Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-08T23:30:45.500Z Has data issue: false hasContentIssue false

Damage to proteins due to the direct action of ionizing radiation

Published online by Cambridge University Press:  17 March 2009

E. S. Kempner
Affiliation:
National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda MD 20892, USA

Extract

Proteins exposed to ionizing radiation suffer both reversible and irreversible effects. Reversible effects are defined as those which disappear in a short period of time after the removal of the radiation field and without further treatment of the sample. Irreversible effects are those which cause a permanent alteration in the structure of a protein.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexander, P. & Hamilton, L. D. G. (1960). Irradiation of proteins in the solid state. II. chemical changes produced in bovine serum albumin. Radiation Res. 13, 214233.CrossRefGoogle Scholar
Andersen, J. P. & Vilsen, B. (1988). Radiation inactivation analysis of sarcoplasmic reticulum Ca-ATPase in membrane-bound form and in detergent-solubilized monomeric states. FEBS Lett. 234, 120126.CrossRefGoogle ScholarPubMed
Angelides, K. J., Nutter, T. J., Elmer, L. W. & Kempner, E. S. (1985). Functional unit size of the neurotoxin receptors on the voltage-dependent sodium channel. J. biol. Chem. 260, 34313439.CrossRefGoogle ScholarPubMed
Aronson, D. L. & Preiss, J. W. (1962). Molecular weights of human prothrombin and thrombin by electron irradiation. Radiation Res. 16, 138143.CrossRefGoogle ScholarPubMed
Barber, M. J., Solomonson, L. P. & McCreery, M. J. (1987). Radiation inactivation of hepatic sulfite oxidase. Arch. Biochem. Biophys. 256, 260267.CrossRefGoogle ScholarPubMed
Beauregard, G., Maret, A., Salvayre, R. & Potier, M. (1987). The radiation inactivation method as a tool to study structure-function relationships in proteins. Methods in biochem. Analysis 32, 313343.CrossRefGoogle ScholarPubMed
Beliveau, R., Demeule, M., Ibnoul-Khatib, H., Bergeron, M., Beauregard, G. & Potier, M. (1988). Radiation-inactivation studies on brush-border-membrane vesicles. Biochem. J. 252, 807813.CrossRefGoogle ScholarPubMed
Boldyrev, A. A., Lopina, O. D. & Fedosova, N. U. (1990). Na, K-ATPase: radiation inactivation studies. Biochem. International 21, 4552.Google ScholarPubMed
Bolger, G. T., Skolnick, P. & Kempner, E. S. (1989). Radiation inactivation reveals discrete cation binding sites that modulate dihydropyridine binding sites. Molec. Pharmacol. 36, 327332.Google ScholarPubMed
Bowman, B. J., Berenski, C. J. & Jung, C. Y. (1985). Size of the plasma membrane H+-ATPase from Neurospora crassa determined by radiation inactivation and comparison with the sarcoplasmic reticulum Ca2+-ATPase from skeletal muscle. J. biol. Chem. 260, 87268730.CrossRefGoogle ScholarPubMed
Boyer, T. D. & Kempner, E. S. (1992). Effect of subunit interactions on enzymatic activity of glutathione S-transferases: a radiation inactivation study. Anal. Biochem. 207, 5157.CrossRefGoogle ScholarPubMed
Bundo-Morita, K., Gibson, S. & Lenard, J. (1988). Radiation inactivation analysis of fusion and hemolysis by vesicular stomatitis virus. Virology 163, 622624.CrossRefGoogle ScholarPubMed
Chamberlain, B. K., Berenski, C. J., Jung, C. Y. & Fleischer, S. (1983). Determination of the oligomeric structure of the Ca2+ pump protein in canine cardiac sarcoplasmic reticulum membranes using radiation inactivation analysis. J. biol. Chem. 258, 1199712001.CrossRefGoogle ScholarPubMed
Cheung, D. T., Perelman, N., Tong, D. & Nimni, M. E. (1990). The effect of gammairradiation on collagen molecules, isolated α-chains, and crosslinked native fibers. J. Biomed. mat. Res. 24, 581589.CrossRefGoogle ScholarPubMed
Coggins, J. R., Boocock, M. R., Campbell, M. S., Chaudhuri, S., Lambert, J. M., Lewendon, A., Mousdale, D. M. & Smith, D. D. S. (1985). Functional domains involved in aromatic amino acid biosynthesis. Biochem. Soc. Trans. 13, 299303.CrossRefGoogle ScholarPubMed
