Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2025-01-05T13:36:04.941Z Has data issue: false hasContentIssue false

Determination of motile behaviour of prokaryotic and eukaryotic cells by quasi-elastic light scattering

Published online by Cambridge University Press:  17 March 2009

Sow-Hsin Chen
Affiliation:
Department of Nuclear Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, U.S.A.
Frederick Ross Hallett
Affiliation:
Department of Physics, University of Guelph, Guelph, Ontario, Canada N1G 2W1

Extract

Information on the swimming motion of microscopic calls and the factors which affect it is important to a wide range of disciplines. The functions of the motile apparatus of simpler organisms such as bacteria or algae can provide useful clues on the operation of more complex contractile systems such as muscles. Often celluar motility is a response to conditions external to the cell (e.g. chemotaxis) and, hence, can lead to increased understanding of the cell's sensory capability. On the medical front there is a physical similarity between the flagellar beat of the motile spermatozoa and the ciliary activity of epithelial lining of respiratory and reproductive tracts. Impairment of the motile apparatus can lead to sterility and to a variety of pathological conditions. In animal husbandry, in the artificial insemination industry and in sperm banking estimates of the extent of cellular motility and the fraction of cells which are motile are key quantities which can determmine the fertilization capability of a semen sample.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

BIBLIOGRAPHY

Adler, J. (1966). Chemotaxis in bacteria. Science, N.Y. 153, 708716.CrossRefGoogle ScholarPubMed
Ascoli, C., Barbi, M., Frediani, C. & Mure, A. (1978). Measurements of euglena motion parameters by laser light scattering. Biophys. J. 24, 585599.CrossRefGoogle ScholarPubMed
Ascoli, C., Barbi, M., Frediani, C., Petracchi, D. & Ristori, T. (1980). Quasi-elastic light scattering for studying the motion of flagellated microorganisms. Optica Acta 27, 12031212.CrossRefGoogle Scholar
Ascoli, C. & Frediani, C. (1980). Quasi-elastic light scattering in the measurement of motion of the flagellated algae. In Light Scattering in Liquids and Macromolecular Solutions (ed. Degiorgio, V., Corti, M. and Giglio, M.), pp. 183198. New York: Plenum.CrossRefGoogle Scholar
Banks, G., Schaefer, D. W. & Alpert, S. S. (1975). Light scattering study of the temperature dependence of E. coli motility. Biophys. J. 15, 253261.CrossRefGoogle Scholar
Beckman, P. & Spizzichino, A. (1963). In The Scattering of Electromagnetic Waves from Rough Surfaces. New York: Macmillan.Google Scholar
Berg, H. C. & Brown, D. A. (1972). Chemotaxis in Escherichia coli analysed by three-dimensional tracking. Nature, Lond. 239, 500504.CrossRefGoogle ScholarPubMed
Berge, P., Volochine, B., Billard, R., & Hamelin, A. (1967). Mise en evidence du mouvement propre de microorgansim vivants grace à l'étude inélastique de lumiére. C. r. hebd. Séanc. Acad. Sci., Paris 265, 889892.Google Scholar
Berge, P. & Dubois, M. (1973) Dispositil de mesures optiques adapté a l'étude du mouvement de microorganismes vivants. Rev. Phys. Appl. 8, 8996.CrossRefGoogle Scholar
