Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2025-01-06T00:17:15.328Z Has data issue: false hasContentIssue false

Coding of sounds in lower levels of the auditory system

Published online by Cambridge University Press:  17 March 2009

Aage R. Møller
Affiliation:
Department of Physiology II, Karolinska Institutet, Stockholm, Sweden

Extract

The great number of investigations and advanced developments in neurophysiology and psychoacoustics during recent years have extensively increased our knowledge about the frequency analysis of simple sounds in the peripheral auditory system.

New methods have facilitated quantitative measurements of the amplitude of the submicroscopic vibration of a narrow segment of the basilar membrane in anaesthetized animals at physiological sound intensities. The results of these studies have quantitatively confirmed the results of past studies by showing that the basilar membrane has a selectivity with regard to tone frequency. In addition to this, the recent studies have increased our knowledge about the finer details of vibration of the basilar membrane. At the lowest levels used in the recent investigations, i.e. about 70 dB SPL, the selectivity in the 7 kHz region of the basilar membrane was found to be greater than expected on the basis of extrapolation of older data. Moreover, the high frequency slope of the tuning curves of the basilar membrane was found to be particularly steep. The results of these recent studies, furthermore, showed that the basilar membrane vibrates in a non-linear way at intensities within the physiological range. This non-linearity results in a broadening of the selectivity curves of a narrow segment of the basilar membrane when the sound intensity is increased.

Little is known as to how the motion of the basilar membrane is transformed to excitation of the cochlear sensory cells, i.e. the haircells. The excitation may be related to displacement, spatial differentiation or other transformations of the basilar membrane motion. Recording from the interior of mammalian haircells has so far been unsuccessful, and the neural excitatory process within the haircells in the cochlea is as yet practically unknown. Studies of the haircells in the lateral line organ of fish have provided fundamental knowledge about their excitation; since they in many respects resemble those in the mammalian cochlea, the results very probably can be applied to the excitatory process in the mammalian cochlea.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1972

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, D. J., Rose, J. E., Hind, J. E. & Brugge, J. F. (1971). Temporal position of discharges in single auditory nerve fibers within the cycle of a sine-wave stimulus: Frequency and intensity effects. J. acoust. Soc. Am. 49, 1131–9.CrossRefGoogle ScholarPubMed
Békésy, G. von (1928). Zur Theorie des Hörens. Die Schwingungsform der Basilarmembran. Phys. Z. 29, 793810.Google Scholar
Békésy, G. von (1934). Über die nichtlinearen Verzerrungen des Ohres. Ann. Physik. 20, 809–27.CrossRefGoogle Scholar
Békésy, G. von (1942). Über die Schwingungen der Schneckentrennwand beim Präparat und Ohrenmodell. Akust. Z. 7, 173–86.Google Scholar
Békésy, G. von (1949). The vibration of the cochlear partition in anatomical preparations and in models of the inner ear. J. acoust. Soc. Am. 21, 233–45.CrossRefGoogle Scholar
Békésy, G. von (1944). Über die mechanische Frequenzanalyse in der Schnecke verschiedener Tiere. Akust. Z. 9, 311.Google Scholar
Békésy, G. von (1947). A new audiometer. Acta oto-lar. 35, 411–22.CrossRefGoogle Scholar
Békésy, G. von (1955). Human skin perception of travelling waves similar to those on the cochlea. J. acoust. Soc. Am. 27, 830–41.CrossRefGoogle Scholar
Békésy, G. von (1956). Current status of theories of hearing. Science, N.Y. 123, 779–83.CrossRefGoogle Scholar
Békésy, G. von (1967). Mach band type lateral inhibition in different sense organs. J. gen. Physiol. 50, 519–32.CrossRefGoogle Scholar