Cuppoletti, J., Goldinger, J., Kang, B., Jo, I., Berenski, C. & Jung, C. Y. (1985). Anion carrier in the human erythrocyte exists as a dimer. J. biol. Chem. 260, 1571415717.CrossRefGoogle ScholarPubMed
Dose, K., Risi, S. & Rauchfuss, H. (1966). Veranderung von aminosauren und aktivitat bei rontgenbestrahlung von krystallisiertem lysozym. Biophysik 3, 202206.CrossRefGoogle Scholar
Edwards, P. A., Kempner, E. S., Lan, S.-F. & Erickson, S. K. (1985). Functional size of rat hepatic 3-hydroxy-3-methylglutaryl coenzyme A reductase as determined by radiation inactivation. J. biol. Chem. 260, 1027810282.CrossRefGoogle Scholar
Fewtrell, C., Kempner, E., Poy, G. & Metzger, H. (1981). Unexpected findings from target analysis of immunoglobin E and its receptor. Biochemistry 20, 65896594.CrossRefGoogle Scholar
Fujita-Yamaguchi, Y., Harmon, J. T. & Kathuria, S. (1989). Radiation inactivation experiments predict that a large aggregate form of the insulin receptor is a highly active tyrosine-specific kinase. Biochemistry 28, 45564563.CrossRefGoogle Scholar
Garrison, W. M. (1987). Reaction mechanisms in the radiolysis of peptides, polypeptides, and proteins. Chem. Revs. 87, 381398.CrossRefGoogle Scholar
Gibson, S., Bundo-Morita, K., Portner, A. & Lenard, J. (1988). Fusion of a sendai mutant deficient in HN protein (ts271) with cardiolipin liposomes. Virology 163, 226229.CrossRefGoogle ScholarPubMed
Haigler, H. T., Woodbury, D. J. & Kempner, E. S. (1985). Radiation inactivation of ricin occurs with transfer of destructive energy across a disulfide bridge. Proc. natl Acad. Sci. USA 62, 53575359.CrossRefGoogle Scholar
Harmon, J. T., Nielsen, T. B. & Kempner, E. S. (1985). Molecular weight determinations from radiation inactivation. Methods in Enzymol. 117, 6594.CrossRefGoogle ScholarPubMed
Hill, D. J. T., Garrett, R. W., Ho, S. Y., O'Donnell, J. H., O'Sullivan, P. W. & Pomery, P. J. (1981). Radiolysis of model polypeptides in the solid state: radiation sensitivity and side chain structure. Rad. Chem. Phys. 17, 163171.Google Scholar
Hill, D. J. T., Ho, S. Y., O'Donnell, J. H., O'Sullivan, P. W. & Pomery, P. J. (19801981). The mechanism of radiation degradation of polypeptides. Polymer Degradation and Stability 3, 8386.CrossRefGoogle Scholar
Horowits, R., Kempner, E. S., Bisher, M. E. & Podolsky, R. J. (1986). A physiological role for titin and nebulin in skeletal muscle. Nature 323, 160164.CrossRefGoogle ScholarPubMed
Hymel, L., Maurer, A., Berenski, C., Jung, C. Y. & Fleischer, S. (1984). Target size of calcium pump protein from skeletal muscle sarcoplasmic reticulum. J. biol. Chem. 259, 48904895.CrossRefGoogle ScholarPubMed
Jensen, J. & Norby, J. G. (1988). Membrane-bound Na, K-ATPase: target size and radiation inactivation size of some of its enzymatic reactions. J. biol. Chem. 263, 1806318070.CrossRefGoogle ScholarPubMed
Jhun, E., Jhun, B. H., Jones, L. R. & Jung, C. Y. (1991). Direct effects of ionizing radiation on integral membrane proteins. J. biol. Chem. 266, 94039407.CrossRefGoogle ScholarPubMed
Jung, C. Y. (1984). Molecular weight determination by radiation inactivation. In Receptor Biochemistry and Methodology, vol. 3 (ed. Venter, J. C. & Harrison, L. C.), pp. 193208. New York: A. R. Liss.Google Scholar
Jung, H. & Schussler, H. (1968). Zur Strahleninaktivierung von Ribonuclease. III. Aminosauren-Veranderungennach Bestrahlung in Trockenen. Z. Naturforsch. 23 b, 934943.CrossRefGoogle Scholar
Karlish, S. J. D. & Kempner, E. S. (1984). Minimal functional unit for transport and enzyme activities of (Na+ + K+)-ATPase as determined by radiation inactivation. Biochim. biophys. Acta 776, 288298.CrossRefGoogle ScholarPubMed
Kasche, V. (1971). Specific protein–protein interaction and its application in studies on radiation-induced protein modification. Uppsala dissertations from the Faculty of Science, vol. 2. Acta Universitatis Upsaliensis.Google Scholar