Berne, B. J. & Nossal, R. (1974). Inelastic light scattering by large structured particles. Biophys. J. x, 865880.CrossRefGoogle Scholar
Bloodgood, R. A. (1977). Motility occurring in association with the surface of the chlamydomonas flagellum. J. Cell. Biol. 75, 983989.CrossRefGoogle ScholarPubMed
Boon, J.-P., Nossal, R. & Chen, S.-H. (1974). Light scattering spectrum due to wiggling motions of bacteria. Biophys. J. 14, 847864.CrossRefGoogle ScholarPubMed
Chandrasekar, S. (1943). Stochastic problems in physics and astronomy. Rev, mod. Phys. 15, 189.Google Scholar
Chen, S.-H. & Tartaglia, P. (1972). Light scattering from N non- interacting particles. Opt. Commun. 6, 119124.CrossRefGoogle Scholar
Chen, S.-H., TArtaglia, P. & Pusey, P. (1973). Light scattering from independent particles-nongaussian correction to the clipped intensity correlation function. J. Phys. A6, 490495.Google Scholar
Chen, S.-H. (1974). Introduction to neutron, X-ray and laser spectroscopy. In Spectroscopy in Biology and Chemistry, chap. I (ed. Chen, S.-H. and Yip, S.). New York: Academic Press.Google Scholar
Chen, S.-H., Veldkamp, W. B. & Lai, C. C. (1975). Simple digital clipped correlator for photon correlation spectroscopy. Rev. Scient. Instrum. 46, 13561367.CrossRefGoogle Scholar
Chen, S.-H., Holz, M. & Tartaglia, P. (1977). Quasi-elastic light scattering from structured particles. Appl. Opt. 16, 187194.CrossRefGoogle ScholarPubMed
Chen, S.-H. & Wang, P. C. (1981). Light scattering measurement of the two-state motional parameter of Escherichia coli in chemotactic bands. Paper presented in Conference on Biomedical Applications of Laser Light Scattering, Cambridge University, 7–14 09. Proceeding to appear as a book by North-Holland (1982).Google Scholar
Chu, B. (1974). In Laser Light Scattering. New York: Academic Press.Google Scholar
Combescot, R. (1970). Diffusion d'un rayonnement laser par des spermatozoïdes. J. Phys. 31, 767769.CrossRefGoogle Scholar
Cooke, D. F., Hallett, F. R. & Barker, C. A. V. (1976). Motility evaluation of bull spermatozoa by photon correlation spectroscopy. J. Mechanochem. & Cell Motility 3, 219223.Google ScholarPubMed
Craig, T., Hallett, F. R. & Nickel, B. (1979). Quasi-elastic light scattering of swimming spermatozoa. Biophys. J. 28, 457472.CrossRefGoogle ScholarPubMed
Craig, T. H. (1981). Rotational-translational effects in quasi-elastic light scattering from bull spermatozoa. Ph.D. dissertation.Google Scholar
Craig, T., Hallett, F. R. & Chen, S.-H. (1982). Scaling properties of light scattering spectra for particles moving with helical trajectories. Appl. Opt. 02.CrossRefGoogle Scholar
Cummins, H. Z. (1977). Intensity fluctuation spectroscopy of motile organisms. In Photon Correlation Spectroscopy and Velocimetry (ed. Cummins, H. Z. and Pike, E. R.), NATO Advanced Study Institutes, Series B. New York: Plenum.CrossRefGoogle Scholar
Dane, J. V. (1968). Subroutines for computing the parameters of the electromagnetic radiation scattered by a sphere. IBM Data Processing Division, Palo Alto Scientific Center.Google Scholar
Debye, P. (1909). Der lichtdruck auf Kugeln von beleliebigem Material. Annln. Phys. A30, 57136.CrossRefGoogle Scholar
Dubois, M., Jouannet, P., Berge, P. & David, G. (1974). Spermatozoa motility in human cervical mucus. Nature, Lond. 252, 711713.CrossRefGoogle ScholarPubMed