Bergeijk, W. A. van (1964). Sonic pulse compression in bats and people: A comment. J. acoust. Soc. Am. 36, 594–7.CrossRefGoogle Scholar
Boer, E. de (1967). Correlation studies applied to the frequency resolution of the cochlea. J. Aud. Res. 7, 209–17.Google Scholar
Boer, E. de (1968). Reverse correlation. I. A heuristic introduction to the technique of triggered correlation with application to the analysis of compound systems. Proc. K. ned. Akad. Wet. 71, Ser. C, 472–86.Google Scholar
Boer, E. de (1969). Reverse correlation. II. Initiation of nerve impulses in the inner ear. Proc. K. ned. Akad. Wet. 72, Ser. C, 129–51.Google ScholarPubMed
Boer, E. de & Kuyper, F. (1968). Triggered correlation. IEEE Trans. Biomed. Eng. BME–15, 169–79.CrossRefGoogle ScholarPubMed
Borg, E. (1971). Efferent inhibition of afferent acoustic activity in the unanesthetized rabbit. Expl Neurol. 31, 301–12.CrossRefGoogle ScholarPubMed
Borg, E. & Møller, A. R. (1967). Effect of ethylalcohol and pentobarbital sodium on the acoustic middle ear reflex in man. Acta oto-lar. 64, 415–26.CrossRefGoogle ScholarPubMed
Boudreau, J. C. & Tsuchitani, C. (1970). Cat superior olive S-segment cell discharge to tonal stimulation. In Contributions to Sensory Physiology, vol. 4, pp. 143213. Ed. Neff, W. D.. New York and London: Academic Press.Google Scholar
Brugge, J. F., Anderson, D. J., Hind, J. E. & Rose, J. E. (1969). Time structure of discharges in single auditory nerve fibers of the squirrel monkey in response to complex periodic sounds. J. Neurophysiol. 32, 386401.CrossRefGoogle ScholarPubMed
Capranica, R. R. (1965). The Evoked Vocal Response of the Bullfrog. Cambridge, Mass: M.I.T. Press.Google Scholar
Chow, K. L. (1951). Numerical estimates of the auditory central nervous system of the rhesus monkey. F. comp. Neurol. 95, 159–75.CrossRefGoogle ScholarPubMed
Dallos, P. & Sweetman, R. H. (1969). Distribution pattern of cochlear harmonics. F. acoust. Soc. Am. 45, 3746.CrossRefGoogle ScholarPubMed
Engebretson, A. M. & Eldredge, D. H. (1968). Model for the nonlinear characteristics of cochlear potentials. J. acoust. Soc. Am. 44, 548–54.CrossRefGoogle ScholarPubMed
Engström, H., Ades, H. W. & Andersson, A. (1966). Structural Pattern of the Organ of Corti. Stockholm: Almqvist and Wiksell.Google Scholar
Erulkar, S. D., Butler, R. A. & Gerstein, G. L. (1968). Excitation and inhibition in cochlear nucleus. II. Frequency-modulated tones. F. Neurophysiol. 31, 637–48.Google ScholarPubMed
Evans, E. F. (1970). Narrow ‘tuning’ of the responses of cochlear nerve fibers emanating from the exposed basilar membrane. F. Physiol., Lond. 208, 75–6P.Google ScholarPubMed
Evans, E. F., Rosenberg, J. & Wilson, J. P. (1970). Effective bandwidth of cochlear nerve fibres. J. Physiol., Lond. 207, 62–3 P.Google ScholarPubMed
Fernald, R. D. (1971). A neuron model with spatially distributed synaptic input. Biophys. J. 11, 323–40.CrossRefGoogle ScholarPubMed
Fernandez, C. & Karapas, F. (1967). The course and termination of the stria of Monakow and Held in the cat. J. comp. Neurol. 131, 371–86.CrossRefGoogle Scholar
Fex, J. (1962). Auditory activity in centrifugal and centripetal cochlear fibres in cat. Acta physiol. scand. 55, Suppl. 189, 168.Google Scholar
Flanagan, J. L. (1962). Models of approximating basilar membrane displacement. Part II. Effects of middle-ear transmission and some relations between subjective and physiological behaviour. Bell Syst. tech. J. 41, 959.CrossRefGoogle Scholar
Fletcher, H. (1940). Auditory patterns. Rev. mod. Physiol. 12, 4765.CrossRefGoogle Scholar
Fletcher, H. (1951). On the dynamics of the cochlea. J. acoust. Soc. Am. 23, 637–45.CrossRefGoogle Scholar
Fletcher, H. & Munson, W. A. (1937). Relation between loudness and masking. J. acoust. Soc. Am. 9, 110.CrossRefGoogle Scholar
Flock, Å., Kimura, R., Lundquist, P.-G. & Wersäll, J. (1962). Morphological basis of directional sensitivity of the outer hair cells in the organ of Corti. J. acoust. Soc. Am. 34, 1351–5.CrossRefGoogle Scholar