Kempner, E. S. & Fleischer, S. (1989). Radiation inactivation of membrane components and molecular mass determination by target analysis. Methods in Enzymol. 172, 410439.CrossRefGoogle ScholarPubMed
Kempner, E. S. & Miller, J. H. (1983). Radiation inactivation of glutamate dehydrogenase hexamer: lack of energy transfer between subunits. Science 222, 586589.CrossRefGoogle ScholarPubMed
Kempner, E. S. & Miller, J. H. (1989). Radiation-damaged tyrosinase molecules are inactive. Biophys. J. 55, 159162.CrossRefGoogle ScholarPubMed
Kempner, E. S. & Miller, J. H. (1990). Direct effects of radiation on the avidin-biotin system, j. biol. Chem. 265, 1577615781.CrossRefGoogle ScholarPubMed
Kempner, E. S. & Verkman, A. S. (1988). Direct effects of ionizing radiation unique to macromolecules. Radiat. Phys. Chem. 32, 341347.Google Scholar
Kempner, E. S., Cole, K. W. & Gaertner, F. H. (1982). The functional unit of the arom conjugate in Neurospora. J. biol. Chem. 257, 89198921.CrossRefGoogle ScholarPubMed
Kempner, E. S., Miller, J. H. & McCreery, M. J. (1986). Radiation target analysis of glycoproteins. Anal. Biochem. 156, 140146.CrossRefGoogle ScholarPubMed
le Maire, M., Thauvette, L., De Foresta, B., Viel, A., Beauregard, G. & Potier, M. (1990). Effects of ionizing radiations on proteins. Biochem. J. 267, 431439.CrossRefGoogle Scholar
Lummis, S. C. R., Ellory, J. C. & Sattelle, D. B. (1988). The cross-linking reagent dimethyl suberimidate modifies the target size of an insect nervous system nicotinic acetylcholine receptor. Neuroscience Letters 87, 145150.CrossRefGoogle ScholarPubMed
McCormick, J. I., Jette, M., Potier, M., Beliveau, R. & Johnstone, R. M. (1991). Molecular size of a Na+-dependent amino acid transporter in Ehrlich ascites cell plasma membranes estimated by radiation inactivation. Biochemistry 30, 37043709.CrossRefGoogle ScholarPubMed
McGrew, S. G., Boucek, R. J. Jr., McIntyre, J. O., Jung, C. Y. & Fleischer, S. (1987). Target size of the ryanodine receptor from junctional terminal cisternae of sarcoplasmic reticulum. Biochemistry 26, 31833187.CrossRefGoogle ScholarPubMed
McGrew, S. G., Inui, M., Chadwick, C. C., Boucek, R. J. Jr., Jung, C. Y. & Fleischer, S. (1989). Comparison of the calcium release channel of cardiac and skeletal muscle sarcoplasmic reticulum by target inactivation analysis. Biochemistry 28, 13191323.CrossRefGoogle ScholarPubMed
McIntyre, J. O., Churchill, P., Maurer, A., Berenski, C. J., Jung, C. Y. & Fleischer, S. (1983). Target size of D-β-hydroxybutyrate dehydrogenase. J. biol. Chem. 258, 953959.CrossRefGoogle ScholarPubMed
Morishima, H. & Hatano, H. (1975). Electron paramagnetic resonance of several polyamino acids gamma-irradiated at 77 K. Bull. Inst. Chem. Res. Kyoto 53, 1522.Google Scholar
Nakamura, Y., Ogiwara, Y. & Phillips, G. O. (1985). Free radical formation and degradation of cellulose by ionizing radiations. Polym. Photochem. 6, 135159.CrossRefGoogle Scholar
Ness, G. C., McCreery, M. J., Sample, C. E., Smith, M. & Pendleton, L. C. (1985). Sulfhydryl–disulfide forms of rat liver 3-hydroxy-3-methylglutaryl coenzyme A reductase. J. biol. Chem. 260, 1639516399.CrossRefGoogle ScholarPubMed
Norby, J. G. & Jensen, J. (1989). A model for the step-wise radiation inactivation of the α2-dimer of Na, K-ATPase. J. biol. Chem. 264, 1954819558.CrossRefGoogle Scholar
Norby, J. G. & Jensen, J. (1991). Functional significance of the oligomeric structure of the Na, K pump from radiation inactivation and ligand binding. In The Sodium Pump: Structure, Mechanism and Regulation (ed. Kaplan, J. H. & De Weer, P.), pp. 173188. New York: Rockefeller Univ. Press.Google Scholar
Olivecrona, T., Bengtsson-Olivecrona, G., Osborne, J. C. Jr. & Kempner, E. S. (1985). Molecular size of bovine lipoprotein lipase as determined by radiation inactivation. J. biol. Chem. 260, 68886891.CrossRefGoogle ScholarPubMed