Dubois, M., Jouannet, P., Berge, P., Volochine, B., Serres, C. & David, G. (1975). Méthode et appareillage de mesure objective de la mobilité des spermatozoïdes humains. Ann. Phys. Biol. & Med. 9, 1941.Google Scholar
Frost, J. & Cummins, H. Z. (1981). Motility assay of human sperm by photon correlation spectroscopy. Science, N.Y. 212, 15201522.CrossRefGoogle ScholarPubMed
Glantsching, W. J. & Chen, S.-H. (1981). Light scattering from water droplets in the geometrical optical approximation. Appl. Opt. 20, 24992509.CrossRefGoogle Scholar
Hallett, F. R., Craig, T. & Marsh, J. (1978). Swimming speed distributions of bull spermatozoa as determined by quasi-elastic light scattering. Biophys. J. 21, 203216.CrossRefGoogle ScholarPubMed
Hallett, F. R. (1981). Motility studies of large cells. In Scattering Techniques Applied to Supramolecular and Nonequilibrium Systems (ed. Chen, S.-H., Chu, B. and Nossal, R.). Advanced Study Institute, Series B. New York: Plenum.Google Scholar
Hallett, F. R. (1982). Laser light scattering studies of spermatozoa and chlamydomonas. In Biomedical Applications of Laser Light Scattering (ed. Sattelle, D. B.). Elsevier-North Holland.Google Scholar
Harvey, J. D. & Woolford, M. W. (1980). Laser light scattering studies of bull spermatozoa. I. Orientational effects. Biophys. J. 31, 147156.CrossRefGoogle ScholarPubMed
Herpigny, B. & Boon, J.-P. (1979). Photon correlation study of spermatozoa motility. J. Phys. 40, 10851088.CrossRefGoogle Scholar
Holz, M. & Chen, S.-H. (1978 a). Tracking bacterial movements using a one-dimensional fringe system. Optics Letters 2, 109111.CrossRefGoogle ScholarPubMed
Holz, M. & Chen, S.-H. (1978 b). Structural effects in quasi-elastic light scattering from motile bacteria of E. coli. Appl. Opt. 17, 19301937.CrossRefGoogle ScholarPubMed
Holz, M. & Chen, S.-H. (1978 c). Rotational-translational models for interpretation of quasi-elastic light scattering spectra of motile bacteria. Appl. Opt. 17, 31973204.CrossRefGoogle ScholarPubMed
Holz, M. & Chen, S.-H. (1978 d). Quasi-elastic light scattering from migrating chemotactic bands of E. coli. Biophys. J. 23, 1531.CrossRefGoogle Scholar
Holz, M. & Chen, S.-H. (1979). Spatio-temporal structure of a migrating chemotactic band of E. coli. I. Travelling band profile. Biophys. J. 26, 243261.CrossRefGoogle ScholarPubMed
Jakeman, E. & Pike, E. R. (1968). Theory of periodic sampling of photon-counting distributions. J. Phys. A (Proc. Phys. Soc.), ser. 2, 1, 690693.Google Scholar
Jakeman, E., Oliver, G. J., Pike, E. R. & Pusey, P. N. (1972). Correlation of scaled photon-counting fluctuations. J. Phys. A (Gen. Phys.) 5, L93–L96.Google Scholar
Jouannet, p., Volochine, B., Deguent, P. & David, G. (1976). Study of human spermatozoa motility parameters by scattered light. Sperm. Action. Prog. reprod. Biol. I, 2835.Google Scholar
Jouannet, P., Volochine, B., Deguent, P., Serres, C. & David, G. (1977). Light scattering determination of various characteristic parameters of spermatozoa motility in a serie of human sperm. Andrologia 9, 3649.CrossRefGoogle Scholar
Kotlarchyk, M., Chen, S.-H. & Asano, S. (1979). Accuracy of RGD approximation for computing light scattering properties of diffusing and motile bacteria. Appl. Opt. 18, 24702479.CrossRefGoogle ScholarPubMed
