Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-24T21:30:00.008Z Has data issue: false hasContentIssue false

Determination of the Mass of Viruses by Quantitative Electron Microscopy

Published online by Cambridge University Press:  17 March 2009

G. F. Bahr
Affiliation:
Department of Cellular Pathology, Armed Forces Institute of Pathology, Washington, D.C., U.S.A.
W. F. Engler
Affiliation:
Department of Cellular Pathology, Armed Forces Institute of Pathology, Washington, D.C., U.S.A.
H. M. Mazzone
Affiliation:
Forest Insect and Disease Laboratory, Forest Service, U.S. Department of Agriculture, Hamden, Conn., U.S.A.

Extract

In general the characterization of a virus particle depends upon a number of known and independently acquired parameters, all of which require a great deal of time. As a direct method of measurement, the mass of viruses has been largely ignored in virus characterization studies. Where the molecular weight of viruses has been determined by sedimentation and diffusion, sedimentation equilibrium, light scattering, or the electron microscopy-counting procedure, the relationship between this property and mass has been arrived at by employing Avogadro's number. In the present report it will be demonstrated that the disadvantages found in these usual methods of determining molecular weight, such as experimentation, calculation of virus size, and purification of virus preparation, are not present in the quantitative electron microscopy method for determination of mass and molecular weight.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1976

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adolph, K. W. & Haselkorn, R. (1972). Comparison of the structures of blue-green algal viruses LPP-IM and LPP-2 and bacteriophage T7. Virology 47, 701–10.Google Scholar
Aitchison, J. & Brown, J. A. C. (1963). The Lognormal Distribution. Cambridge University Press.Google Scholar
Ambs, E., Bahr, G. F. & Zeitler, E. (1971). Trockengewichtsbestimmungen von Thrombocyten mit Helfe des Elektronenmikroskopes. Z. ges. exp. Med. 154, 187–97.CrossRefGoogle Scholar
Anderer, F. A., Schlumberger, H. D., Koch, M. A., Frank, H. & Eggers, H. J. (1967). Structure of simian virus 40. II. Symmetry and components of the virus particle. Virology 32, 511–23.Google Scholar
Anderson, T. F. (1951). Techniques for the preservation of three-dimensional structure in preparing specimens for the electron microscope. Trans. N.Y. Acad. Sci. II 13, 130–4.Google Scholar
Ashe, W. K. & Scherp, H. W. (1963). Antigenic analysis of herpes simplex virus by neutralization kinetics. J. Immun. 91, 658–65.CrossRefGoogle ScholarPubMed
Bahr, G. F. Determination of the dry mass of small biological objects by quantitative electron microscopy. Micromethods in Molecular Biology (ed. Neuhoff, V.), pp. 257-84. Germany:Springer-Verlag.Google Scholar
Bahr, G. F., Carlsson, L. & Zeitler, E. (1961). Determination of dry weight in populations of submicroscopic particles by means of quantitative electron microscopy. Int. Biophys. Cong., Stockholm, p. 327.Google Scholar
Bahr, G. F., Johnson, F. B. & Zeitler, E. (1965). The elementary composition of organic objects after electron irradiation. Lab. Invest. 14, 1115–33.Google ScholarPubMed
Bahr, G. F. & Mikel, U. (1972). The arrangement of DNA in the nucleus of rodent malaria parasites. Proc. Helminth. Soc. Wash. 39, 361–72.Google Scholar
Bahr, G. F., Pihl, E., Engler, W. & Mikel, U. (1970). Mitochondria of rat liver – variations in gross confirmation and size. Cytobiologie 2, 163–87.Google Scholar
Bahr, G. F. & Wied, G. L. (1971). Cytochemical determinations of dry mass and protein content and cytometry in bull spermatozoa. Acta cytol. 15, 499505.Google ScholarPubMed
