (1982). Biosynthetic production of 13C-labeled amino acids with site-specific enrichment. J. biol. Chem. 257, 12241230.CrossRefGoogle ScholarPubMed
LeMaster, D. M. & Richards, F. M. (1982 a). Preparative-scale isolation of isotopically labeled amino acids. Anal. Bioch. 122, 238247.CrossRefGoogle ScholarPubMed
LeMaster, D. M. & Richards, F. M. (1982 b). A general procedure for the preparation of α-, β-labeled amino acids. J. Labelled Comp. Radiopharm. 19, 639646.CrossRefGoogle Scholar
LeMaster, D. M. & Richards, F. M. (1985). 1H-15N heteronuclear NMR studies of Escherichia coli thioredoxin in samples isotopically labeled by residue type. Biochemistry 24, 72637268.CrossRefGoogle ScholarPubMed
LeMaster, D. M. & Richards, F. M. (1988). NMR sequential assignment of Escherichia coli thioredoxin utilizing random fractional deuteration. Biochemistry 27, 142150.CrossRefGoogle Scholar
LeMaster, D. M., Kay, L. E., Brünger, A. T. & Prestegard, J. H. (1988). Protein dynamics and distance determination by NOE measurements. FEES Lett. 236, 7176.CrossRefGoogle ScholarPubMed
Luzzati, P. V. (1952). Traitement statistique des erreurs dans la determination des structures cristallines. Acta Crystallogr. 5, 802810.CrossRefGoogle Scholar
Marion, D. & Wüthrich, K. (1983). Application of phase sensitive two-dimensional correlated spectroscopy (COSY) for measurements of 1H-1H spin-spin coupling constants in proteins. Biochem. Biophys. Res. Commun. 113, 967974.CrossRefGoogle ScholarPubMed
Marion, D., Kay, L. E., Sparks, S. W., Torchia, D. A. & Bax, A. (1989). Three-dimensional heteronuclear NMR of 15N labeled proteins. J. Am. Chem. Soc. 111, 15151517.CrossRefGoogle Scholar
Markley, J. L., Putter, I. & Jardetzky, O. (1968). High-resolution nuclear magnetic resonance spectra of selectively deuterated staphylococcal nuclease. Science 161, 12491251.CrossRefGoogle ScholarPubMed
Matthews, K. S., Wade-Jardetzky, N. G., Graber, M., Conover, W. W. & Jardetzky, O. (1977). High resolution 1H-NMR of a selectively deuterated analog of the lac represser. Biochim. Biophys. Acta 490, 534538.CrossRefGoogle Scholar
Matthews, H. R., Matthews, K. S. & Opella, S. J. (1977). Selectively deuterated amino acid analogues-synthesis, incorporation into proteins and NMR properties. Biochim. biophys. Acta 497, 113.CrossRefGoogle ScholarPubMed
McIntosh, L. P., Griffey, R. H., Muchmore, D. C., Nielson, C. P., Redfield, A. G. & Dahlquist, F. W. (1987). Proton NMR measurements of bacteriophage T4 lysozyme aided by 15N isotopic labeling: structural and dynamic studies of larger proteins. Proc. natn. Acad. Sci. USA 84, 12441248.CrossRefGoogle ScholarPubMed
Montelione, G. T., Winkler, M. E., Rauenbuehler, P. & Wagner, G. (1989). Accurate measurements of long-range heteronuclear coupling constants from homonuclear 2D NMR spectra of isotope-enriched proteins. J. magn. Reson. 82, 198204.Google Scholar
Muchmore, D. C., McIntosh, L. P., Russell, C. B., Anderson, D. E. & Dahlquist, F. W. (1989). Expression and 15N labelling of proteins for proton and nitrogen-15 NMR. Methods in Enzymology 177, in press.CrossRefGoogle Scholar
Mueller, L. (1987). P. E. COSY, a simple alternative to E. COSY. J. magn. Reson. 72, 191196.Google Scholar
Neuhard, J. & Nygaard, P. (1987). Purines and pyrimidines. In Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology (ed. Neidhardt, F. C.), pp. 445473. Washington, D.C.: American Society for Microbiology.Google Scholar
Neuhaus, D. & Keeler, J. (1986). ‘False’ transverse NOE enhancements in camelspin spectra. J. magn. Reson. 68, 568574.Google Scholar
Neuhaus, D., Wagner, G., Vasak, M., Kägi, J. H. R. & Wüthrich, K. (1985). Systematic application of high-resolution, phase sensitive two-dimensional 1H-NMR techniques for the identification of the amino-acid-proton spin systems in proteins. Eur. J. Bioch. 151, 257273.CrossRefGoogle ScholarPubMed