Frishkopf, L. S. (1964). Excitation and inhibition of primary auditory neurons in the little brown bat. J. acoust. Soc. Am. 36, 1016.CrossRefGoogle Scholar
Frishkopf, L. S. & Goldstein, M. H. (1963). Responses to acoustic stimuli from single units in the eight nerve of the bullfrog. J. acoust. Soc. Am. 35, 1219–28.CrossRefGoogle Scholar
Furman, G. G. & Frishkopf, L. S. (1964). Model of neural inhibition in mammalian cochlea. J. acoust. Soc. Am. 36, 2194–201.CrossRefGoogle Scholar
Galambos, R. (1944). Inhibition of activity in single auditory nerve fibers by acoustic stimulation. J. Neurophysiol. 7, 287303.CrossRefGoogle Scholar
Galambos, R. (1956). Suppression of auditory nerve activity by stimulation of efferent fibers to the cochlea. J. Neurophysiol. 19, 424–37.CrossRefGoogle Scholar
Galambos, R. & Davis, H. (1943). The response of single auditory nerve fibers to acoustic stimulation. J. Neurophysiol. 6, 3958.CrossRefGoogle Scholar
Galambos, R., Schwartzkopff, J. & Rupert, A. (1959). Microelectrode study of superior olivary nuclei. Am. J. Physiol. 197, 527–36.CrossRefGoogle ScholarPubMed
Gerstein, G. L., Butler, R. A. & Erulkar, S. D. (1968). Excitation and inhibition in cochlear nucleus. I. Tone-burst stimulation. J. Neurophysiol. 31, 526–36.CrossRefGoogle ScholarPubMed
Glattke, T. J. (1969). Unit responses of the cat cochlear nucleus to amplitude-modulated stimuli. J. acoust. Soc. Am. 45, 419–25.CrossRefGoogle ScholarPubMed
Goblich, T. J. & Pfeiffer, R. R. (1969). Time-domain measurements of cochlear nonlinearities using combination click stimuli. J. acoust. Soc. Am. 46, 924–38.CrossRefGoogle Scholar
Goldstein, J. L. (1967). Auditory nonlinearity. J. acoust. Soc. Am. 41, 676–89.CrossRefGoogle ScholarPubMed
Goldstein, J. L. (1970). Aural combination tones. In Frequency Analysis and Periodicity Detection in Hearing, pp. 230–47. Eds. Plomp, R. and Smoorenburg, G. F.. Leiden: A. W. Sijthoff.Google Scholar
Goldstein, J. L. & Kiang, N. Y.-S. (1968). Neural correlates of aural combination tone 2f 1f 2. Proc. IEEE. 56, 981–92.CrossRefGoogle Scholar
Gourevitch, G. (1965). Auditory masking in the rat. J. acoust. Soc. Am. 37, 439–43.CrossRefGoogle ScholarPubMed
Gray, A. A. (1900). On a modification of the Helmholtz theory of hearing. J. Anat. Physiol., Lond. 34, 324–50.Google ScholarPubMed
Greenwood, D. D. (1961). Critical bandwidth and the frequency coordinates of the basilar membrane. J. acoust. Soc. Am. 33, 1344–56.CrossRefGoogle Scholar
Greenwood, D. D. (1962). Approximate calculation of the dimensions of travelling-wave envelopes in four species. J. acoust. Soc. Am. 34, 1364–9.CrossRefGoogle Scholar
Greenwood, D. D. & Goldberg, J. M. (1970). Responses of neurons in the cochlear nuclei to variations in noise bandwidth and tone-noise combinations. J. acoust. Soc. Am. 47, 1022–40.CrossRefGoogle ScholarPubMed
Greenwood, D. D. & Maruyama, N. (1965). Excitatory and inhibitory response areas of auditory neurons in the cochlear nucleus. J. Neurophysiol. 28, 863–92.CrossRefGoogle ScholarPubMed
Griffin, D. R. (1958). Listening in the Dark. Yale: University Press.Google Scholar
Guinan, J. J. & Peake, W. T. (1967). Middle-ear characteristics of anesthetized cats. J. acoust. Soc. Am. 41, 1237–61.CrossRefGoogle ScholarPubMed
Harrison, J. M. & Feldman, M. L. (1970). Anatomical aspects of the cochlear nucleus and superior olivary complex. In Contributions to Sensory Physiology, vol. 4, pp. 95142. Ed. Neff, W. D.. New York and London: Academic Press.Google Scholar
Harrison, J. M. & Irving, R. (1964). Nucleus of the trapezoid body; dual afferent innervation. Science, N. Y. 154, 473–4.CrossRefGoogle Scholar
Harrison, J. M. & Irving, R. (1965). The anterior ventral cochlear nucleus. J. comp. Neurol. 124, 1542.CrossRefGoogle ScholarPubMed
Harrison, J. M. & Irving, R. (1966 a). Ascending connections of the anterior ventral cochlear nucleus. J. comp. Neurol. 126, 5164.CrossRefGoogle ScholarPubMed
Harrison, J. M. & Irving, R. (1966 b). The organization of the posterior ventral cochlear nucleus. J. comp. Neurol. 126, 391403.CrossRefGoogle ScholarPubMed