Bahr, G. F. & Zeitler, E. (1962). Determination of the total dry mass of human erythrocytes by quantitative electron microscopy. Lab. Invest. II, 912–17.Google Scholar
Bahr, G. F. & Zeitler, E. (1964). Study of bull spermatozoa, quantitative electron microscopy. J. Cell Biol. 21, 175–89.CrossRefGoogle ScholarPubMed
Bahr, G. F. & Zeitler, E. (1965 a). The determination of dry mass in populations of isolated particles. Lab. Invest. 14, 955–77.Google ScholarPubMed
Bahr, G. F. & Zeitler, E. (1965 b). The determination of magnification in the electron microscope. Lab. Invest. 14, 142–53.Google Scholar
Bancroft, F. C. & Freifelder, D. (1970). Molecular weights of coliphages DNA. I. Measurements of the moecular weight of bacteriophage T7 by high-speed equilibrium centrifugation. J. molec. Biol. 54, 537–46.Google Scholar
Becker, Y., Dym, H. & Sarov, I. (1968). Herpes simplex virus DNA. Virology 36, 184–92.CrossRefGoogle ScholarPubMed
Beer, M., Frank, J., Hanszen, K.-J., Kellenberger, E. & Williams, R. C. (1975). The possibilities and prospects of obtaining high-resolution information (below 30 Å) on biological material using the electron microscope. Q. Rev. Biophys. 7, 221-38.Google Scholar
Bergold, G. (1947). Die Isolierung des Polyeder-Virus und die Natur der Polyeder. Z. Naturf. 2b, 122–43.Google Scholar
Bergold, G. H. (1953). Insect Viruses in Advances in Virus Research, vol. I (ed. Smith, K. M. and Lauffer, M. A.), pp. 91139. New York: Academic Press.Google Scholar
Bird, F. T. & Whalen, M. M. (1953) A virus disease of the European Pine Sawfly, Neodiprion sertifer (Geoffr.). Can. Ent. 85, 433–7.CrossRefGoogle Scholar
Boedtker, H. & Simmons, N. S. (1958). The preparation and characterization of essentially uniform tobacco mosaic virus particles. J. Am. Chem. Soc. 80, 2550–6.Google Scholar
Camerini-Otero, R. D., Pusey, P. N., Koppel, D. E., Schaefer, D. W. & Franklin, R. M. (1974). Intensity fluctuation spectroscopy of laser light scattered by solutions of spherical viruses: R17, Qβ, BSV, PM2, and T7. II. Diffusion coefficients, molecular weights, solvation, and particle dimensions. Biochemistry, N.Y. 13, 960–70.Google Scholar
Cohen, A. L., Marlow, D. P. & Garner, G. E. (1968). A rapid critical point method using fluorocarbons ‘freons’ as intermediate and transitional fluids. J. Microscopie (Paris) 7, 331–42.Google Scholar
Cramer, H. (1946). Mathematical Methods of Statistics. Princeton Math. Series No. 9. Princton University Press.Google Scholar
Doty, P. & Steiner, R. F. (1950). Light scattering and spectrophotometry of colloidal solutions. J. Chem. Phys. 18, 1211–20.CrossRefGoogle Scholar
Dubin, S. B., Lunacek, J. H. & Benedek, G. B. (1967). Observations of the spectrum of light scattered by solutions of biological macromolecules. Proc. natn. Acad. Sci. U.S.A. 57, 1164–71.CrossRefGoogle ScholarPubMed
Dubochet, J. (1975). Carbon loss during irradiation of T4 bacteriophages and E. coli bacteria in electron microscopes. J. Ultrastruct. Res. 52, 276278.CrossRefGoogle Scholar
Flory, P. J. (1953). Principles of Polymer Chemistry. Ithaca, New York: Cornell University Press.Google Scholar
Gaddum, J. H. (1945 a). Lognormal distributions. Nature, Lond. 156, 747.Google Scholar
Gaddum, J. H. (1945 b). Lognormal distributions. Nature, Lond. 156, 463.Google Scholar
Glaeser, R. M. (1971). Limitations to significant information in biological electron microscopy as a result of radiation damage. J. Ultrastruct. Res. 36, 466–82.Google Scholar
Glas, U. & Bahr, G. F.. (1966). Study of mitochondria in rat liver. Dry mass, wet mass, volume and concentration of solids. J. Cell Biol. 29, 507–23.CrossRefGoogle ScholarPubMed