Newman, E. B., Miller, B. & Kapoor, V. (1974). Biosynthesis of single-carbon units in Escherichia coli K12. Biochim. biophys. Acta 338, 529539.CrossRefGoogle Scholar
Norton, R. S. & Bradbury, J. H. (1975). Heterogeneous platinum-catalyzed deuterium exchange of aromatic protons in amino acids, peptides and proteins. J. Catal. 39, 5356.CrossRefGoogle Scholar
Novogradsky, A., Nishimura, J. S. & Meister, A. (1963). Transamination and β-decarboxylation of aspartate catalyzed by the same pyridoxal phosphate-enzyme. J. biol. Chem. 238, PC 19031905.CrossRefGoogle Scholar
Olejniczak, E. T., Dobson, C. M., Karplus, M. & Levy, R. M. (1984). Motional averaging of proton nuclear overhauser effects in proteins. Predictions from a molecular dynamics simulation of lysozyme. J. Am. chem. Soc. 106, 19231930.CrossRefGoogle Scholar
Ponder, J. W. & Richards, F. M. (1987). Tertiary templates for proteins. Use of packing criteria in the enumeration of allowed sequences for different structural classes. J. molec. Biol. 193, 775791.CrossRefGoogle ScholarPubMed
Posner, B. I. & Flavin, M. (1972). Cystathionine γ-synthase. Studies of hydrogen exchange reactions. J. biol. Chem. 247, 64026411.CrossRefGoogle Scholar
Reitzer, L. J. & Magasanik, B. (1982). Asparagine synthetases of Klebsiella aerogenes: Properties and regulation of synthesis. J. Bacterial. 151, 12991313.CrossRefGoogle ScholarPubMed
Reitzer, L. J. & Magasanik, B. (1987). Ammonia assimilation and the biosynthesis of glutamine, glutamate, aspartate, asparagine, L-alanine and D-alanine. In Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology (ed. Neidhardt, F. C.), pp. 302320. Washington, D.C.: American Society for Microbiology.Google Scholar
Richarz, R., Tschesche, H. & Wüthrich, K. (1980). Carbon-13 nuclear magnetic resonance studies of the selectively isotope-labeled reactive site peptide bond of the basic pancreatic trypsin inhibitor in the complexes with trypsin, trypsinogen and anhydrotrypsin. Biochemistry 19, 57115715.CrossRefGoogle ScholarPubMed
Ringe, D. & Petsko, G. A. (1985). Mapping protein dynamics by X-ray diffraction. Prog. Biophys. molec. Biol. 45, 197235.CrossRefGoogle ScholarPubMed
Rohm, K. H. & Van Etten, R. L. (1985). Stereospecific synthesis of 1-[1,4-13C2]aspartic acid, 1-β-([13C]cyano) alanine and 1-[4-13C]aspartic acid. J. Labelled Comp. Radio-pharm 22, 909915.CrossRefGoogle Scholar
Searle, M. S., Hammond, S. J., Birdsall, B., Roberts, G. C. K., Feeney, J., King, R. W. & Griffiths, D. V. (1986). Identification of the H-1 resonances of valine and leucine residues in dihydrofolate reductase by using a combination of selective deuteration and two dimensional correlation spectroscopy. FEBS Lett. 194, 165170.CrossRefGoogle Scholar
Seeholzer, S. H., Cohn, M., Putkey, J. A., Means, A. R. & Crespi, H. L. (1986). NMR studies of a complex of deuterated calmodulin with mellitin. Proc. natn. Acad. Sci. USA 83, 36343638.CrossRefGoogle Scholar
Senn, H., Werner, B., Messerle, B. A., Weber, C., Traber, R. & Wüthrich, K. (1989). Stereospecific assignment of the methyl 1H-NMR lines of valine and leucine in polypeptides by non-random 13C labeling. FEBS Lett. 249, 113118.CrossRefGoogle Scholar
Skye, G. E., Potts, R. & Floss, H. G. (1974). Stereochemistry of the tryptophan synthetase reaction. J. Am. Chem. Soc. 96, 15931595.CrossRefGoogle ScholarPubMed
States, D. J., Haberkorn, R. A. & Ruben, D. J. (1982). A two-dimensional nuclear overhauser experiment with pure absorption phase in four quadrants. J. magn. Reson. 48, 286292.Google Scholar