Hartline, H. K. (1967). Visual receptors and retinal interaction. Les Prix Nobel. 242–59.Google Scholar
Helmholtz, H. von (1863). Die Lehre von den Tonempfindungen als physiologische Grundlage für die Theorie der Musik. Braunschweig: F. Vieweg und Sohn, 1st Ed.Google Scholar
Hind, J. E., Anderson, D. J., Brugge, J. F. & Rose, J. E. (1967). Coding of information pertaining to paired low-frequency tones in single auditory nerve fibers of the squirrel monkey. J. Neurophysiol. 30, 794816.CrossRefGoogle ScholarPubMed
Hind, J. E., Rose, J. E., Brugge, J. F. & Anderson, D. J. (1970). Two tone masking effects in squirrel monkey auditory nerve fibers. In Frequency Analysis and Periodicity Detection in Hearing, pp. 193200. Eds. Plomp, R. and Smoorenburg, G. F.. Leiden: A. W. Sijthoff.Google Scholar
Higgins, W. H. (1952). A phase principle for complex-frequency analysis and its implications in auditory theory. J. acoust. Soc. Am. 24, 582–9.CrossRefGoogle Scholar
Huxley, A. F. (1969). Is resonance possible in the cochlea after all? Nature, Lond. 221, 935–40.CrossRefGoogle Scholar
Johnstone, B. M. & Boyle, A. J. F. (1967). Basilar membrane vibration examined with the Mössbauer technique. Science, N.Y. 158, 389–90.CrossRefGoogle ScholarPubMed
Johnstone, B. M. & Taylor, K. (1970). Mechanical aspects of cochlear function. In Frequency Analysis and Periodicity Detection in Hearing, pp 8190. Eds. Plomp, R. and Smoorenburg, G. F.. Leiden: A. W. Sijthoff.Google Scholar
Johnstone, B. M., Taylor, K. J. & Boyle, A. J. (1970). Mechanics of the guinea pig cochlea. J. acoust. Soc. Am. 47, 504–9.CrossRefGoogle Scholar
Johnstone, J. R. & Johnstone, B. M. (1969). Unit responses from the lizard auditory nerve. Expi Neurol. 24, 528–37.CrossRefGoogle ScholarPubMed
Katsuki, Y., Suga, N. & Kanno, Y. (1962). Neural mechanisms of the peripheral and central auditory system in monkey. J. acoust. Soc. Am. 34, 1396–410.CrossRefGoogle Scholar
Katsuki, Y., Sumi, T., Vehiyama, H. & Watanabe, T. (1958). Electric responses of auditory neurons in cat to sound stimulation. J. Neurophysiol. 21, 569–88.CrossRefGoogle ScholarPubMed
Kiang, N. Y.-S. (1965). Stimulus coding in the auditory nerve and cochlear nucleus. Acta oto-lar. 59, 186200.CrossRefGoogle Scholar
Kiang, N. Y.-S. (1968). A survey of recent developments in the study of auditory physiology. Ann. Otol. Rhinol. Lar. 77, 656–76.CrossRefGoogle Scholar
Kiang, N.Y.-S. & Goldstein, M. H. (1962). Temporal coding of neural responses to acoustic stimuli. I.R.E. Trans Inf. Theory, vol. IT–8, 113–19.CrossRefGoogle Scholar
Kiang, N.Y.-S., Pfeiffer, P. R., Warr, W. B. & Backus, A. S. N. (1965 a). Stimulus coding in the cochlear nucleus. Ann. Otol. Rhinol. Lar. 74, 463–85.CrossRefGoogle ScholarPubMed
Kiang, N.Y.-S., Sachs, M. B. & Peake, W. T. (1967). Shapes of tuning curves for single auditory nerve fibers. J. acoust. Soc. Am. 42, 1341–2.CrossRefGoogle ScholarPubMed
Kiang, N.Y.-S., Watamabe, T., Tomas, E. C. & Clark, L. F. (1962). Stimulus coding in the cat's auditory nerve. Ann. Otol. Rhinol. Lar. 71, 1009–27.CrossRefGoogle ScholarPubMed
Kiang, N. Y.-S., Watanabe, T., Tomas, E. C. & Clark, L. F. (1965 b). Discharge patterns of single fibers in the cat's auditory nerve. Research Monograph No. 35. Cambridge, Massachusetts: The M.I.T. Press.Google Scholar
Konishi, M. (1970). Comparative neurophysiological studies of hearing and vocalization in songbirds. Z. vergi. Physiol. 66, 257–72.CrossRefGoogle Scholar
Lavine, R. A. (1971). Phase-locking in response of single neurons in cochlear nucleus complex of the cat to low-frequency tonal stimuli. J. Neurophysiol. 34, 467–83.CrossRefGoogle Scholar
Lee, J. W. (1960). Statistical theory of communication, p. 341. New York: Wiley.Google Scholar
Licklider, J. C. R. (1959). Three auditory theories. In Psychology: A Study of a Science, vol. 1, pp. 41144. Ed. Koch, S.. New York: McGraw Hill.Google Scholar
Licklider, J. C. R. (1962). Periodicity and related auditory process models. Int. Audiol. 1, 1136.CrossRefGoogle Scholar