Lee, W. I. & Verdugo, P. (1976). Laser light scattering spectroscopy: A new application in the study of ciliary activity. Biophys. J. 16, 11151119.CrossRefGoogle Scholar
Lee, W. & Verdugo, P. (1977). Ciliary activity by laser light-scattering spectroscopy. Ann. Biomed. Eng. 5, 248259.CrossRefGoogle ScholarPubMed
Lee, W. I. & Blandau, R. J. (1979). Laser light scattering of the effect of progesterone on sperm motility. Fert. Steril. 32, 320323.CrossRefGoogle ScholarPubMed
Lee, W. I. (1980). Measurement of sperm motility and ciliary activity by dynamic laser light scattering. The Sixth Taniguichi International Synposium, Santa City, Japan.Google Scholar
Lee, W. I. (1981). Dynamic laser scattering study of sperm migration through cervical mucus. In Scattering Techniques Applied to Supramolecular and Nonequilibrium Systems (ed. Chen, S.-H., Chu, B. and Nossal, R.). Advanced Study Institutes, Series B. New York: Plenum.Google Scholar
MacNab, R. M. & Koshland, D. E. Jr, (1972). The gradient sensing mechanism in bacterial chemotaxis. Proc. natn. Acad. Sci. U.S.A. 69, 25092512.CrossRefGoogle ScholarPubMed
Marathay, A. S., Heiko, L. & Zuckerman, J. L. (1970). Study of rough surfaces by light scattering. Appl. Opt. 9, 25702576.CrossRefGoogle ScholarPubMed
Matsumoto, G., Shimizu, H., Shimada, J. & Wada, A. (1977). Depolarized laser light scattered by motile spermatozoa. Opt. Commun. 22, 369373.CrossRefGoogle Scholar
Mie, G. (1908). Contribution to the optics of turbid media, especially colloidal metal solutions. Annln. Phys. Series 4, 25, 377445.CrossRefGoogle Scholar
Nossal, R. & Chen, S.-H. (1972b). Laser measurements of chemotactic microorganisms. Biophys. J. II, 341354.Google Scholar
Nossal, R. & Chen, S.-H. (1972). Laser measurements of chemotactic response of bacteria. Opt. Commun. 5, 117122.CrossRefGoogle Scholar
Nossal, R., Chen, S.-H. & Lai, C.-C. (1971). Use of laser scattering for quantitative determinations of bacterial motility. Opt. Commun. 4, 3539.CrossRefGoogle Scholar
Nossal, R. & Chen, S.-H. (1972 a). Light scattering from motile bacteria. J. Phys. 2–3, C1171 to C1176.Google Scholar
Nossal, R. & Chen, S-H. (1973). Effects of chemoattractants on the motility of Escherichia coli. Nature 244, 253254.Google ScholarPubMed
Racey, T. J. & Hallett, F. R. (1981). The effect of temperature, Cu ++, Mg++, and Ni++ ions on the swimming speed of C. reinhardtii determined by quasi-elastic light scattering. Expl Cell. Res. 136, 137138.CrossRefGoogle Scholar
Racey, T. J., Hallett, F. R. & Nickel, B. (1981). A quasi-elastic light scattering and cinematographic investigation of motile Chlamydomonas reinhardtii. Biophys. J. 35, 557571.CrossRefGoogle ScholarPubMed
Rikmenspoel, R., Vanherpen, G. herpen, G. & Eijkhout, J. (1960). Cinematographic observations of the movement of bull sperm cells. Physics. Med. Biol. 5, 167181.CrossRefGoogle ScholarPubMed
Ross, D. A. & Bullock, J. G. (1982). Bull sperm motility measured by the fibre optic Doppler anenometer. In Biomedical Applications of Laser Light Scattering (ed. Sattelle, D. B.). Elsevier-North Holland.Google Scholar
Schaefer, D. W. & Berne, B. J. (1972). Light scattering fromnon-Gaussian concentration fluctuations. Phys. Rev. Lett. 28, 475478.CrossRefGoogle Scholar