Glitz, D. G., Hills, G. J. & Rivers, C. F. (1968). A comparison of the tipula and sericesthis iridescent viruses. J. gen. Virol. 3, 209–20.CrossRefGoogle Scholar
Golomb, H. M. & Bahr, G. F. (1971). Scanning electron microscopic observations of surface structure of isolated human chromosomes. Science, N.Y. 171, 1024–6.Google Scholar
Jennings, B. R. & Jerrard, H. G. (1966). Light scattering study of tobacco mosaic virus solutions when subjected to electric fields. J. Chem. Phys. 44, 1291–6.Google Scholar
Joklik, W. K. (1962). The purification of four strains of pox virus. Virology 18, 918.Google Scholar
Kalmakoff, J. & Tremaine, J. H. (1968). Physicochemical properties of tipula iridescent virus. Jul Virol. 2, 738–44.CrossRefGoogle ScholarPubMed
Kapteyn, J. C. (1916). Skew frequency curves in biology and statistics. Rec. Tray. Bot. Neerland. 13, 105.Google Scholar
Killander, D. (1966). Intercellular variability in normal and neoplastic cell populations in vitro. Thesis, Karolinska Inst., Uppsala, Sweden, Almqvist & Wicksell, Printers.Google Scholar
Kleinschmidt, A. K. (1970). Personal communication.Google Scholar
Klug, A. & De, Rosier D. J. (1966). Three-dimensional image reconstruction from the viewpoint of information theory. Nature, Lond. 238, 435–40.Google Scholar
Koch, M. A., Eggers, H. J., Anderer, F. A., Schlumberger, H. D. & Frank, H. (1967). Structure of simiam virus 40. I. Purification and physical characterization of the virus particle. Virology 32, 503–10.CrossRefGoogle Scholar
Lampert, F., Bahr, G. F. & Rabson, A. S. (1969). Herpes Simplex Virus: Dry mass. Science, N.Y. 166, 1163–5.CrossRefGoogle ScholarPubMed
Lauffer, M. A. (1944). The size and shape of tobacco mosaic virus particles. J. Am. Chem. Soc. 66, 1188–94.CrossRefGoogle Scholar
Lee, L. F., Kieff, E. D., Bachenheimer, S. L., Roizman, B., Spear, P. G., Burmester, B. R. & Nazerian, K. (1971). Size and composition of Marek's disease virus deoxyribonucleic acid. Jnl Virol 7, 289–94.Google Scholar
Luftig, R. & Haselkorn, R. (1967). Morphology of a virus of blue-green algae and properties of its deoxyribonucleic acid. Jnl Virol. I, 344–61.CrossRefGoogle Scholar
Markham, R., Hitchborn, J. H., Hills, G. J. & Frey, S. (1964). The anatomy of the tobacco mosaic virus. Virology 22, 342–59.Google Scholar
Mayor, H. D., Jamison, R. M. & Jordan, L. E. (1963). Biophysical studies on the nature of the simian papova virus particle (vacuolating SV-40 virus). Virology 19, 359–66.CrossRefGoogle Scholar
Mazzone, H. M. (1967). Equilibrium Ultracentrifugation in Methods in Virology, vol. II (ed. Maramorosch, K. and Koprowski, H.), pp. 4191. New York: Academic Press.Google Scholar
Mazzone, H. M., Breillatt, J. P. & Anderson, N. G. (1970). Zonal rotor purification and properties of a nuclear polyhedrosis virus of the European pine sawfly (Neodiprion sertifer, Geoffroy). Proc. IVth Intern. Colloqium Insect Path, pp. 371–9. Maryland: College Park.Google Scholar
Mazzone, H. M., Breillatt, J. & Bahr, G. (1973). Abstract: Studies on the rod forms and isolated deoxyribonucleic acid from the nucleopolyhedrosis virus of the gypsy moth (Porthetria dispar, L.) Vth International Colloquium on Insect Pathology and Microbial Control, Oxford, England.Google Scholar
Oster, C., Doty, P. M. & Zimm, B. H. (1947). Light scattering studies of tobacco mosaic virus. J. Am. Chem. Soc. 69, 1193–7.CrossRefGoogle ScholarPubMed
Orr, C. & Dallavalle, J. M. (1960). Fine Particle Measurement. New York: MacMillan Co.Google Scholar
Polson, A., Stannard, L. & Tripconey, D. (1970). The use of haemocyanin to determine the molecular weight of nudaurelia cytherea capensis virus by direct particle counting. Virology 41, 680–7.CrossRefGoogle ScholarPubMed