Liff, H. J. & Goldstein, M. H. (1970). Peripheral inhibition in auditory fibers in the frog. J. acoust. Soc. Am. 47, 1538–47.CrossRefGoogle ScholarPubMed
Lorente de nó, R. (1933 a). Anatomy of the eighth nerve. I. Central projection of the nerve endings of the internal ear. Laryngoscope, St Louis 43, 138.CrossRefGoogle Scholar
Lorente de nó, R. (1933 b). Anatomy of the eighth nerve. III. General plan of structure of the primary cochlear nuclei. Laryngoscope, St Louis 43, 327–50.CrossRefGoogle Scholar
Lurie, M. H., Davis, H. & Hawkins, J. E. Jr, (1944). Acoustic trauma of the organ of corti in the guinea pig. Laryngoscope, St Louis 54, 375–86.CrossRefGoogle Scholar
Manley, G. A. (1970). Frequency sensitivity of auditory neurons in Caiman cochlear nucleus. Z. vergl. Physiol. 66, 251–6.CrossRefGoogle Scholar
McCue, J. J. G. (1966). Aural pulse compression by bats and humans. J. acoust. Soc. Am. 40, 545–8.CrossRefGoogle ScholarPubMed
Michelsen, A. (1971). The physiology of the Locust ear. I. Sensitivity of single cells in isolated ear. Z. vergl. Physiol. 71, 4962.CrossRefGoogle Scholar
Miller, G. A. & Tayler, W. G. (1948). The perception of repeated bursts of noise. J. acoust. Soc. Am. 20, 171–82.CrossRefGoogle Scholar
Møller, A. R. (1963). Transfer function of the middle ear. J. acoust. Soc. Am. 35, 1526–34.CrossRefGoogle Scholar
Møller, A. R. (1969 a). Unit responses in cochlear nucleus of the rat to pure tones. Acta physiol. scand. 75, 530–41.CrossRefGoogle ScholarPubMed
Møller, A. R. (1969 b). Unit responses in the rat cochlear nucleus to repetitive, transient sounds. Acta physiol. scand. 75, 542–51.CrossRefGoogle ScholarPubMed
Møller, A. R. (1969 c). Unit responses in the cochlear nucleus of the rat to sweep tones. Acta physiol. scand. 76, 503–12.CrossRefGoogle ScholarPubMed
Møller, A. R. (1970 a). Unit responses in the cochlear nucleus of the rat to noise and tones. Acta physiol. scand. 78, 289–98.CrossRefGoogle ScholarPubMed
Møller, A. R. (1970 b). Studies of the damped oscillatory response of the auditory frequency analyzer. Acta physiol. scand. 78, 299314.CrossRefGoogle ScholarPubMed
Møller, A. R. (1970 c). Two different types of frequency selective neurons in the cochlear nucleus of the rat. In Frequency Analysis and Periodicity Detection in Hearing, pp. 169–74. Eds. Plomp, R. and Smoorenburg, G. F.. Leiden: A. W. Sijthoff.Google Scholar
Møller, A. R. (1970 d). Periodicity coding in the peripheral auditory system. In Excitatory Synaptic Mechanisms, Proceedings of the Fifth International Meeting of Neurobiologists, pp. 287–93. Eds. Andersen, P. and Jansen, J. K. S.. Oslo: Universitetsforlaget.Google Scholar
Møller, A. R. (1971). Unit responses in the rat cochlear nucleus to tones of rapidly varying frequency and amplitude. Acta physiol. scand. 81, 540–6.CrossRefGoogle ScholarPubMed
Moushegian, G., Rupert, A. L. & Whitcomb, M. A. (1964). Brain-stem neuronal response patterns to monaural and binaural tones. J. Neurophysiol. 27, 1174–91.CrossRefGoogle ScholarPubMed
Moushegian, G., Rupert, A. L. & Langford, T. L. (1967). Stimulus coding by medial superior olivary neurons. J. Neurophysiol. 30, 1239–61.CrossRefGoogle ScholarPubMed
Moushegian, G. & Rupert, A. L. (1970). Response diversity of neurons in ventral cochlear nucleus of kangaroo rat to low-frequency tones. J. Neurophysiol. 33, 351–64.CrossRefGoogle ScholarPubMed
Müller, J. (1826). Zur vergleichenden Physiologie des Gesichtssinnes des Menschen und der Tiere. Nebst einem Versuch über die Bewegungen der Augen und über den menschlichen Blick. Leipzig: C. Cnobloch.Google Scholar
Nieder, P. (1971). Addressed exponential delay line theory of cochlear organization. Nature, Lond. 230, 255–7.CrossRefGoogle ScholarPubMed
Nomoto, M., Suga, N. & Katsuki, Y. (1964). Discharge pattern and inhibition of primary nerve fibers in the monkey. J. Neurophysiol. 27, 768–87.CrossRefGoogle ScholarPubMed
Noort, J. von (1969). The structure and connections of the inferior colliculus. Assen: van Gorcum and Co. N.V.Google Scholar