Schaefer, D. W. (1973). Dynamics of number fluctuations: Motile microorganisms. Science, N.Y. 180, 12931295.CrossRefGoogle ScholarPubMed
Schaefer, D. W., Banks, G. & Alpert, S. S. (1974). Intensity fluctuation spectroscopy of motile microorganisms. Nature, Lond. 248, 162164.CrossRefGoogle ScholarPubMed
Schaefer, D. W. & Berne, B. J. (1975). Number fluctuation spectroscopy of motile microorganisms. Biophys. J. 15, 785794.CrossRefGoogle ScholarPubMed
Shimizu, H. & Matsumoto, G. (1977). Light scattering on motile spermatozoa. I.E.E.E. Trans. Bio-med. Eng. 24, 153157.Google ScholarPubMed
Shimizu, H. & Matsumoto, G. (1980). Observation of flagellation of spermatozoa by depolarized laser light scattering. Biophys. J. 29, 167176.CrossRefGoogle ScholarPubMed
Steiner, R., Baumeister, TH. & Kaufmann, R. (1982). Dynamic light scattering and motility measurements–a comparative study. In Biomedical Applications of Laser Light Scattering (ed. Sattelle, D. B.). Elsevier-North Holland.Google Scholar
Stock, G. B. & Carlson, F. D. (1975). Photon correlation spectra of wobbling and translating bacteria. In Swimming and Flying in Nature, 1st ed., pp. 5768. Plenum.Google Scholar
Stock, G. B. (1976). Application of splines to the calculation of bacterial swimming speed distributions. Biophys. J. 16, 535540.CrossRefGoogle Scholar
Stock, G. B. (1978). The measurement of bacterial translation by photon correlation spectroscopy. Biophys. J. 22, 7996.CrossRefGoogle ScholarPubMed
Tartaglia, P. & Chen, S.-H. (1973). The spatial coherence factor in light scattering from a system of independent particles. Opt. Commun. 7, 379383.CrossRefGoogle Scholar
Uzgiris, E. E. (1981). Laser doppler spectroscopy: Applications to cell and particle electrophoresis. Adv. Colloid & Interface Sci. 14, 75171.CrossRefGoogle Scholar
Vande hulst, H. C. de hulst, H. C. (1975). In Light Scattering by Small Particles. New York: Wiley.Google Scholar
Van, duijn C. Jr, & Vanvoorst, C. voorst, C. (1971). Precision measurements of dimensions, refractive index and mass of bull spermatozoa in the living state. Mikroskopie 27, 142167.Google Scholar
Van, duijn C. Jr, Vanvoorst, C. voorst, C. & Freund, M. (1971). Movement characteristics of human spermatozoa and analysed from kinemicrographs. Eur. J. Obstet. Gynec. 4, 121135.Google Scholar
Vanhove, L. hove, L. (1954). Correlations in space and time and born approximation scattering in systems of interacting particles. Physiol. Rev. 95, 249262.Google Scholar
Wang, P. & Chen, S-H. (1981). Quasi-elastic light scattering from migrating chemotactic bands of E. coli. II. Analysis of anisotropic bacterial motions. Biophys. J. 36, 203219.CrossRefGoogle Scholar
Ware, B. R. & Haas, D. D. (1981). Electrophoretic light scattering. In Fast Methods in Physical, Biochemical and Cell Biology (ed. Sha'afi, R. I. and Fernandez, S. M.). Elsevier.Google Scholar
Berne, B. J. & Nossal, R. (1974). Inelastic light scattering by large structured particles. Biophys. J. 14, 865880.CrossRefGoogle ScholarPubMed
Boon, J.-P., Nossal, R. & Chen, S.-H. (1974). Light scattering spectrum due to wiggling motions of bacteria. Biophys. J. 14, 847864.CrossRefGoogle ScholarPubMed
Chen, S.-H. & Tartaglia, P. (1972). Light scattering from N non-interacting particles. Opt. Commun. 6, 119124.CrossRefGoogle Scholar