Potier, M., Thauvette, L., Michaud, L., Giroux, S. & Beauregard, G. (1991). Inactivation mechanism of tetrameric β-galactosidase by yγ-rays involves both fragmentation and temperature-dependent denaturation of protomers. Biochemistry 30, 81518157.CrossRefGoogle ScholarPubMed
Rabon, E. C., Gunther, R. D., Bassilian, S. & Kempner, E. S. (1988). Radiation inactivation analysis of oligomeric structure of the H, K-ATPase. J. biol. Chem. 263, 1618916194.CrossRefGoogle ScholarPubMed
Reddington, M., Klotz, K.-N., Lohse, M. J. & Hietel, B. (1989). Radiation inactivation analysis of the A1 adenosine receptor of rat brain. FEBS Letters 252, 125128.CrossRefGoogle Scholar
Ruf, H. H., Schuhn, D., Dietz, R., Nastainczyk, W. & Nielsen, M. (1992). Target size analysis of prostaglandin endoperoxide synthase. Eur J. Biochem. 204, 10691073.CrossRefGoogle ScholarPubMed
Saccomani, G., Sachs, G., Cuppoletti, J. & Jung, C. Y. (1981). Target molecular weight of the gastric (H+-K)-ATPase functional and structural molecular size. J. biol. Chem. 256, 77277729.CrossRefGoogle ScholarPubMed
Sakaguchi, H., Hirose, S., Kume, T. & Hagiwara, H. (1992). Minimal functional size or porcine lung and testicular angiotensin-converting enzymes deduced from radiation inactivation analysis. FEBS Letters 305, 144146.CrossRefGoogle ScholarPubMed
Santos, E., Nebreda, A. R., Bryan, T. & Kempner, E. S. (1988). Oligomeric structure of p21 ras proteins as determined by radiation inactivation. J. biol. Chem. 263, 98539858.CrossRefGoogle ScholarPubMed
Simon, P., Swillens, S. & Dumont, J. E. (1982). Size determination of an equilibrium enzymic system by radiation inactivation. Biochem. J. 205, 477483.CrossRefGoogle ScholarPubMed
Solomonson, L. P. & McCreery, M. J. (1986). Radiation inactivation of assimilatory NADH: nitrate reductase from Chlorella. J. biol. Chem. 261, 806810.CrossRefGoogle ScholarPubMed
Solomonson, L. P., McCreery, M. J., Kay, C. J. & Barber, M. J. (1987). Radiation inactivation analysis of assimilatory NADH:nitrate reductase. J. biol. Chem. 262, 89348939.CrossRefGoogle Scholar
Stevens, B. R., Fernandez, A., Hirayama, B., Wright, E. M. & Kempner, E. S. (1990). Intestinal brush border membrane Na+/glucose cotransporter functions in situ as a homotetramer. Proc. natl Acad. Sci. USA 87, 14561460.CrossRefGoogle ScholarPubMed
Stevens, B. R., Kempner, E. S. & Wright, E. M. (1986). Radiation inactivation probe of membrane-bound enzymes: γ-glutamyltranspeptidase, aminopeptidase N, and sucrase. Anal. Biochem. 158, 278282.CrossRefGoogle ScholarPubMed
Suarez, M. D. & Ferguson-Miller, S. (1987). Yeast and horse liver alcohol dehydrogenases: potential problems in target size analysis and evidence for a monomer active unit. Biochemistry 26, 33403347.CrossRefGoogle ScholarPubMed
Symons, M. C. R. & Taiwo, F. A. (1992). Radiation damage to proteins: an electron paramagnetic resonance study. J. Chem. Soc. Perkin Trans. 2, 14131415.CrossRefGoogle Scholar
Takahashi, M., Malathi, P., Preiser, H. & Jung, C. Y. (1985). Radiation inactivation studies on the rabbit kidney sodium-dependent glucose transporter. J. biol. Chem. 260, 1055110556.CrossRefGoogle ScholarPubMed
Wang, M. Y., Chien, L. F. & Pan, R. L. (1988). Radiation inactivation analysis of chloroplast CF0-CF1, ATPase. J. biol. Chem. 263, 88388843.CrossRefGoogle ScholarPubMed
Verkman, A. S., Skorecki, K. & Ausiello, D. A. (1984). Radiation inactivation of oligomeric enzyme systems: Theoretical considerations. Proc. nail Acad. Sci. USA 81, 150154.CrossRefGoogle ScholarPubMed
Verkman, A. S., Skorecki, K. L., Jung, C. Y. & Ausiello, D. A. (1986). Target molecular weights for red blood cell band 3 stilbene and mercurial binding sites. Am. J. Physiol. 251, C541C548.CrossRefGoogle ScholarPubMed
von Sonntag, C. (1987). The Chemical Basis of Radiation Biology. London: Taylor & Francis.Google Scholar