Nordmark, J. (1960). Perception of distance in animal echolocation. Nature, Lond. 188, 1009.CrossRefGoogle Scholar
Nordmark, J. (1970). Time and frequency analysis. In Foundations of Modern Auditory Theory, vol. 1, pp. 5783. Ed. Tobias, J. V.. New York and London: Academic Press.Google Scholar
Ohm, G. S. (1843). Über die Definition des Tones, nebst daran geknüpfter Theorie der Sirene und ähnlicher tonbildender Vorrichtungen. Ann. Physik. 59, 497565.Google Scholar
Osen, K. K. (1969). Cytoarchitecture of the cochlear nuclei in the cat. J. comp. Neurol. 136, 453–83.CrossRefGoogle ScholarPubMed
Peterson, L. C. & Bogert, B. P. (1950). A dynamical theory of the cochlea. J. acoust. Soc. Am. 22, 369–81.CrossRefGoogle Scholar
Pfeiffer, R. R. (1963). Electro-physiological response characteristics of single units in the cochlear nucleus of the cat. Ph.D. Thesis, Massachusetts Institute of Technology, Department of Electrical Engineering.Google Scholar
Pfeiffer, R. R. (1966). Classification of response patterns of spike discharges for units in the cochlear nucleus: Tone-burst stimulation. Exp. Brain Res. 1, 220–35.CrossRefGoogle ScholarPubMed
Pfeiffer, R. R. (1970). A model for two-tone inhibition of single cochlear nerve fibers. J. acoust. Soc. Am. 48, 1373–8.CrossRefGoogle Scholar
Pfeiffer, R. R. & Molnar, C. E. (1970). Cochlear nerve fiber discharge patterns: Relationship to cochlear microphonic. Science, N. Y. 167, 1614–16.CrossRefGoogle ScholarPubMed
Plomp, R. (1965). Detectability threshold for combination tones. J. acoust. Soc. Am. 37, 1110–23.CrossRefGoogle ScholarPubMed
Potter, H. D. (1965). Patterns of acoustically evoked discharges of neurons in the mesencephalon of the bull frog. J. Neurophysiol. 28, 1155–84.CrossRefGoogle Scholar
Radionova, E. A. (1971). Two types of neurons in the cat's cochlear nucleus and their role in audition. In Sensory Processes at the Neural and Behavioural Levels, pp. 135–55. Ed. Gershuni, G. V.. New York: Academic Press.CrossRefGoogle Scholar
Ranke, O. F. (1931). Die Gleichrichter-Resonanztheorie. München: Lehmann.Google Scholar
Ranke, O. F. (1950 a). Theory of operation of the cochlea: A contribution to the hydrodynamics of the cochlea. J. acoust. Soc. Am. 22, 772–7.CrossRefGoogle Scholar
Ranke, O. F. (1950 b). Hydrodynamik der Schneckenflüssigkeit. Z. Biol. 103, 409–34.Google Scholar
Rasmussen, G. L. (1946). The olivary peduncle and other fiber projections of the superior olivary complex. J. comp. Neurol. 84, 141219.CrossRefGoogle ScholarPubMed
Rasmussen, G. L. (1960). Efferent fibers of the cochlear nerve and cochlear nucleus. In Neural Mechanisms of the Auditory and Vestibular Systems, pp. 105–15. Eds. Rasmussen, G. L. and Windle, W. F.. Springfield, Illinois: Charles C. Thomas.Google Scholar
Rasmussen, G. L. (1967). Efferent connections of the cochlear nucleus. In Sensorineural Hearing Processes and Disorders, pp. 6175. Ed. Graham, A. B.. Boston, Massachusetts: Little Brown.Google Scholar
Rhode, W. S. (1967). Observations of the vibration of the basilar membrane in squirrel monkeys using the Mössbauer Technique. J. acoust. Soc. Am. 49, 1218–31.CrossRefGoogle Scholar
Rose, J. E., Brugge, J. F., Anderson, D. J. & Hind, J. E. (1967). Phase-locked response to low-frequency tones in single auditory nerve fibers of the squirrel monkey. J. Neurophysiol. 30, 769–93.CrossRefGoogle ScholarPubMed
Rose, I. E., Brugge, J. F., Anderson, D. J. & Hind, J. E. (1969). Some possible correlates of combination tones. J. Neurophysiol. 32, 402–23.CrossRefGoogle ScholarPubMed
Rose, J. E., Galambos, R. & Hughes, J. R. (1959). Microelectrode studies of the cochlear nuclei of the cat. Bull. Johns Hopkins Hosp. 104, 211–51.Google ScholarPubMed
Rose, J. E., Hind, J. E., Anderson, D. J. & Brugge, J. F. (1971). Some effects of stimulus intensity on response of auditory nerve fibers in the squirrel monkey. J. Neurophysiol. 34, 685–99.CrossRefGoogle ScholarPubMed
Rupert, A. L., Moushegian, G. & Whitcomb, M. A. (1968). Olivocochlear neuronal responses in medulla of cat. Expl Neurol. 20, 575–84.CrossRefGoogle ScholarPubMed