Chen, S.-H., Tartaglia, P. & Pusey, P. (1973). Light scattering from independent particles-nongaussian correction to the clipped intensity correlation function. J. Phys. A6, 490495.Google Scholar
Chen, S.-H. (1974). Introduction to neutron, X-ray and laser spectroscopy. In Spectroscopy in Biology and Chemistry, chap. I (ed. Chen, S.-H. and Yip, S.). Academic Press.Google Scholar
Chen, S-H., Holz, M. & Tartaglia, P. (1977). Quasi-elastic light scattering from structured particles. Appl. Opt. 16, 187194.CrossRefGoogle ScholarPubMed
Chu, B. (1974) In Laser Light Scattering. New York: Academic Press.Google Scholar
Combescot, R. (1970). Diffusion d'un rayonnement laser par des spermatozoïdes. J. Phys. 31, 767769.CrossRefGoogle Scholar
Craig, T., Hallett, F. R. & Nickel, B. (1979). Quasi-elastic light scattering of swimming spermatozoa. Biophys. J. 28, 457472.CrossRefGoogle ScholarPubMed
Craig, T., Hallett, F. R. & Chen, S.-H. (1982). Scaling properties of light scattering spectra for particles moving with helical trajectories. Appl. Opt., 02 1982.CrossRefGoogle Scholar
Glantsching, W. J. & Chen, S.-H. (1981). Light scattering from water droplets in the geometrical optical approximation. Appl. Opt. 20, 24992509.CrossRefGoogle Scholar
Harvey, J. D. & Woolford, M. W. (1980). Laser light scattering studies of bull spermatozoa. I. Orientational effects. Biophys. J. 31, 147156.CrossRefGoogle ScholarPubMed
Holz, M. & Chen, S.-H. (1978b). Structural effects in quasi-elastic light scattering from motile bacteria of E. coli. Appl. Opt. 17, 19301937.CrossRefGoogle ScholarPubMed
Holz, M. & Chen, S.-H. (1978c). Rotational-translational models for interpretation of quasi-elastic light scattering spectra of motile bacteria. Appl. Opt. 17, 31973204.CrossRefGoogle ScholarPubMed
Jakeman, E. & Pike, E. R. (1968). Theory of periodic sampling of photon-counting distributions. J. Phys. A (Proc. Phys. Soc.), ser. 2, I, 690693.CrossRefGoogle Scholar
Jakeman, E., Oliver, G. J., Pike, E. R. & pusey, P. N. (1972). Correlation of scaled photon-counting fluctuations. J. Phys. A (Gen. Phys.) 5, L93–L96.Google Scholar
Kotlarchyk, M., Chen, S-H. & Asano, S. (1979). Accuracy of RGD approximation for computing light scattering properties of diffusing and motile bacteria. Appl. Opt. 18, 24702479.CrossRefGoogle ScholarPubMed
Nossal, R. (1971). Spectral analysis of laser light scattered from motile microorganisms. Biophys. J. II, 341354.Google Scholar
Nossal, R., Chen, S.-H. & Lai, C-C. (1971). Use of laser scattering for quantitative determinations of bacterial motility. Opt. Commun. 4, 3539.CrossRefGoogle Scholar
Nossal, R. & Chen, S.-H. (1972a). Light scattering from motile bacteria. J. Phys. 2–3, C1171 to C1176.Google Scholar
Schaefer, D. W. & Berne, B. J. (1972). Light scattering from non-Gaussian concentration fluctuations. Phys. Rev. Lett. 28, 475478.CrossRefGoogle Scholar
Schaefer, D. W. (1973). Dynamics of number fluctuations: motile microorganisms. Science, N.Y. 180, 12931295.CrossRefGoogle ScholarPubMed
Schaefer, D. W., Banks, G. & Alpert, S. S. (1974). Intensity fluctuation spectroscopy of motile microorganisms. Nature, Lond. 248, 162164.CrossRefGoogle ScholarPubMed