Stockman, B. J., Reily, M. D., Westler, W. M., Ulrich, E. L. & Markley, J. L. (1989). Concerted two-dimensional NMR approaches to hydrogen-1, carbon-13, and nitrogen-15 resonance assignments in proteins. Biochemistry 28, 230236.CrossRefGoogle ScholarPubMed
Strange, P. G., Staunton, J., Wiltshire, H. R., Battersby, A. R., Hanson, K. R. & Haver, E. A. (1972). Studies of enzyme-mediated reactions. Part II. Stereochemistry of the elimination of ammonia from L-tyrosine catalyzed by the enzyme from maize. J. Chem. Soc. Perkin Trans. 1, 23642372.CrossRefGoogle Scholar
Tenenbaum, S. W., Witherup, T. H. & Abbott, E. H. (1974). Selectivity in vitamin B-6 model reactions: selective α or β deuteration of amino acids under transamination of racemization conditions. Biochim. biophys. Acta 362, 308315.CrossRefGoogle ScholarPubMed
Torchia, D. A., Sparks, S. W. & Bax, A. (1989). Staphylococcal nuclease: sequential assignments and solution structure. Biochemistry 28, 55095524.CrossRefGoogle ScholarPubMed
Unkefer, C. J. & Hanners, J. L. (1989). Biosynthesis of specifically labeled L-serine. SIR Newsletter 1, 23.Google Scholar
Upson, D. A. & Hruby, V. J. (1977). A general method for the preparation of α-labeled amino acids. J. org. Chem. 42, 23292330.CrossRefGoogle ScholarPubMed
Wagner, G., Braun, W., Havel, T. F., Schaumann, T., Go, N. & Wüthrich, K. (1987). Protein structures in solution by nuclear magnetic resonance and distance geometry. J. molec. Biol. 196, 611639.CrossRefGoogle ScholarPubMed
Wang, M. D., Buckley, L. & Berg, C. M. (1987). Cloning of genes that suppress an Escherichia coli K-12 alanine auxotroph when present in multicopy plasmids. J. bacterial. 169, 56105614.CrossRefGoogle ScholarPubMed
Wang, J. F., LeMaster, D. M. & Markley, J. L. (1989). Sequence-specific assignments of hydrogen-1 signals and solution structure of the (nuclease H124L)x. deoxy-thymidine-3′,5′-bisphosphate. Ca2+ ternary complex. Biochemistry (in the press).Google Scholar
Weber, P. L., Sieker, L. C., Ananthy Sama, T. S., Reid, B. R. & Drobny, G. P. (1987). Two-dimensional coherence transfer NMR spectroscopy by isotropic mixing: application to protein NMR assignments. J. Am. Chem. Soc. 109, 58425844.CrossRefGoogle Scholar
Weiss, M. A., Karplus, M. & Sauer, R. T. (1987). 1H-NMR aromatic spectrum of the operator binding domain of the λ represser: resonance assignment with application to structure and dynamics. Biochemistry 26, 890897.CrossRefGoogle Scholar
Wilson, E. M. (1963). Crystalline 1-aspartate 4-carboxyl-lyase. Biochim. biophys. Acta 67, 345348.CrossRefGoogle Scholar
Woodworth, R. C. & Dobson, C. M. (1979). Selective substitution of 2H and 3H into aromatic amino acids catalyzed by raney nickel. FEBS Lett. 101, 329332.CrossRefGoogle ScholarPubMed
Yutani, K., Akutsu, H., Ogasahara, K., Tsujita, T. & Kyogoku, Y. (1987). Proton nuclear magnetic resonance studies on the wild type and single amino-acid substituted tryptophan synthase a-subunits. Biochemistry 26, 36665671.CrossRefGoogle Scholar
Zuiderweg, E. R. P., Billeter, M., Kaptein, R., Boelens, R., Scheek, R. M. & Wüthrich, K. (1984). Solution conformation of E. coli lac represser DNA binding domain by 2D-NMR: sequence location and spatial arrangement of three α-helices. In Progress in Bioorganic Chemistry and Molecular Biology (Ed. Ovchinnikov, Yu A.), pp. 6570. Elsevier, Amsterdam.Google Scholar
Zuiderweg, E. R. P., Boelens, R. & Kaptein, R. (1985). Stereospecific assignments of 1H-NMR methyl lines and conformation of valyl residues in the lac represser headpiece. Biopolymers 24, 601611.CrossRefGoogle Scholar
Zuiderweg, E. R. P., Nettesheim, D. G., Mollison, K. W. & Carter, G. W. (1989). Tertiary structure of human complement component C5a in solution from nuclear magnetic resonance data. Biochemistry 28, 172185.CrossRefGoogle ScholarPubMed