Rupert, A. L. & Moushegian, G. (1970). Neuronal responses of kangaroo rat ventral nucleus to low-frequency tones. Expl Neurol. 26, 84102.CrossRefGoogle ScholarPubMed
Rutherford, W. (1886). A new theory of hearing. J. Anat. Physiol. 21, 166–8.Google ScholarPubMed
Sachs, M. B. (1969). Stimulus-response relation for auditory-nerve fibers: Two-tone stimuli. J. acoust. Soc. Am. 45, 1025–36.CrossRefGoogle ScholarPubMed
Sachs, M. B. & Kiang, N. Y.-S. (1968). Two-tone inhibition in auditory-nerve fibers. J. acoust. Soc. Am. 43, 1120–8.CrossRefGoogle ScholarPubMed
Scharf, B. (1970). Critical bands. In Foundation of Modern Auditory Theory, vol. 1, pp. 159202. Ed. Tobias, J. V.. New York and London: Academic Press.Google Scholar
Schouten, J. F. (1938). The perception of subjective tones. Proc. K. ned. Akad. Wet. 41, 1086–93.Google Scholar
Schouten, J. F. (1940). The residue and the mechanism of hearing. Proc. K. ned. Akad. Wet. 43, 991–9.Google Scholar
Schouten, J. F., Ritsma, R. J. & Cardozo, B. L. (1962). Pitch of the residue. J. acoust. Soc. Am. 34, 1418–24.CrossRefGoogle Scholar
Schuknecht, H. F. (1960). Neuroanatomical correlates of auditory sensitivity and pitch discrimination in the cat. Chapter 6 in Neural Mechanisms of the Auditory and Vestibular Systems. Eds. Rasmussen, G. L. and Windle, W. F.. Springfield: Thomas.Google Scholar
Seebeck, A. (1841). Beobachtungen über einige Bedingungen der Entstehung von Tönen. Ann. Physiol. 53, Ser. 2, 417–36.CrossRefGoogle Scholar
Shupljakov, V., Murray, T. & Liljencrantz, J. (1968). Phase dependent pitch sensation. Speech Transmission Laboratory, Royal Institute of Technology, Stockholm, QPSR. 4, 714.Google Scholar
Siebert, W. M. (1962). Models of the dynamic behaviour of the cochlear partition. Mass. Inst. of Techn. Research Laboratory of Electronics. QPR, Cambridge, Massachusetts. 64, 242–58.Google Scholar
Siebert, W. M. (1968). Stimulus transformation in the peripheral auditory system. In Recognizing Patterns, pp. 104–33. Eds. Kolers, P. A. and Eden, M.. Cambridge, Massachusetts: M.I.T. Press.Google Scholar
Siebert, W. M. (1970). Frequency discrimination in the auditory system: Place or periodicity mechanisms? Proc. IEEE 58, 723–30.CrossRefGoogle Scholar
Simmons, B. E. & Linehan, J. A. (1968). Observations on a single auditory nerve fiber over a six-week period. J. Neurophydol. 31, 799805.CrossRefGoogle Scholar
Small, A. M. (1970). Periodicity pitch. In Foundations of Modern Auditory Theory, vol. 1, pp. 354. Ed. Tobias, J. V.. New York and London: Academic Press.Google Scholar
Small, A. M. & McClellan, M. E. (1963). Pitch associated with time delay between two pulse trains. J. acoust. Soc. Am. 35, 1246–55.CrossRefGoogle Scholar
Spoendlin, H. (1966). The organization of the cochlear receptor. Basel-New York: Karger.Google ScholarPubMed
Spoendlin, H. (1970). Structural basis of peripheral frequency analysis. In Frequency Analysis and Periodicity Detection in Hearing, pp. 236. Eds. Plomp, R. and Smoorenburg, G. F.. Leiden: A. W. Sijthoff.Google Scholar
Starr, A. & Britt, R. (1970). Intracellular recordings from cat cochlear nucleus during tone stimulation. J. Neurophysiol. 33, 137–47.CrossRefGoogle ScholarPubMed
Stevens, J. C. & Tulving, E. (1957). Estimation of loudness by a group of untrained observers. Am. J. Psychol. 70, 600–5.CrossRefGoogle ScholarPubMed
Stopp, P. & Whitfield, I. C. (1961). Unit responses from brain stem nucleus in the pigeon. J. Physiol., Lond. 158, 165–77.CrossRefGoogle Scholar
Strother, G. K. (1961). Note on the possible use of ultrasonic pulse compression by bats. J. acoust. Soc. Am. 33, 696–7.CrossRefGoogle Scholar
Suga, N. (1964). Single unit activity in cochlear nucleus and inferior colliculus of echo-locating bats. J. Physiol., Lond. 172, 449–74.CrossRefGoogle ScholarPubMed
Suga, N. (1965). Analysis of frequency-modulated sounds by auditory neurons of echo-locating bats. J. Physiol., Lond. 179, 2653.CrossRefGoogle ScholarPubMed