Schaefer, D. W. & Berne, B. J. (1975). Number fluctuation spectroscopy of motile microorganisms. Biophys. J. 15, 785794.CrossRefGoogle ScholarPubMed
Stock, G. B. & Carlson, F. D. (1975). Photon correlation spectra of wobbling and translating bacteria. In Swimming and Flying in Nature, 1st ed., pp. 5768. Plenum.Google Scholar
Stock, G. B. (1976). Application of splines to the calculation of bacterial swimming speed distributions. Biophys. J. 16, 535540.CrossRefGoogle Scholar
Stock, G. B. (1978). The measurement of bacterial translation by photon correlation spectroscopy. Biophys. J. 22, 7996.Google ScholarPubMed
Tartaglia, P. & Chen, S.-H. (1973). The spatial coherence factor in light scattering from a system of independent particles. Opt. Commun. 7, 379383.CrossRefGoogle Scholar
Wang, P. C. & Chen, S.-H. (1981). Quasi-elastic light scattering from migrating chemotactic bands of E. coli. II. Analysis of anisotropic bacterial motions. Biophys. J. 36, 203219.CrossRefGoogle Scholar
Ascoli, C., Barbi, M., Frediani, C. & Mure, A. (1978). Measurements of euglena motion parameters by laser light scattering. Biophys. J. 24, 585599.CrossRefGoogle ScholarPubMed
Ascoli, C., Barbi, M., Frediani, C., Petracchi, D. & Ristori, T. (1980). Quasi-elastic light scattering for studying the motion of flagellated microorganisms. Optica acta 27, 12031212.CrossRefGoogle Scholar
Ascoli, C. & Frediani, C. (1980). Quasi-elastic light scattering in the measurement of motion of the flagellated algae. In Light Scattering in Liquids and Macromolecular Solutions (ed. Degiorgio, V., Corti, M. and Giglio, M.), pp. 183198. New York: Plenum.CrossRefGoogle Scholar
Banks, G., Sshaefer, D. W. & Alpert, S. S. (1975). Light scattering study of the temperature dependence of E. coli motility. Biophys. J. 15, 253261.CrossRefGoogle Scholar
Berge, P., Volochine, B., Billard, R. & Hamelin, A. (1967). Mise en évidence du mouvement propre de microorganism vivants grace à l'étude inélastique de lumière. C. r. hebd. Séanc. Acad. Sci., Paris 265, 889892.Google Scholar
Berge, P. & Dubois, M. (1973). Dispositil de mesures optiques adapté à l'étude du mouvement de microorganismes vivants. Rev. Phys. Appl. 8, 8996.CrossRefGoogle Scholar
Cooke, D. F., Hallett, F. R. & Barker, C. A. V. (1976). Motility evaluation of bull spermatozoa by photon correlation spectroscopy. J. Mechanochem. & Cell Motility 3, 219223.Google ScholarPubMed
Dubios, M., Jouannet, P., Berge, P. & David, G. (1974). Spermatozoa motility in human cervical mucus. Nature, Lond. 252, 711713.CrossRefGoogle Scholar
Dubios, M., Jouannet, P., Berge, P., Volochine, B., Serres, C. & David, G. (1975). Méthode et appareillage de mesure objective de la mobilité des spermatozoïdes humains. Ann. Phys. Biol. & Med. 9, 1941.Google Scholar
Frost, J. & Cummins, H. Z. (1981). Motility assay of human sperm by photon correlation spectroscopy. Science, N. Y. 212, 15201522.CrossRefGoogle ScholarPubMed
Hallert, F. R., Craig, T. & Marsh, J. (1978). Swimming speed distributions of bull spermatozoa as determined by quasi-elastic light scattering. Biophys. J. 21, 203216.CrossRefGoogle Scholar
Herpigny, B. & Boon, J.-P. (1979). Photon correlation study of spermatozoa motility. J. Phys. 40, i10851088.CrossRefGoogle Scholar