Reedy, M., Bahr, G. F. & Fischman, D. A. (1972). How many myosins per cross-bridge? I. Flight muscle myofibrils from the blowfly, Sarcophaga bullata. Cold Spring Harb. Symp. Long Island, N. Y. 397421.Google Scholar
Ruch, F. & Bahr, G. F. (1970). Dry mass determination by interference microscopy. Agreement with quantitative electron microscopy. Expl Cell Res. 60, 470.Google Scholar
Safferman, R. S., Morris, M. E., Sherman, L. A. & Haselkorn, R. (1969). Serological and electron microscopic characterization of a new group of blue-green algal viruses (LPP-2). Virology 39, 775–80.CrossRefGoogle ScholarPubMed
Schmid, K. & Mazzone, H. M. (1963). Determination of the particle weight of spherical viruses. Nature, Lond. 197, 671–3.Google Scholar
Schmidt-Weinmar, C. (1968). Elektronenmikroskopische Trockengewichtsbestimmung mit dem Zeiss integrationsphotometer nach Zeitler und Bahr IPM-2. Optic 27, 106–12.Google Scholar
Schramm, G. & Bergold, G. (1974). Über das Molekulargewichtdes Tabakmosaikvirus. Z. Naturf. 2 b, 108–12.Google Scholar
Sherman, L. A. & Haselkorn, R. (1970 a). LPP-I infection of the blue-green alga Plectonema boryanum. I. Electron Microscopy. Jul Virol. 6, 820–33.CrossRefGoogle Scholar
Sherman, L. A. & Haselkorn, R. (1970 b). LPP-I infection of the blue-green alga Plectonema boryanum. II. Viral deoxyribonucleic acid synthesis and host deoxyribonucleic acid breakdown. Jnl Virol. 6, 834–40.Google Scholar
Sherman, L. A. & Haselkorn, R. (1970 c). LPP-I infection of the blue-green alga Plectonema boryanum. III. Protein synthesis. Jnl Virol. 6, 841-5.Google Scholar
Smadel, J. E., Rivers, T. M. & Pickels, E. G. (1939). Estimation of the purity of preparations of elementary bodies. J. exp. Med. 70, 379–85.Google Scholar
Stenn, K. S. & Bahr, G. F. (1970 a). A study of mass loss and product formation after irradiation of some dry amino acids, peptides, polypeptides, and proteins with an electron beam of low current density. J. Histochem. Cytochem. 18, 574–80.Google Scholar
Stenn, K. S. & Bahr, G. F. (1970 b). Specimen damage caused by the beam of the transmission electron microscope. J. Ultrastruct. Res. 31, 526–50.CrossRefGoogle ScholarPubMed
Tai, H. T., Smith, C. A., Sharp, P. A. & Vinograd, J. (1972). Sequence heterogeneity in closed simian virus 40 deoxyribonucleic acid. Jul Virol. 9, 317–25.CrossRefGoogle ScholarPubMed
Thach, R. E. & Thach, S. S. (1971). Damage to biological samples caused by the electron beam during electron microscopy. Biophys. J. II, 204–10.Google Scholar
Thomas, R. S. (1961). The chemical composition and particle weight of tipula iridescent virus. Virology 14, 240–52.CrossRefGoogle ScholarPubMed
Wall, J. (1972). Mass and mass loss measurements on DNA and fd phage. 30th Ann. Proc. EMSA, pp. 186–7.Google Scholar
Watanabe, I. & Kawade, Y. (1953). Purification and characterization of tobacco mosaic virus. Bull. chem. Soc. Japan 26, 294–8.CrossRefGoogle Scholar
Weber, F. N. JrKupke, D. W. & Beams, J. W. (1963). Molecular weight: Measurements with gravity cells. Science, N.Y. 139, 837–8.Google Scholar
Williams, R. C., Backus, R. C. & Steers, R. L. (1951). Molecular weight determinations by direct particle counting. II. The weight of the T.M.V. particle. J. Am. chem. Soc. 73, 2062–6.Google Scholar
Yphantis, D. A. (1964). Equilibrium ultracentrifugation of dilute solutions. Biochemistry N.Y. 3, 297317.CrossRefGoogle ScholarPubMed
Zeitler, E. & Bahr, G. F. (1962). A photometric procedure for weight determination of submicroscopic particles. Quantitative electron microscopy. J. appl. Phys. 33, 847–53.Google Scholar