Suga, N. & Campbell, H. W. (1967). Frequency sensitivity of single auditory neurons in gecko Coleonyx variegatus. Science, N. Y. 157, 8890.CrossRefGoogle ScholarPubMed
Tonndorf, J. (1958). Harmonic distortion in cochlear models. J. acoust. Soc. Am. 30, 929–37.CrossRefGoogle Scholar
Tonndorf, J. (1970). Nonlinearities in cochlear hydrodynamics. J. acoust. Soc. Am. 47, 579–91.CrossRefGoogle ScholarPubMed
Tonndorf, J. & Khanna, S. M. (1968). Displacement pattern of the basilar membrane: A comparison of experimental data. Science, N.Y. 160, 1139–40.CrossRefGoogle ScholarPubMed
Tsuchitani, C. & Boudreau, J. C. (1966). Single unit analysis of cat superior. olive S-segment with tonal stimuli. J. Neurophysiol. 29, 684–97.CrossRefGoogle ScholarPubMed
Tsucihtani, C. & Boudreau, J. C. (1967). Encoding of stimulus frequency and intensity by cat superior olive S-segment cells. J. acoust. Soc. Am. 42, 794805.CrossRefGoogle Scholar
Warr, W. B. (1969). Fiber degeneration following lesions in the posteroventral cochlear nucleus of the cat. Expl Neurol. 23, 140–55.CrossRefGoogle ScholarPubMed
Watson, C. S. (1963). Masking of tones by noise for the cat. J. acoust. Soc. Am. 35, 167–72.CrossRefGoogle Scholar
Watts, D. G. (1961). A general theory of amplitude quantization with applications to correlation determinations. IEE (Lond.). Monograph, 481 M.Google Scholar
Weiss, T. F. (1966). A model of the peripheral auditory system. Kybernetik. 3, 153–75.CrossRefGoogle Scholar
Wever, E. G. (1949). Theory of Hearing. New York: Wiley.Google Scholar
Wever, E. G. (1965). Structure and function of the lizard ear. J. Aud. Res. 5, 331–71.Google Scholar
Wever, E. G. & Lawrence, M. (1954). Physiological Acoustics. Princeton: Princeton University Press.CrossRefGoogle Scholar
Whitfield, I. C. (1967 a). Coding in the auditory nervous system. Nature, Lond. 213, 756–60.CrossRefGoogle ScholarPubMed
Whitfield, I. C. (1967 b). The Auditory Pathway. London: Edward Arnold Ltd.Google Scholar
Whitfield, I. C. (1970). Central nervous processing in relation to spatiotemporal discrimination of auditory patterns. In Frequency Analysis and Periodicity Detection in Hearing, pp. 136–47. Eds. Plomp, R. and Smoorenburg, G. F.. Leiden: A. W. Sijthoff.Google Scholar
Wiederhold, M. L. (1970). Variations in the effects of electrical stimulation of the crossed olivocochlear bundle on cat single auditory nerve fiber responses to tone bursts. J. acoust. Soc. Am. 48, 966–77.CrossRefGoogle ScholarPubMed
Wiederhold, M. L. & Kiang, N.Y.-S. (1970). Effects of electric stimulation of the crossed olivocochlear bundle on single auditory nerve fibers in the cat. J. acoust. Soc. Am. 48, 950–65.CrossRefGoogle ScholarPubMed
Wilson, O. (1970). In discussion to B. M. Johnstone and K. Taylor. Mechanical aspects of cochlear function. In Frequency Analysis and Periodicity Detection in Hearing, pp. 90–1. Eds. Plomp, R. and Smoorenburg, G. F.. Leiden: A. W. Sijthoff.Google Scholar
Zwicker, E. (1954). Die Verdeckung von Schmalbandgeräuschen durch Sinustöne. Acustica. 4, 415920.Google Scholar
Zwicker, E. (1955). Der ungewöhnliche Amplitudengang der nichtlinearen Verzerrungen des Ohres. Acustica 5, 6774.Google Scholar
Zwicker, E. (1956). Die elementaren Grundlagen zur Bestimmung der Informationskapazität des Gehörs. Acustica 6, 365–81.Google Scholar
Zwicker, E. (1960). Über die Rolle der Frequenzgruppen beim Hören. Ergebn. Biol. 23, 187.Google Scholar
Zwicker, E. (1965). Temporal effects in simultaneously masking and loudness. J. acoust. Soc. Am. 38, 132–41.CrossRefGoogle ScholarPubMed
Zwicker, E. & Feldtkeller, R. (1967). Das Ohr als Nachrichtenempfänger. Stuttgart: S. Hirzel Verlag.Google Scholar
Zwislocki, J. J. (1948). Theorie der Schneckenmechanik. Acta oto-lar. Suppl. 72.Google Scholar
Zwislocki, J. J. (1953). Review of recent mathematical theories of cochlear dynamics. J. acoust. Soc. Am. 25, 743–51.CrossRefGoogle Scholar
Zwislocki, J. J. (1965). Analysis of some auditory characteristics. In Handbook of Mathematical Psychology, vol. III, pp. 197. Eds. Luce, , Bush, and Galanter, . New York: Wiley.Google Scholar