Holz, M. & Chen, S.-H. (1978 d). Quasi-elastic light scattering from migrating chemotactic bands of E. coli. Biophys. J. 23, 1531.CrossRefGoogle Scholar
Holz, M. & Chen, S.-H.Spatio-temporal structure of a migrating chemotactic band of E. coli. I. Travelling band profile. Biophys. J. 26, 243261.CrossRefGoogle Scholar
Jouannet, P., Volochine, B., Deguent, P. & David, G. (1976). Study of human spermatozoa motility parameters by scattered light. Sperm. Action. Prog. reprod. Biol. I, 2835.Google Scholar
Jouannet, P., Volochine, B., Deguent, P., Serres, C. & David, G. (1977). Light scattering determination of various characteristic parameters of spermatozoa motility in a series of human sperm. Andrologia 9, 3649.CrossRefGoogle Scholar
Lee, W. I. & Verdugo, P. (1976). Laser light scattering spectroscopy: A new application in the study of ciliary activity. Biophys. J. 16, 11151119.CrossRefGoogle Scholar
Lee, W. & Verdugo, P. (1977). Ciliary activity by laser light-scattering spectroscopy. Ann. Biomed. Eng. 5, 248259.CrossRefGoogle ScholarPubMed
Lee, W. I. & Blandau, R. J. (1979). Laser light scattering of the effect of progesterone on sperm motility. Fert. Steril. 32, 320323.CrossRefGoogle ScholarPubMed
Lee, W. I. (1981). Dynamic laser scattering study of sperm migration through cervical mucus. In Scattering Techniques Applied to Supramolecular and Nonequilibrium Systems (ed. Chen, S.-H., Chu, B. and Nossal, R.), Advanced Study Institutes, Series B. New York: Plenum.Google Scholar
Matsumoto, G., Shimizu, H., Shimada, J. & Wada, A. (1977). Depolarized laser light scattered by motile spermatozoa. Opt. Commun. 22, 369373.CrossRefGoogle Scholar
Nossal, R. & Chen, S.-H. (1972). Laser measurements of chemotactic response of bacteria. Opt. Commun. 5, 117122.CrossRefGoogle Scholar
Nossal, R. & Chen, S.-H. (1973). Effects of chemoattractants on the motility of Escherichia coli. Nature, Lond. 244, 253254.Google ScholarPubMed
Racey, T. J. & Hallett, F. R. (1981). The effect of temperature, Cu++, Mg++, and Ni++ ions on the swimming speed of C. reinhardtii determined by quasi-elastic light scattering. Expl. Cell. Res. 136, 371378.CrossRefGoogle Scholar
Racey, T. J., Hallett, F. R. & Nickel, B. (1981). A quasi-elastic light scattering and cinematographic investigation of motile Chlamydomonas reinhardtii. Biophys. J. 35, 557571.CrossRefGoogle ScholarPubMed
Ross, D. A. & Bullock, J. G. (1982). Bull sperm motility measured by the fibre optic Doppler anenometer. In Biomedical Applications of Laser Light Scattering (ed. Sattelle, D. B.). Elsevier-North Holland.Google Scholar
Shimizu, H. & Matsumoto, G. (1977). Light scattering on motile spermatozoa. I.E.E.E. Trans. Bio-med. Eng. 24, 153157.Google ScholarPubMed
Shimizu, H. & Matsumoto, G. (1980). Observation of flagellation of spermatozoa by depolarized laser light scattering. Biophys. J. 29, 167176.CrossRefGoogle ScholarPubMed
Steiner, R., Baumeister, Th. & Kaufmann, R. (1982). Dynamic light scattering and motility measurements - a comparative study. In Biomedical Applications of Laser Light Scattering (ed. Sattelle, D. B.). Elsevier-North Holland.Google Scholar
Wang, P. & Chen, S.-H. (1981). Quasi-elastic light scattering from migrating chemotactic bands of E. coli. II. Analysis of anisotropic bacterial motions. Biophys. J. 36, 203219.CrossRefGoogle Scholar